
Document Number: N4649
Date: 2017-03-03
Revises: N4628
Reply to: Gor Nishanov <gorn@microsoft.com>

Working Draft, Technical Specification for
C++ Extensions for Coroutines

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

c© ISO/IEC N4649

Contents
Contents ii

List of Tables iv

1 Scope 1

2 Normative references 2

3 Terms and definitions 3

4 General 4
4.1 Acknowledgements . 4
4.2 Implementation compliance . 4
4.3 Feature testing . 4
4.4 Program execution . 4
4.5 Lexical conventions . 4
4.6 Basic concepts . 4
4.7 Dynamic storage duration . 5

5 Expressions 6
5.3 Unary expressions . 6
5.17 Assignment and compound assignment operators . 8
5.19 Constant expressions . 8
5.20 Yield . 8

6 Statements 10
6.5 Iteration statements . 10
6.6 Jump statements . 11

7 Declarations 12
7.1 Specifiers . 12

8 Declarators 13
8.4 Function definitions . 13

9 Classes 17

10 Derived classes 18

11 Member Access Control 19

12 Special member functions 20
12.1 Constructors . 20
12.4 Destructors . 20
12.8 Copying and moving class objects . 20

13 Overloading 21

Contents ii

c© ISO/IEC N4649

13.5 Overloaded operators . 21

14 Templates 22

15 Exception handling 23

16 Preprocessing directives 24

17 Library introduction 25

18 Language support library 26
18.1 General . 26
18.10 Other runtime support . 26
18.11 Coroutines support library . 26

Contents iii

c© ISO/IEC N4649

List of Tables
1 Feature-test macro . 4

16 C++ headers for freestanding implementations . 25

30 Language support library summary . 26

List of Tables iv

c© ISO/IEC N4649

1 Scope [intro.scope]
1 This Technical Specification describes extensions to the C++ Programming Language (Clause 2) that enable

definition of coroutines. These extensions include new syntactic forms and modifications to existing language
semantics.

2 The International Standard, ISO/IEC 14882, provides important context and specification for this Technical
Specification. This document is written as a set of changes against that specification. Instructions to modify
or add paragraphs are written as explicit instructions. Modifications made directly to existing text from the
International Standard use underlining to represent added text and strikethrough to represent deleted text.

Scope 1

c© ISO/IEC N4649

2 Normative references [intro.refs]
1 The following referenced document is indispensable for the application of this document. For dated refer-

ences, only the edition cited applies.

—(1.1) ISO/IEC 14882:2014, Programming Languages – C++

ISO/IEC 14882:2014 is hereafter called the C++ Standard. Beginning with Clause 5, all clause and subclause
numbers, titles, and symbolic references in [brackets] refer to the corresponding elements of the C++ Stan-
dard. Clauses 1 through 4 of this Technical Specification are unrelated to the similarly-numbered clauses
and subclauses of the C++ Standard.

Normative references 2

c© ISO/IEC N4649

3 Terms and definitions [intro.defs]
No terms and definitions are listed in this document. ISO and IEC maintain terminological databases for
use in standardization at the following addresses:

— IEC Electropedia: available at http://www.electropedia.org/

— ISO Online browsing platform: available at http://www.iso.org/obp

Terms and definitions 3

http://www.electropedia.org/
http://www.iso.org/obp

c© ISO/IEC N4649

4 General [intro]
4.1 Acknowledgements [intro.ack]
This work is the result of a collaboration of researchers in industry and academia. We wish to thank people
who made valuable contributions within and outside these groups, including Artur Laksberg, Chandler Car-
ruth, David Vandevoorde, Deon Brewis, Eric Fiselier, Gabriel Dos Reis, Herb Sutter, James McNellis, Jens
Maurer, Jonathan Caves, Lawrence Crowl, Lewis Baker, Michael Wong, Nick Maliwacki, Niklas Gustafsson,
Pablo Halpern, Richard Smith, Robert Schumacher, Shahms King, Slava Kuznetsov, Stephan T. Lavavej,
Tongari J, Vladimir Petter, and many others not named here who contributed to the discussion.

4.2 Implementation compliance [intro.compliance]
Conformance requirements for this specification are the same as those defined in subclause 1.4 of the C++

Standard. [Note: Conformance is defined in terms of the behavior of programs. —end note]

4.3 Feature testing [intro.features]
An implementation that provides support for this Technical Specification shall define the feature test macro
in Table 1.

