
Thou Shalt Not Specialize std Function Templates!

Document #: WG21 P0551R0
Date: 2017-02-01
Project: JTC1.22.32 Programming Language C++
Audience: LEWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction 1
2 Discussion 1

2.1 What we say today 1
2.2 What’s wrong with that? 2
2.3 What should we do? 3

3 An alternate approach 3
4 Proposed wording 5
5 Acknowledgments 6
6 Bibliography 6
7 Document history 6

Abstract

This paper proposes to modify clause [namespace.std] so as (a) to forbid users from specializing
standard library function templates and (b) to allow function objects as implementations of
standard library facilities specified as function templates.

To create architecture is to put in order. Put what in order?
Function and objects.

— LE CORBUSIER, né CHARLES-ÉDOUARD JEANNERET

1 Introduction

Specializing function templates has proven problematic in practice; specializing function templates
in namespace std has proven even more problematic. This paper (a) will cite knowledgable and
well-respected colleagues in describing the core language causes of the issues involved, and (b) will
then recommend wording adjustments (to subclause [namespace.std]) to address these issues in
the context of the standard library.

2 Discussion

2.1 What we say today
Quoted verbatim from [N4618], here are the three paragraphs that constitute the entirety of
[namespace.std]:

1 The behavior of a C++ program is undefined if it adds declarations or definitions to
namespace std or to a namespace within namespace std unless otherwise specified. A
program may add a template specialization for any standard library template to namespace
std only if the declaration depends on a user-defined type and the specialization meets
the standard library requirements for the original template and is not explicitly prohibited.

Copyright c© 2017 by Walter E. Brown. All rights reserved.

1

mailto:webrown.cpp@gmail.com

2 P0551R0: Thou Shalt Not Specialize std Function Templates!

[Footnote: Any library code that instantiates other library templates must be prepared to work adequately with any

user-supplied specialization that meets the minimum requirements of the Standard.]

2 The behavior of a C++ program is undefined if it declares

(2.1) — an explicit specialization of any member function of a standard library class
template, or

(2.2) — an explicit specialization of any member function template of a standard library
class or class template, or

(2.2) — an explicit or partial specialization of any member class template of a standard
library class or class template.

A program may explicitly instantiate a template defined in the standard library only if the
declaration depends on the name of a user-defined type and the instantiation meets the
standard library requirements for the original template.

3 A translation unit shall not declare namespace std to be an inline namespace (7.3.1).

2.2 What’s wrong with that?
According to several C++ cognoscenti, it is a poor C++ programming practice to specialize a function
template, especially one in namespace std. Here are representative explanations and advice:

• Herb Sutter: “specializations don’t participate in overloading. . . . If you want to customize a
function base template and want that customization to participate in overload resolution
(or, to always be used in the case of exact match), make it a plain old function, not a
specialization. And, if you do provide overloads, avoid also providing specializations.”1

• David Abrahams: “it’s wrong to use function template specialization [because] it interacts
in bad ways with overloads. . . . For example, if you specialize the regular std::swap for
std::vector<mytype>&, your specialization won’t get chosen over the standard’s vector-
specific swap, because specializations aren’t considered during overload resolution.”2

• Howard Hinnant: “this issue has been settled for a long time. . . . Disregard Dave’s expert
opinion/answer in this area at your own peril.”3

• Eric Niebler: “[because of] the decidedly wonky way C++ resolves function calls in tem-
plates. . . , [w]e make an unqualified call to swap in order to find an overload that might
be defined in . . . associated namespaces. . . , and we do using std::swap so that, on the
off-chance that there is no such overload, we find the default version defined in the std
namespace.”4

• High Integrity C++ Coding Standard: “Overload resolution does not take into account explicit
specializations of function templates. Only after overload resolution has chosen a function
template will any explicit specializations be considered.”5

1Herb Sutter: “ Why Not Specialize Function Templates?” http://www.gotw.ca/publications/mill17.htm, 2009 (re-
trieved 2016–10–17). Originally published in C/C++ Users Journal, 19(7), July 2001.

