
Document number: P0045R1
Date: 2017–02–06
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)

Qualified std::function signatures
std::function implements type-erasure of the behavior of the call operator on an object, but
it cannot emulate every function signature exactly, resulting in a couple rough edges. The
qualified signatures added by this proposal improve const safety of the call operator (e.g.
function<int() const>) and enable one-shot function types (e.g. function<int() &&>).
This feature also meshes with proposals for non-copyable (P0288R1) and overloaded call
wrappers. A quality prototype implementation is provided.1

1. Background
Upon reviewing N4159, LEWG resolved (issue 34) to pursue several extensions to
std::function, including accepting target objects that can only be called as rvalue
expressions, e.g. std::move(target) (arg1, arg2).
N4159 also raises the issue of const safety in function. For example, this works:
struct delay_buffer {

int saved = 42;
int operator () (int i) { return std::exchange(saved, i); }

};
// Small object optimization — no heap allocation.

const std::function< int(int) > f = delay_buffer{};
assert (f(1) == 42);
assert (f(5) == 1); // A const object has changed state.

This example is troublesome because the object f is truly const (it’s not only getting accessed
that way), and the target object being allocated within it should also be truly const.

2. Qualified signatures
The crux of this proposal is to use the template type parameter of std::function as the type
of its call operator function, including &, &&, const, and noexcept qualifiers. When a target
object is adopted, it is checked for compatibility ([func.wrap.func] §20.14.12.2/2), with the 2

additional constraint that any cv-qualifier-seq or ref-qualifier in the signature is applied to the
function object. If no ref-qualifier is present, then & is used as in the current Lvalue-Callable
constraint.

 https://github.com/potswa/cxx_function; no relation to CxxFunctionBenchmark by Tongari J.1

 Citations in “[cross.ref] §1.2/3” format refer to the working draft N4618.2

�1

https://issues.isocpp.org/show_bug.cgi?id=34
https://github.com/potswa/cxx_function
https://github.com/jamboree/CxxFunctionBenchmark/

The critical expression used for constructor SFINAE becomes (with a default ref-qualifier of &):

INVOKE(declval<F cv-qualifier-seqopt ref-qualifier >(), declval<ArgTypes>()..., R)

This proposal changes classic specializations such as std::function<void()> so that the
call operator loses const qualification. This renders types such as const function<void()>
& uncallable. This breakage is remedied by an additional, [[deprecated]] call operator with
const qualification and a const_cast inside. The fix applies only to wrappers with unqualified
signatures, so e.g. const function<void()&> & is not callable.
std::function< void() > f = []{}; // OK
f = []() mutable {}; // OK
f(); // OK
auto const & fcr = f;
fcr(); // Deprecation warning: Legacy, loss of const safety.

std::function< void() const > fc = []{}; // OK
auto const & fccr = fc;
fccr(); // OK
fc = []() mutable {}; // Error: Target does not support the const-qualified signature.

2.1. const compatibility
The const-unsafe behavior happens when a user passes a std::function by const& reference
instead of by value or forwarding. This must be supported for now, but it should be discouraged
by deprecation. Whenever the const-correctness issue is diagnosed, users should be informed of
three solutions. Adapted from the documentation of the prototype library:
1. Pass the function by value or forwarding so it is not observed to be const.

This has always been the canonical usage of std::function (and all Callable objects).
This fix can be applied per call site, usually without affecting any external interface.

2. Add a const qualifier to the signature. This explicitly solves the problem through greater
exposition and tighter constraints. It requires that the target object be callable as const.
This is usually a good idea in any case, for functions that are not stateful. Ideally,
function< void() const > should represent a function that does the same thing on
each call. Having function< void() > const means that a call may change some state,
but the wrapper doesn’t have permission to do so. (This is the crux of the issue.)
If the target needs to change, but only in a way that doesn't affect its observable behavior,
consider using mutable instead. Note that lambdas allow mutable, but the keyword is
somewhat abused: the members of the lambda are not mutable. It only makes the call
operator non-const. A class must be explicitly defined with a mutable member.

3. Consistently remove const from the reference which gets called. Non-const references are
the best way to share mutable access to values. More const is not necessarily better. Again,
this reflects greater exposition and tighter constraints.

�2

If a user must use a const_cast, do so within the target call handler, not on the function
wrapper which gets called. This allows the hack to be applied once and for all, and affecting
the narrowest set of objects. The validity of const_cast depends on whether or not the
affected object is truly const, and even when the wrapper is, the target may not be.

2.2. Double wrapping
When a value is converted from one polymorphic wrapper type to another, the user may intend to
transfer the original target object, or simply to preserve its behavior. Instead, the given wrapper
value becomes the target of the new wrapper. The small-object optimization cannot apply in this
situation, so the heap must be used. Unintended conversions of this sort potentially cause
performance and memory usage issues.
void printint(int i) { std::cout << i << '\n'; }
std::function< void(int) > fi = &printint;
std::function< void(long) > fl = fi; // OK, but double wrapping.
assert (fl.target_type() == typeid(&printint)); // Fails.