Table 1 — Feature-test macro
Name Value Header

__cpp_coroutines 201703 predeclared

4.4 Program execution [intro.execution]
In subclause 1.9 of the C++ Standard modify paragraph 7 to read:

7 An instance of each object with automatic storage duration (3.7.3) is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution of the
block and while the block is suspended (by a call of a function, suspension of a coroutine (5.3.8),
or receipt of a signal).

4.5 Lexical conventions [lex]
In subclause 2.12 of the C++ Standard add the keywords co_await, co_yield, and co_return to Table 4
"Keywords".

4.6 Basic concepts [basic]
In subclause 3.6.1 of the C++ Standard add underlined text to paragraph 3.

3 The function main shall not be used within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static,
or constexpr is ill-formed. The function main shall not be a coroutine (8.4.4). The name main
is not otherwise reserved. [Example: member functions, classes, and enumerations can be called
main, as can entities in other namespaces. —end example]

§ 4.6 4

c© ISO/IEC N4649

4.7 Dynamic storage duration [basic.stc.dynamic]
In subclause 3.7.4.1 of the C++ Standard modify paragraph 4 as follows:

4 A global allocation function is only called as the result of a new expression (5.3.4), or called
directly using the function call syntax (5.2.2), called indirectly to allocate storage for a coroutine
frame (8.4.4), or called indirectly through calls to the functions in the C++ standard library.
[Note: In particular, a global allocation function is not called to allocate storage for objects with
static storage duration (3.7.1), for objects or references with thread storage duration (3.7.2), for
objects of type std::type_info (5.2.8), or for an exception object (15.1). —end note]

§ 4.7 5

c© ISO/IEC N4649

5 Expressions [expr]
5.3 Unary expressions [expr.unary]
Add await-expression to the grammar production unary-expression:

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
await-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

5.3.8 Await [expr.await]
Add this subclause to 5.3.

1 The co_await expression is used to suspend evaluation of a coroutine (8.4.4) while awaiting
completion of the computation represented by the operand expression.

await-expression:
co_await cast-expression

2 An await-expression shall appear only in a potentially-evaluated expression within the compound-
statement of a function-body outside of a handler (Clause 15). In a declaration-statement or in
the simple-declaration (if any) of a for-init-statement, an await-expression shall appear only in
an initializer of that declaration-statement or simple-declaration. An await-expression shall not
appear in a default argument (8.3.6). A context within a function where an await-expression can
appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary types, expressions, and objects:
—(3.1) p is an lvalue naming the promise object (8.4.4) of the enclosing coroutine and P is the type

of that object.
—(3.2) a is the cast-expression if the await-expression was implicitly produced by a yield-expression

(5.20), an initial suspend point, or a final suspend point (8.4.4). Otherwise, the unqualified-id
await_transform is looked up within the scope of P by class member access lookup (3.4.5),
and if this lookup finds at least one declaration, then a is
p.await_transform(cast-expression); otherwise, a is the cast-expression.

—(3.3) o is determined by enumerating the applicable operator co_await functions for an argu-
ment a (13.3.1.2), and choosing the best one through overload resolution (13.3). If overload
resolution is ambiguous, the program is ill-formed. If no viable functions are found, o is a.
Otherwise, o is a call to the selected function.

—(3.4) e is a temporary object copy-initialized from o if o is a prvalue; otherwise e is an lvalue
referring to the result of evaluating o.

§ 5.3.8 6

c© ISO/IEC N4649

—(3.5) h is an object of type std::experimental::coroutine_handle<P> referring to the enclos-
ing coroutine.

—(3.6) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.7) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void

or bool.
—(3.8) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the await-ready expression, then:

—(5.1) If the result is false, the coroutine is considered suspended. Then, the await-suspend
expression is evaluated. If that expression has type bool and evaluates to false, the
coroutine is resumed. If that expression exits via an exception, the exception is caught, the
coroutine is resumed, and the exception is immediately re-thrown (15.1). Otherwise, control
flow returns to the current caller or resumer (8.4.4) without exiting any scopes (6.6).

—(5.2) If the result is true, or when the coroutine is resumed, the await-resume expression is
evaluated, and its result is the result of the await-expression.

