
Familiar template syntax for generic lambdas

Document #: P0428R2
Date: 2017-07-13
Project: Programming Language C++
Audience: Core Working Group
Reply-to: Louis Dionne <ldionne.2@gmail.com>

1 Revision history

• R0 – Initial draft

• R1 – Incorporate feedback from CWG in Kona:

– Rebase on top of the C++17 DIS

– Add alternative term in the grammar for lambda expressions instead of using opt template
parameter list

– Adjust wording for the template parameter list of the conversion-to-function-pointer
operator

– Make sure that a lambda with a template parameter list is a generic lambda

– Shorten discussion

• R2 – Move the definition of a generic lambda from dcl.spec.auto to expr.prim.lambda
per CWG instructions in Toronto.

2 Introduction

C++14 added the ability to define generic lambdas, i.e. lambdas where the operator() of the
generated closure-type is a template. This addition was initially proposed in [N3418], which included
many different features for generic lambdas, including the functionality proposed by this paper.
However, N3418 was not accepted as-is and its successor, [N3559], was accepted instead. N3559
settled on the auto-based syntax that we know in C++14 for defining generic lambdas, leaving the
usual template syntax out for lack of clear use cases (according to an author of N3559):

[](auto x) { /* ... */ }

Unfortunately, this syntax makes it difficult to interact with the type of the parameter(s) and lacks
flexibility that is sometimes required, as outlined in the Motivation section. Hence, this paper
proposes adding the ability to use the familiar template syntax when defining lambda expressions:

1

mailto:ldionne.2@gmail.com

[]<typename T>(T x) { /* ... */ }
[]<typename T>(T* p) { /* ... */ }
[]<typename T, int N>(T (&a)[N]) { /* ... */ }

3 Motivation

There are a few key reasons why the current syntax for defining generic lambdas is deemed insufficient
by the author. The gist of it is that some things that can be done easily with normal function
templates require significant hoop jumping to be done with generic lambdas, or can’t be done at all.
The author thinks that lambdas are valuable enough that C++ should support them just as well
as normal function templates. The following details such areas where lambdas are lacking in their
current form:

1. The limited form of "pattern matching" on template argument allowed by C++ in function
templates is very useful, and it would be equally useful to allow it in lambda expressions. For
example, writing a lambda that accepts a std::vector containing elements of any type (but
not another container) is not possible with the current syntax for generic lambdas. Instead,
one must write a catch-all generic lambda that accepts any type, and then assume that it is of
the proper type, or check that it is not through other means:

template <typename T> struct is_std_vector : std::false_type { };
template <typename T> struct is_std_vector<std::vector<T>> : std::true_type { };

auto f = [](auto vector) {
static_assert(is_std_vector<decltype(vector)>::value, "");

};

In addition to being verbose, calling the lambda with a type that is not a std::vector will
result in a hard error inside the body of the lambda, not a template argument deduction
failure. This does not play nicely with other parts of the language such as SFINAE-based
detection, and it is obviously not as clear as the equivalent function template.

Another instance where "pattern matching" would be useful is to deconstruct the type of
arguments that are template specializations. For example, imagine that we want to get the
type of elements stored in the vector in the previous example. Right now, we’d have to write
this:

auto f = [](auto vector) {
using T = typename decltype(vector)::value_type;
// ...

};

This is cumbersome syntax-wise, and it requires the type to provide a nested alias that does
just the right thing. This is not a problem for std::vector, but most types don’t provide such
aliases (and in many cases it wouldn’t make sense for them to). Hence, right now, types that
do not provide nested aliases or accompanying metafunctions can simply not be deconstructed
in lambdas. Instead, it would be much simpler and more flexible to write

2

auto f = []<typename T>(std::vector<T> vector) {
// ...

};

2. It is often useful to retrieve the type of the parameter of a generic lambda, e.g. for accessing a
static member function or an alias nested inside it. However, retrieving such a type requires
using decltype, which includes its reference and cv qualifiers. This can often lead to unexpected
results:

auto f = [](auto const& x) {
using T = decltype(x);
T copy = x; // Compiles, but wrong semantics!
T::static_function(); // Does not compile!
using Iterator = typename T::iterator; // Does not compile!

};

To work around this unfortunate situation, one must introduce some amount of verbosity:

auto f = [](auto const& x) {
using T = std::decay_t<decltype(x)>;
T copy = x;
T::static_function();
using Iterator = typename T::iterator;

};

Furthermore, this problem compounds when trying to make a parameter type dependent
on a previous parameter type, because aliases can’t be introduced in that context to reduce
verbosity:

auto advance = [](auto& it,
typename std::decay_t<decltype(it)>::difference_type n) {

// ...
};

Instead, it would be much nicer and closer to usual templates if we could simply write

auto f = []<typename T>(T const& x) {
T copy = x;
T::static_function();
using Iterator = typename T::iterator;

};

auto advance = []<typename It>(It& it, typename It::difference_type n) {
// ...