2David Abrahams: Reply to “How to overload std::swap().” http://stackoverflow.com/questions/11562/how-to-
overload-stdswap#comment-5729583, 2011–02–24 (retrieved 2016–10–17).

3Howard Hinnant: Reply to “How to overload std::swap().” http://stackoverflow.com/questions/11562/how-to-
overload-stdswap#8439357, 2011–12–08 (retrieved 2016–10–17).

4Eric Niebler: “Customization Point Design in C++11 and Beyond.” http://ericniebler.com/2014/10/21/
customization-point-design-in-c11-and-beyond, 2014–10–21 (retrieved 2016–10–17).

5Programming Research Ltd.: “Do not explicitly specialize a function template that is overloaded with other templates,”
In High Integrity C++ Coding Standard, version 4.0, 2013–10–03 (retrieved 2016–10–20). http://www.codingstandard.
com/rule/14-2-2-do-not-explicitly-specialize-a-function-template-that-is-overloaded-with-other-templates/.

http://www.gotw.ca/publications/mill17.htm
http://stackoverflow.com/questions/11562/how-to-overload-stdswap#comment-5729583
http://stackoverflow.com/questions/11562/how-to-overload-stdswap#comment-5729583
http://stackoverflow.com/questions/11562/how-to-overload-stdswap#8439357
http://stackoverflow.com/questions/11562/how-to-overload-stdswap#8439357
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond
http://www.codingstandard.com/rule/14-2-2-do-not-explicitly-specialize-a-function-template-that-is-overloaded-with-other-templates/
http://www.codingstandard.com/rule/14-2-2-do-not-explicitly-specialize-a-function-template-that-is-overloaded-with-other-templates/

P0551R0: Thou Shalt Not Specialize std Function Templates! 3

While this issue has been known for over 15 years, it seems not particulary well known. Moreover,
the wording in [namespace.std] is still, even today, being tweaked,6 and there are papers (e.g.,
[N4381]) considering further refinements in customizing library-provided function templates.

2.3 What should we do?
We propose a few related measures to address the present uncomfortable situation regarding user
customization of function templates in the standard library. Let F denote an arbitrary standard
library facility that is specified as a non-member function template. (Prominent examples of such
an F include begin, swap, and forward.) Then:

1. Prohibit programs from specializing any such F. (This is in addition to the existing prohibition
against overloading any such F in namespace std.)

2. Despite F’s specification as a function template, grant implementations license to implement
F in the form of an instantiated function object that has the specified template parameters,
function parameters, and return type.

These changes will allow standard library implementors to provide customization points7 that will
smoothly interoperate with overloads provided by users in their own namespaces, thus avoiding
surprises due to (common) misunderstandings of interactions of specialization and overloading.

3 An alternate approach

The Ranges TS [N4620] specifies customization point functionality that overlaps what we propose
above, but that also appears to go into far greater detail about implementation techniques. We
are uncertain that all these implementation details are truly necessary to its specification of
customization points.

For example, the following extensive details (cross-references elided) are provided as a “conven-
tion” in the TS subclause “Customization Point Objects” [customization.point.object]:

1 A customization point object is a function object with a literal class type that interacts with
user-defined types while enforcing semantic requirements on that interaction.

2 The type of a customization point object shall satisfy Semiregular.

3 All instances of a specific customization point object type shall be equal.

4 The type of a customization point object T shall satisfy Invocable<const T,Args...>()
when the types of Args... meet the requirements specified in that customization point
object’s definition. Otherwise, T shall not have a function call operator that participates in
overload resolution.

5 Each customization point object type constrains its return type to satisfy a particular
concept.

6 The library defines several named customization point objects. In every translation unit
where such a name is defined, it shall refer to the same instance of the customization point
object.

6See, for example, LWG Issue 2139, “What is a user-defined type?”. In C++ Standard Library Active Issues List
(Revision D012), revised 2016–12–18 at 14:12:32 UTC (retrieved 2016–12–20), http://cplusplus.github.io/LWG/lwg-
active.html#2139.