6 [Example:
template <typename T>
struct my_future {

...
bool await_ready();
void await_suspend(std::experimental::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
...
awaiter(std::chrono::system_clock::duration d) : duration(d){}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::experimental::coroutine_handle<> h){...}

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
std::cout << "just about go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context

—end example]

§ 5.3.8 7

c© ISO/IEC N4649

5.17 Assignment and compound assignment operators [expr.ass]
Add yield-expression to the grammar production assignment-expression.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
yield-expression

5.19 Constant expressions [expr.const]
Add bullets prohibiting await-expression and yield-expression to paragraph 2.

— an await-expression (5.3.8);
— a yield-expression (5.20);

5.20 Yield [expr.yield]
Add a new subclause to Clause 5.

yield-expression:
co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (5.3.8). Let e
be the operand of the yield-expression and p be an lvalue naming the promise object of the
enclosing coroutine (8.4.4), then the yield-expression is equivalent to the expression co_await
p.yield_value(e).
[Example:

template <typename T>
struct my_generator {

struct promise_type {
T current_value;
...
auto yield_value(T v) {

current_value = std::move(v);
return std::experimental::suspend_always{};

}
};
struct iterator { ... };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = i; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = i; i < 10; ++i) co_yield make_pair(i,i);
}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

int main() {
auto r1 = g1();

§ 5.20 8

c© ISO/IEC N4649

auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

—end example]

§ 5.20 9

c© ISO/IEC N4649

6 Statements [stmt.stmt]
6.5 Iteration statements [stmt.iter]
Add the underlined text to paragraph 1.

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt; expressionopt) statement
for co_awaitopt (for-range-declaration : for-range-initializer) statement

6.5.4 The range-based for statement [stmt.ranged]
Add the underlined text to paragraph 1.

1 For a range-based for statement of the form
for co_awaitopt (for-range-declaration : expression) statement

let range-init be equivalent to the expression surrounded by parentheses1

(expression)

and for a range-based for statement of the form
for co_awaitopt (for-range-declaration : braced-init-list) statement

let range-init be equivalent to the braced-init-list. In each case, a range-based for statement is
equivalent to

{
auto && __range = range-init;
for (auto __begin = co_awaitopt begin-expr,
__end = end-expr;
__begin != __end;
co_awaitopt ++__begin) {
for-range-declaration = *__begin;
statement

}
}

where co_await is present if and only if it appears immediately after the for keyword, and
__range, __begin, and __end are variables defined for exposition only, and _RangeT is the type
of the expression, and begin-expr and end-expr are determined as follows: ...

Add the following paragraph after paragraph 2.
3 A range-based for statement with co_await shall appear only within a suspension context of a

function (5.3.8).

1) this ensures that a top-level comma operator cannot be reinterpreted as a delimiter between init-declarators in the decla-
ration of __range.

§ 6.5.4 10

c© ISO/IEC N4649

6.6 Jump statements [stmt.jump]
In paragraph 1 add two productions to the grammar:

jump-statement:
break ;
continue ;
return expressionopt;
return braced-init-list ;
coroutine-return-statement
goto identifier ;

Add the underlined text to paragraph 2:
2 On exit from a scope (however accomplished), objects with automatic storage duration (3.7.3)

that have been constructed in that scope are destroyed in the reverse order of their construc-
tion. [Note: A suspension of a coroutine (5.3.8) is not considered to be an exit from a scope.
—end note] ...

6.6.3 The return statement [stmt.return]
Add the underlined text to the last sentence of paragraph 2:

2 ... Flowing off the end of a function that is not a coroutine is equivalent to a return with no
value; this results in undefined behavior in a value-returning function.

6.6.3.1 The co_return statement [stmt.return.coroutine]
Add this subclause to 6.6.

coroutine-return-statement:
co_return expressionopt;
co_return braced-init-list;

1 A coroutine returns to its caller or resumer (8.4.4) by the co_return statement or when suspended
(5.3.8). A coroutine shall not return to its caller or resumer by a return statement (6.6.3).