};

3. Perfect forwarding in generic lambdas is more verbose than it needs to be, and the syntax for
it is different from what’s usually done in normal function templates. While this is technically
a direct corollary of the previous point, the author thinks this is sufficiently annoying to be

3

worth mentioning separately. The problem is that since the only way to get an argument’s type
in a lambda is to use decltype, we must resort to the following syntax for perfect forwarding:

auto f = [](auto&& ...args) {
return foo(std::forward<decltype(args)>(args)...);

};

Exactly why this works is explained in a blog post written by Scott Meyers [Meyers], but the
very fact that Meyers had to write a blog post about it is telling. Indeed, the interaction
between template argument deduction and reference collapsing rules is already sufficiently
complicated that many C++ users would benefit from the cognitive load reduction allowed by
a single perfect forwarding syntax for both lambdas and normal functions:

auto f = []<typename ...T>(T&& ...args) {
return foo(std::forward<T>(args)...);

};

4 Proposed Wording

The wording is based on the C++17 DIS [N4659]. At the very beginning of [expr.prim.lambda]
8.1.5, change:

lambda-expression:
lambda-introducer lambda-declaratoropt compound-statement
lambda-introducer <template-parameter-list> lambda-declaratoropt compound-statement

Change in [expr.prim.lambda.closure] 8.1.5.1/3:

The closure type for a non-generic lambda-expression has a public inline function call oper-
ator (16.5.4) whose parameters and return type are described by the lambda-expression’s
parameter-declaration-clause and trailing-return-type respectively. For a generic lambda,
the closure type has a public inline function call operator member template (17.5.2)
whose template-parameter-list consists of the specified template-parameter-list, if any, to
which is appended one invented type template-parameter for each occurrence of auto
in the lambda’s parameter-declaration-clause, in order of appearance. The invented
type template-parameter is a parameter pack if the corresponding parameter-declaration
declares a function parameter pack (11.3.5). The return type and function parameters
of the function call operator template are derived from the lambda-expression’s trailing-
return-type and parameter-declaration-clause by replacing each occurrence of auto in the
decl-specifiers of the parameter-declaration-clause with the name of the corresponding
invented template-parameter.

Change in [expr.prim.lambda.closure] 8.1.5.1/6:

[. . .] For a generic lambda with no lambda-capture, the closure type has a conversion
function template to pointer to function. The conversion function template has the same
invented template-parameter-list template parameter list, and the pointer to function
has the same parameter types, as the function call operator template. [. . .]

4

Remove [dcl.spec.auto] 10.1.7.4/3 (to move it to the end of [expr.prim.lambda] 8.1.5):

If the auto type-specifier appears as one of the decl-specifiers in the decl-specifier-seq of
a parameter-declaration of a lambda-expression, the lambda is a generic lambda (8.1.5.1).
[Example:
auto glambda = [](int i, auto a) { return i; }; // OK: a generic lambda
– end example]

Add at the end of [expr.prim.lambda] 8.1.5:

A lambda is a generic lambda if the auto type-specifier appears as one of the decl-specifiers
in the decl-specifier-seq of a parameter-declaration of the lambda-expression, or if the
lambda has a template-parameter-list.
[Example:
int i = [](int i, auto a) { return i; }(3, 4); // OK: a generic lambda
int j = []<class T>(T t, int i) { return i; }(3, 4); // OK: a generic lambda
– end example]

5 Implementation experience

This extension to generic lambdas had been implemented in GCC in 2009 as part of an experiment
[GCC]. This extension was also part of Faisal Vali’s original implementation of generic lambdas in
Clang. Thus, it seems implementable.

6 Discussion

There is a question of whether to allow a lambda to contain both a template-parameter-list and
conventional auto-based parameters. When allowing both syntaxes, we must also make a choice
regarding the position of the invented template parameters relative to the specified template
parameters.

We decided to allow mixing both syntaxes and decided to append the invented template parameters
to the end of the template-parameter-list, because it seems like the simplest choice, it does not limit
expressiveness in any way and it is consistent with what’s done in the proposal for concepts [N4553].

7 Acknowledgements

Thanks to Tom Honermann, Nicol Bolas and other members of the std-proposal mailing list for
providing comments to improve this paper.

5

8 References

[N4659] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf

[Meyers] Scott Meyers, C++14 Lambdas and Perfect Forwarding
http://scottmeyers.blogspot.com.tr/2013/05/c14-lambdas-and-perfect-forwarding.
html

[N3418] Faisal Vali, Herb Sutter, Dave Abrahams, Proposal for Generic (Polymorphic) Lambda
Expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf

[N3559] Faisal Vali, Herb Sutter, Dave Abrahams, Proposal for Generic (Polymorphic) Lambda
Expressions (Revision 2)
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3559.pdf

[GCC] Adam Butcher, Latest experimental polymorphic lambda patches
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html

[N4553] Andrew Sutton, Working Draft, C++ extensions for Concepts
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://scottmeyers.blogspot.com.tr/2013/05/c14-lambdas-and-perfect-forwarding.html
http://scottmeyers.blogspot.com.tr/2013/05/c14-lambdas-and-perfect-forwarding.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3418.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3559.pdf
http://gcc.gnu.org/ml/gcc/2009-08/msg00174.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4553.pdf

	1 Revision history
	2 Introduction
	3 Motivation
	4 Proposed Wording
	5 Implementation experience
	6 Discussion
	7 Acknowledgements
	8 References

