
String literals as non-type template parameters

Document #: P0424R2
Date: 2017-11-14
Project: Programming Language C++
Audience: Core Working Group
Reply-to: Louis Dionne <ldionne.2@gmail.com>

Hana Dusíková <hanicka@hanicka.net>

1 Revision history

• R0 – Initial draft

• R1 – Rewrite with different UDL form per EWG direction, and update motivation.

• R2 – Incorporate feedback from EWG in Albuquerque:

– Use array syntax instead of pointer and length.

– Allow string literals as non-type template arguments.

– Initial wording attempt.

2 Abstract

We propose allowing string literals as non-type template arguments. A string literal would be passed
as a reference to an array of characters:

template <auto& str>
void foo();

foo<"hello">(); // creates a ‘constexpr char[6]‘ and passes a reference to it

To match this new functionality, we also propose adding a new form of the user-defined literal
operator for strings:

template <auto& str>
auto operator"" _udl();

"hello"_udl; // equivalent to operator""_udl<"hello">()

1

mailto:ldionne.2@gmail.com
mailto:hanicka@hanicka.net

3 Motivation

Compile-time strings are a sorely missed piece of functionality in C++. Indeed, while we can pass
a string as a function argument, there is no way of getting a string as a compile-time entity from
within a function. This prevents a function from creating an object whose type depends on the
contents of the string being passed. This paper proposes solving this problem by allowing string
literals as non-type template parameters.

There are many concrete use cases for this functionality, some of which were covered in a previous
version of this paper ([P0424R0]). However, some interesting use cases have recently come up, the
most notable ones being compile-time JSON parsing and compile-time regular expression parsing.
For example, a regular expression engine can be generated at compile-time as follows (example
taken from the [CTRE] library):

#include "pregexp.hpp"
using namespace sre;

auto regexp = "^(?:[abc]|xyz).+$"_pre;

int main(int argc, char** argv) {
if (regexp.match(argv[1])) {

std::cout << "match!" << std::endl;
return EXIT_SUCCESS;

} else {
std::cout << "no match!" << std::endl;
return EXIT_FAILURE;

}
}

Under the hood, constexpr functions and metaprogramming are used to parse the string literal and
generate a type like the following from the string literal:

RegExp<
Begin,
Select<Char<’a’,’b’,’c’>, String<’x’,’y’,’z’>>,
Plus<Anything>,
End

>

Since the regular expression parser is generated at compile-time, it can be better optimized and the
resulting code is much faster than std::regex (speedups of 3000x have been witnessed).

Similar functionality has traditionally been achieved by using expression templates and template
metaprogramming to build the representation of the regular expression instead of simply parsing
the string at compile-time. For example, the same regular expression with [Boost.Xpressive] looks
like this:

auto regexp = bos >> ((set=’a’,’b’,’c’)|(as_xpr(’x’) >> ’y’ >> ’z’)) >> +_ >> eos;

2

It is worth noting that the specific use case of parsing regular expressions at compile-time came
up at CppCon during a lightning talk, and the room showed a very strong interest in getting a
standardized solution to this problem. Today, we must rely on a non-standard extension provided by
Clang and GCC, which allows user-defined literal operators of the following form to be considered
for string literals:

template <typename CharT, CharT ...s>
constexpr auto operator"" _udl();

"foo"_udl // calls operator""_udl<char, ’f’, ’o’, ’o’>()

With this proposal, we could instead write the following:

auto regexp = sre::parse<"^(?:[abc]|xyz).+$">();

or, for those that prefer user-defined literals:

using namespace sre;
auto regexp = "^(?:[abc]|xyz).+$"_pre;

4 How would that work?

The idea behind how this would work is that the compiler would generate a constexpr array and
pass a reference to that as a template argument:

template <auto& str>
void f() {

// str is a ‘char const (&)[7]‘
}

f<"foobar">();

// should be roughly equivalent to

inline constexpr char __unnamed[] = "foobar";
f<__unnamed>();

Calling a function template with such a template-parameter-list works in both Clang and GCC
today.

5 Proposed wording

Please note that this wording is a strawman aiming to convey the intent of the authors. It was put
together in a very short amount of time and changes will be made to prepare it for review by CWG.
The authors wanted to publish a revision of this paper with the new design agreed upon by EWG.

3

https://wandbox.org/permlink/zOOIb472ak9nBNMt
https://wandbox.org/permlink/8zpg3CLqzi9VTiuE

This wording is based on the working draft [N4700]. First, we allow string literals as non-type
template arguments. Secondly, we add the new user-defined literal. We do this by splitting the term
of art literal operator template into two terms, numeric literal operator template and string literal
operator template. The term literal operator template is retained and refers to either form. This is
the approach that was originally taken by Richard Smith in [N3599].