Qualified signatures open a new avenue to the problem. The user might initialize a one-shot
wrapper from a wrapper with an unqualified signature, or add const qualification where there was
none. Interoperation with classic wrapper types is likely to be common.
std::function<void(int) &&> one_shot = fi; // OK, no overhead.
std::function<void(int) const> const_safe = fi; // Deprecated, but no overhead.

Fortunately, double wrapping is unnecessary for the proposed types. The type-erasure object
containing the target can be made interoperable with wrapper objects of any function qualifiers,
simply by ignoring them. Safety is guaranteed by the converting constructor or assignment
operator.
fi = one_shot; // Error: cannot invoke one_shot as lvalue.

Elimination of double wrapping also nicely reduces the number internal target specializations,
and helps ensure some commonality between wrapper templates.

2.3. volatile

Objects of volatile-qualified class type exist, albeit rarely. For example, there are volatile-
qualified member overloads in std::atomic. This proposal permits such signatures for
function, serving as an annotation that the target may modify a device register.
Calling through a volatile access path invokes no special semantics. There is no volatile-
qualified assignment operator so a volatile wrapper can never be reassigned.

�3

2.4. noexcept

Noexcept-qualified call signatures indicate that invocation must not throw. Since default-
constructed wrappers always throw, a wrapper with such a call signature is not default-
constructible.
std::function<void() noexcept> fn1; // Error: not default-constructible.  
std::function<void() noexcept> fn2 = []{}; // Error: target is not noexcept.  
std::function<void() noexcept> fn3 = []() noexcept {}; // OK.

3. Standardese
These changes are relative to N4618. Currently in [func.def] §20.14.1/2, call signature constructs
a restricted form of function type. Loosen the restrictions, and let it properly be the type.

¶2 A call signature is the name of a return type followed by a parenthesized comma-separated
list of zero or more argument types. a function type [dcl.fct] which describes the behavior of a
function object type [function.objects], by serving as the type of a function call operator
[over.call]. A function type whose parameter-type-list ends with an ellipsis may not be a call
signature. The call-ref-qualifier of a call signature is its ref-qualifier, if any, or otherwise &.

Remove the specified class template partial specialization from the synopsis of [func.wrap.func]
§20.14.12.2. Specify the behavior of the primary template instead.

template<class Sig> class function ; // undefined
template<class R, class... ArgTypes>
class function<R(ArgTypes...)> {
public:

Subsequently in the same synopsis, modify the declaration of the call operator. Add the
deprecated signature as well.

// 20.14.12.2.4, function invocation
R operator()(ArgTypes...) const qualifiers;

// R, ArgTypes..., and qualifiers are the return type, the parameter-type-list,  
// and the sequence “cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt” 

// of the function type Sig, respectively.

[[deprecated]] R operator()(ArgTypes...) const;
// only if qualifiers is an empty sequence

Likewise change the template parameters of the free functions.

// 20.14.12.2.6, Null pointer comparisons

template <class R, class... ArgTypes typename Sig>
 bool operator==(const function<R(ArgTypes...) Sig>&, nullptr_t)  

noexcept;

�4

template <class R, class... ArgTypes typename Sig>
 bool operator==(nullptr_t, const function<R(ArgTypes...) Sig>&)  

noexcept;
template <class R, class... ArgTypes typename Sig>
 bool operator!=(const function<R(ArgTypes...) Sig>&, nullptr_t)  

noexcept;
template <class R, class... ArgTypes typename Sig>
 bool operator!=(nullptr_t, const function<R(ArgTypes...) Sig>&)  

noexcept;

// 20.14.12.2.7, specialized algorithms

template <class R, class... ArgTypes typename Sig>
 void swap(function<R(ArgTypes...) Sig>&, function<R(ArgTypes...)  

Sig>&) noexcept;

Change the target object viability test in ¶2 and the wrapper capability description in ¶3 to reflect
the change to call signature.

¶2 A callable type F is Lvalue-Callable for argument types ArgTypes and return type R a call
signature R(ArgTypes...) cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt if the expression
noexcept(INVOKE(declval<F& cv-qualifier-seqopt call-ref-qualifier>(),
declval<ArgTypes>()..., R)), considered as an unevaluated operand ([expr]), is well
formed ([func.require]), where call-ref-qualifier is the call-ref-qualifier of the signature
([func.def]), and if the noexcept-specifier is present, the expression evaluates to true.
¶3 The function class template A specialization function<Sig> is a call wrapper
([func.def]) whose call signature is R(ArgTypes...) Sig.

Modify [func.wrap.func.con] §20.14.12.2.1 to prohibit constructing null-valued, noexcept-
qualified wrappers.

function() noexcept;

¶1 Postconditions: […]
¶? Remarks: This constructor shall be defined as deleted if Sig is a noexcept function type.
function(nullptr_t) noexcept;

¶2 Postconditions: […]
¶? Remarks: This constructor shall be defined as deleted if Sig is a noexcept function type.

Update the converting constructor specification and modify it to prevent double wrapping.

template<class F> function(F f);

¶7 Requires: […]
¶8 Remarks: This constructor template shall not participate in overload resolution unless f is
Lvalue-Callable ([func.require]) for argument types ArgTypes... and return type R the call
signature Sig.