7According to [N4381], “A customization point . . . is a function used by the Standard Library that can be overloaded
on user-defined types in the user’s namespace and that is found by argument-dependent lookup.” Less formally, Eric
Niebler defines customization points as “hooks used by generic code that end-users can specialize to customize the
behavior for their types.” See “Customization Point Design in C++11 and Beyond.” 2014–10–21 (retrieved 2017–01–26).
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/.

http://cplusplus.github.io/LWG/lwg-active.html#2139
http://cplusplus.github.io/LWG/lwg-active.html#2139
http://ericniebler.com/2014/10/21/customization-point-design-in-c11-and-beyond/

4 P0551R0: Thou Shalt Not Specialize std Function Templates!

7 [Note: Many of the customization point objects in the library evaluate function call expres-
sions with an unqualified name which results in a call to a user-defined function found by
argument dependent name lookup. To preclude such an expression resulting in a call to
unconstrained functions with the same name in namespace std, customization point objects
specify that lookup for these expressions is performed in a context that includes deleted
overloads matching the signatures of overloads defined in namespace std. When the deleted
overloads are viable, user-defined overloads must be more specialized or more constrained to
be used by a customization point object. — end note]

In addition to the above “convention,” each customization point specification carries significant
additional verbiage regarding its implementation. For example, here is the further specification of
swap from the TS’s [utility.swap]:

1 The name swap denotes a customization point object. The effect of the expression ranges::
swap(E1,E2) for some expressions E1 and E2 is equivalent to:

(1.1) — (void)swap(E1,E2), if that expression is valid, with overload resolution performed
in a context that includes the declarations

template <class T> void swap(T&, T&) = delete;
template <class T, size_t N> void swap(T(&)[N], T(&)[N]) = delete;

and does not include a declaration of ranges::swap. If the function selected by overload
resolution does not exchange the values denoted by E1 and E2, the program is ill-formed
with no diagnostic required.

(1.2) — Otherwise, (void)swap_ranges(E1,E2) if E1 and E2 are lvalues of array types
of equal extent and ranges::swap(*(E1),*(E2)) is a valid expression, except that
noexcept(ranges::swap(E1,E2)) is equal to noexcept(ranges::swap(*(E1),*(E2)
)).

(1.3) — Otherwise, if E1 and E2 are lvalues of the same type T which meets the syntactic re-
quirements of MoveConstructible<T>() and Assignable<T&,T>(), exchanges the de-
noted values. ranges::swap(E1,E2) is a constant expression if the constructor selected
by overload resolution for T{std::move(E1)} is a constexpr constructor and the expres-
sion E1 = std::move(E2) can appear in a constexpr function. noexcept(ranges::
swap(E1,E2)) is equal to is_nothrow_move_constructible<T>::value && is_no
throw_move_assignable<T>::value. If either MoveConstructible or Assignable is
not satisfied, the program is ill-formed with no diagnostic required.

(1.4) — Otherwise, ranges::swap(E1,E2) is ill-formed.

2 Remark: Whenever ranges::swap(E1,E2) is a valid expression, it exchanges the values
denoted by E1 and E2 and has type void.

There is a similarly detailed amount of additional specification for each of the other cus-
tomization points in the TS: iter_move, iter_swap, begin, end, cbegin, cend, rbegin, rend,
crbegin, crend, size, empty, data, and cdata. Despite all this bulk, the TS does not speak to
the fundamental issue we seek to address, namely to forbid user code from providing inconsistent
reinterpretations of standard library features. It seems plausible that some hybrid of the two
approaches may prove beneficial, but this paper proposes a minimalist approach in order to
provide a contrasting viewpoint.

P0551R0: Thou Shalt Not Specialize std Function Templates! 5

4 Proposed wording8

4.1 Adjust [namespace.std] as shown:

1 Unless otherwise specified, Tthe behavior of a C++ program is undefined if it adds declarations
or definitions to namespace std or to a namespace within namespace std unless otherwise
specified.