Remove in [temp.arg.nontype] 17.3.2/2:

A template-argument for a non-type template-parameter shall be a converted constant
expression of the type of the template-parameter . For a non-type template-parameter of
reference or pointer type, the value of the constant expression shall not refer to (or for a
pointer type, shall not be the address of):

• a subobject,

• a temporary object,

• a string literal,

• the result of a typeid expression, or

• a predefined __func__ variable.

Remove [temp.arg.nontype] 17.3.2/4 (TODO: make red):

[Note: A string literal is not an acceptable template-argument. [Example:
template<class T, const char* p> class X {

// ...
};

X<int, "Studebaker"> x1; // error: string literal as template-argument

const char p[] = "Vivisectionist";
X<int,p> x2; // OK

—end example] —end note]

Add after [temp.arg.nontype] 17.3.2/2 (TODO: make green):

When passed as a template-argument, a string literal is a constant expression with
external linkage. [Note: The intent is that f<"foobar">() be equivalent to

inline constexpr char __some_mangled_name_including_foobar[] = "foobar";
f<__some_mangled_name_including_foobar>();

—end note]

Replace “literal operator template” with “numeric literal operator template” in [lex.ext] (5.13.8)/3
and [lex.ext] (5.13.8)/4:

[...] Otherwise, S shall contain a raw literal operator or a numeric literal operator
template (16.5.8), but not both. [...] Otherwise (S contains a numeric literal operator
template), L is treated as a call of the form [...]

4

Change in [lex.ext] (5.13.8)/5:

If L is a user-defined-string-literal, let str be the literal without its ud-suffix and let
len be the number of code units in str (i.e., its length excluding the terminating null
character). If S contains a literal operator template with a non-type template parameter
that can bind to str, the literal L is treated as a call of the form operator "" X<str>().
Otherwise, the The literal L is treated as a call of the form operator"" X(str, len).

Change in [over.literal] (16.5.8)/5:

The declaration of a literal operator template shall have an empty parameter-declaration-clause
and its template-parameter-list shall have A numeric literal operator template is a
literal operator template whose template-parameter-list has a single template-parameter
that is a non-type template parameter pack (17.6.3) with element type char. A
string literal operator template is a literal operator template whose template-parameter-list
comprises a non-type template-parameter str that can bind to a string literal. The
declaration of a literal operator template shall have an empty parameter-declaration-clause
and shall declare either a numeric literal operator template or a string literal operator
template.

6 Discussion on ODR

We have two choices; either we don’t mandate that equivalent string literals share the same storage,
or we do. If we do not mandate that equivalent string literals share the same storage, then template
specializations with equivalent string literals would potentially be different template instantiations.
This could lead to ODR issues:

// in foo.hpp
template <auto& str>
struct foo { };

inline foo<"hello"> x;

// in a.cpp
#include "foo.hpp"

// in b.cpp
#include "foo.hpp"

In the above, there are two possibilities:

1. x is defined with a different type in a.cpp and b.cpp (ODR violation), or

2. x has the same type in both translation units (no ODR violation, only one copy of x in the
resulting program)

We think this should not be an ODR violation, and this is therefore what the current wording
achieves by giving external linkage to the string literals used as template-arguments. Under the

5

covers, an implementation would likely use the contents of the string literal to produce the mangled
name of the variable. Based on preliminary discussion with implementers, this does not seem to be
a problem.

7 Potential generalization

We could potentially make this applicable to arrays of arbitrary types, with something like the
following syntax:

template <auto& array> void f();

f<{1, 2, 3}>(); // calls f with an array of type ‘int (&)[3]‘

This is an interesting generalization, but the author prefers tackling that as part of a separate
proposal, since this proposal only targets string literals and is very useful on its own.

8 References

[P0424R0] Louis Dionne, Reconsidering literal operator templates for strings
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0424r0.pdf

[Boost.Xpressive] Eric Niebler, Boost.Xpressive
http://www.boost.org/doc/libs/release/doc/html/xpressive.html

[CTRE] Hana Dusíková Compile Time Regular Expression library
https://github.com/hanickadot/compile-time-regular-expressions

[N4700] Richard Smith, Working Draft, Standard for Programming Language C++
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf

[N3599] Richard Smith, Literal operator templates for strings
http://open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html

6

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0424r0.pdf
http://www.boost.org/doc/libs/release/doc/html/xpressive.html
https://github.com/hanickadot/compile-time-regular-expressions
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4700.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2013/n3599.html

	1 Revision history
	2 Abstract
	3 Motivation
	4 How would that work?
	5 Proposed wording
	6 Discussion on ODR
	7 Potential generalization
	8 References