�5

¶9 Postconditions: […]
¶? Otherwise, if F is a specialization of the function class template, and the return and
parameter types of its call signature are respectively identical to those of Sig, then the target of
*this is the target of f or a move-constructed object of the same type.
¶10 Otherwise, …

Likewise update the converting assignment operator specification.

¶21 Remarks: This assignment operator shall not participate in overload resolution unless
decay_t<F> is Lvalue-Callable ([func.require]) for argument types ArgTypes... and return
type R the call signature Sig.

Modify [func.wrap.func.inv] §20.14.12.2.4 to reflect the new feature.

R operator()(ArgTypes...) const qualifiers;

¶? R, ArgTypes..., and qualifiers are the return type, the parameter-type-list, and the
sequence cv-qualifier-seqopt ref-qualifieropt noexcept-specifieropt of the call signature Sig,
respectively.
¶1 Returns: INVOKE(std::forward<F cv-qualifier-seqopt call-ref-qualifier >(f),
std::forward<ArgTypes>(args)..., R) (20.9.2), where f is names the target object
(20.9.1) of *this, F is its type, and cv-qualifier-seqopt and call-ref-qualifier come from the call
signature ([func.def]).
¶2 Throws: bad_function_call if !*this; otherwise, any exception thrown by the wrapped
callable object.
[[deprecated]] R operator()(ArgTypes...) const;

¶? Remarks: This member shall participate in overload resolution only if qualifiers is an
empty sequence. Its use is deprecated, including use in an unevaluated INVOKE expression while
determining that the class is Callable for a different call signature.
¶? [Note: This overload allows non-const access to the target object of a const-qualified
function object, which may be unsafe ([dcl.type.cv]). Several strategies may help to improve
usage of const, to avoid calling this overload:

1. Pass the function object by value, by forwarding reference, or by non-const reference, to
avoid forming a reference to const-qualified type. Then, each invocation may legitimately
modify the target object.

2. Add a const qualifier to the call signature Sig, to forbid modification of the target object. It
may be necessary, in turn to add const qualifiers to target class call operators.
Ideally, qualification like function<void() const> should always be used when the
same effect is expected over successive invocations, and function<void()> should only
be used when the object’s value or effect may vary.

3. As a last resort, add const_cast at the site of the deprecated call. Ensure that the referent
object is not const ([dcl.type.cv]). — end note]

�6

¶? Returns: INVOKE(f, std::forward<ArgTypes>(args)..., R) ([func.require]),
where f names the target object ([func.def]) of *this.
¶? Throws: bad_function_call if !*this; otherwise, any exception thrown by the wrapped
callable object.

Change the free function template signatures in [func.wrap.func.nullptr] §20.14.12.2.6 to avoid
decomposing the call signature.

template <class R, class... ArgTypes typename Sig>
 bool operator==(const function<R(ArgTypes...) Sig>& f, nullptr_t)

noexcept;
template <class R, class... ArgTypes typename Sig>
 bool operator==(nullptr_t, const function<R(ArgTypes...) Sig>& f)  

noexcept;

¶1 Returns: !f.
template <class R, class... ArgTypes typename Sig>
 bool operator!=(const function<R(ArgTypes...) Sig>& f, nullptr_t)  

noexcept;
template <class R, class... ArgTypes typename Sig>
 bool operator!=(nullptr_t, const function<R(ArgTypes...) Sig>& f)  

noexcept;

¶1 Returns: (bool)f.

Likewise in [func.wrap.func.alg] §20.14.12.2.7.

template<class R, class... ArgTypes typename Sig>
 void swap(function<R(ArgTypes...) Sig>& f1, function<R(ArgTypes...)

Sig>& f2) noexcept;

¶1 Effects: As if by: f1.swap(f2);

Finally, add a feature test macro, __cpp_lib_qualified_call_signature.

4. Future directions
Several problems remain to be potentially addressed in future proposals.

4.1. Unqualified wrappers ignore rvalue target behavior
If and when a reflective facility allows identification of the overload chosen for a given call
expression, call wrappers without a ref-qualified call signature may require that the target object
behaves the same for & and && qualified call signatures.

�7

4.2. Unsafe but useful conversions between specializations
Conversion of function<void()> to function<void() noexcept> or
function<void() const> is disabled by SFINAE. The workaround is to manually double-
wrap, e.g. through a lambda expression. Such conversions should be defined but explicit,
following the usual pattern that the inverse of an implicit conversion is allowed through explicit
syntax. Double-wrapping would then be avoided.

5. Conclusion
Qualified call wrapper signatures help to support fundamental principles: const safety since
early C++ and rvalue propagation since C++11. They are overdue.

5.1. Kudos
Kudos to Geoff Romer for pursuing and advocating the overall direction.

5.2. Revision history
P0045R0 — Initial revision, as “Overloaded and qualified std::function.”
P0045R1 — Remove overloading proposal.  

Require the [[deprecated]] attribute.  
Remove discussion of implementation issues and concurrency.  
Add noexcept signatures.  
Add normative wording.  
Update future directions.

�8