2 Unless explicitly prohibited, Aa program may add a template specialization for any standard
library class template or variable template to namespace std only ifprovided that (a) the added
declaration depends on a user-defined type and (b) the specialization meets the standard library
requirements for the original template and is not explicitly prohibited. [Footnote: Any library code

that instantiates other library templates must be prepared to work adequately with any user-supplied specialization that

meets the minimum requirements of the Standard.]

23 The behavior of a C++ program is undefined if it declares

(23.1) — an explicit specialization of any member function of a standard library class template,
or

(23.2) — an explicit specialization of any member function template of a standard library class
or class template, or

(23.2) — an explicit or partial specialization of any member class template of a standard library
class or class template.

4 A program may explicitly instantiate a class template defined in the standard library only if the
declaration depends on the name of a user-defined type and the instantiation meets the standard
library requirements for the original template.

5 A program may provide (in a namespace of its own) an overload for any library function
template designated as a customization point, provided that (a) the overload’s declaration depends
on a user-defined type and (b) the overload meets the standard library requirements for the
customization point. [Note: this permits a (qualified or unqualified) call to the customization
point to invoke the most appropriate overload for the given arguments.] [Footnote: Any library

customization point must be prepared to work adequately with any user-supplied overload that meets the minimum

requirements of the Standard. Therefore an implementation may elect, under the as-if rule ([intro.execution]), to provide

any customization point in the form of an instantiated function object ([function.objects]) even though the customization

point’s specification is in the form of a function template. The template parameters of each such function object and the

function parameters of its operator() must match those of the corresponding customization point’s specification.]

36 A translation unit shall not declare namespace std to be an inline namespace (7.3.1).

4.2 Where and as shown, designate the following standard library functionality as customiza-
tion points: (a) swap; (b) the range access algorithms begin, end, and their variants; and
(c) the container access algorithms size, empty, and data.

[utility.swap] 1 Remarks: This function is a designated customization point ([namespace.std]]
and shall not participate in overload resolution unless

[iterator.range] 1 In addition to being available via inclusion of the <iterator> header, the
function templates in 24.7 are available when any of the following headers are included: <array>,
<deque>, <forward_list>, . . . , and <vector>. Each of these templates is a designated custom-
ization point ([namespace.std]].

8All proposed additions and deletions are relative to the post-Issaquah Working Draft [N4618]. Editorial notes are
displayed against a gray background.

6 P0551R0: Thou Shalt Not Specialize std Function Templates!

[iterator.container] 1 In addition to being available via inclusion of the <iterator> header, the
function templates in 24.8 are available when any of the following headers are included: <array>,
<deque>, <forward_list>, . . . , and <vector>. Each of these templates is a designated custom-
ization point ([namespace.std]].

5 Acknowledgments

Many thanks, for their thoughtful comments, to Andrey Semashev and the other readers of
prepublication drafts of this paper.

6 Bibliography

[N4381] Eric Niebler: “Suggested Design for Customization Points.” ISO/IEC JTC1/SC22/WG21 doc-
ument N4381 (pre-Lenexa mailing), 2015–03–11. http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2015/n4381.html.

[N4618] Richard Smith: “Working Draft, Standard for Programming Language C++,” ISO/IEC JTC1/
SC22/WG21 document N4618 (post-Issaquah mailing), 2016–11–28. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/n4618.pdf.

[N4620] Eric Niebler and Casey Carter: “Working Draft, C++ Extensions for Ranges.” ISO/IEC JTC1/
SC22/WG21 document N4620 (post-Issaquah mailing), 2016–11–27. http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/n4620.pdf.

7 Document history

Version Date Changes

0 2017-02-01 • Published as P0551R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4618.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4620.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4620.pdf

	Title
	Contents
	Abstract
	1 Introduction
	2 Discussion
	2.1 What we say today
	2.2 What's wrong with that?
	2.3 What should we do?

	3 An alternate approach
	4 Proposed wording
	5 Acknowledgments
	6 Bibliography
	7 Document history