2 The expression or braced-init-list of a co_return statement is called its operand. Let p be an
lvalue naming the coroutine promise object (8.4.4) and P be the type of that object, then a
co_return statement is equivalent to:

{ S; goto final_suspend; }

where final_suspend is as defined in 8.4.4 and S is an expression defined as follows:
—(2.1) S is p.return_value(braced-init-list), if the operand is a braced-init-list;
—(2.2) S is p.return_value(expression), if the operand is an expression of non-void type;
—(2.3) S is p.return_void(), otherwise;

S shall be a prvalue of type void.
3 If p.return_void() is a valid expression, flowing off the end of a coroutine is equivalent to a

co_return with no operand; otherwise flowing off the end of a coroutine results in undefined
behavior.

§ 6.6.3.1 11

c© ISO/IEC N4649

7 Declarations [dcl.dcl]
7.1 Specifiers [dcl.spec]
7.1.5 The constexpr specifier [dcl.constexpr]
Insert a new bullet after paragraph 3 bullet 1.

3 The definition of a constexpr function shall satisfy the following constraints:
—(3.1) it shall not be virtual (10.3);
—(3.2) it shall not be a coroutine (8.4.4);
—(3.3) . . .

7.1.6.4 auto specifier [dcl.spec.auto]
Add the following paragraph.

15 A function declared with a return type that uses a placeholder type shall not be a coroutine
(8.4.4).

§ 7.1.6.4 12

c© ISO/IEC N4649

8 Declarators [dcl.decl]
8.4 Function definitions [dcl.fct.def]
8.4.4 Coroutines [dcl.fct.def.coroutine]
Add this subclause to 8.4.

1 A function is a coroutine if it contains a coroutine-return-statement (6.6.3.1), an await-expression
(5.3.8), a yield-expression (5.20), or a range-based for (6.5.4) with co_await. The parameter-
declaration-clause of the coroutine shall not terminate with an ellipsis that is not part of a
parameter-declaration.

2 [Example:
task<int> f();

task<void> g1() {
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

template <typename... Args>
task<void> g2(Args&&...) { // OK: ellipsis is a pack expansion

int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

task<void> g3(int a, ...) { // error: variable parameter list not allowed
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

—end example]
3 For a coroutine f that is a non-static member function, let P1 denote the type of the implicit

object parameter (13.3.1) and P2 ... Pn be the types of the function parameters; otherwise
let P1 ... Pn be the types of the function parameters. Let p1 ... pn be lvalues denoting
those objects. Let R be the return type and F be the function-body of f, T be the type
std::experimental::coroutine_traits<R,P1,...,Pn>, and P be the class type denoted by
T::promise_type. Then, the coroutine behaves as if its body were:

{
P p;
co_await p.initial_suspend(); // initial suspend point
try { F } catch(...) { p .unhandled_exception(); }

final_suspend :
co_await p.final_suspend(); // final suspend point

}

where an object denoted as p is the promise object of the coroutine and its type P is the promise
type of the coroutine.

4 The unqualified-ids return_void and return_value are looked up in the scope of class P . If
both are found, the program is ill-formed. If the unqualified-id return_void is found, flowing

§ 8.4.4 13

c© ISO/IEC N4649

off the end of a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off
the end of a coroutine results in undefined behavior.

5 When a coroutine returns to its caller, the return value is produced by a call to
p.get_return_object(). A call to a get_return_object is sequenced before the call to
initial_suspend and is invoked at most once.

6 A suspended coroutine can be resumed to continue execution by invoking a resumption member
function (18.11.2.5) of an object of type coroutine_handle<P> associated with this instance
of the coroutine. The function that invoked a resumption member function is called resumer .
Invoking a resumption member function for a coroutine that is not suspended results in undefined
behavior.

7 An implementation may need to allocate additional storage for a coroutine. This storage is
known as the coroutine state and is obtained by calling a non-array allocation function (3.7.4.1).
The allocation function’s name is looked up in the scope of P . If this lookup fails, the allocation
function’s name is looked up in the global scope. If the lookup finds an allocation function in
the scope of P , overload resolution is performed on a function call created by assembling an
argument list. The first argument is the amount of space requested, and has type std::size_t.
The lvalues p1 ... pn are the succeeding arguments. If no matching function is found, overload
resolution is performed again on a function call created by passing just the amount of space
required as an argument of type std::size_t.

8 The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of
class P by class member access lookup (3.4.5). If a declaration is found, then the result of a
call to an allocation function used to obtain storage for the coroutine state is assumed to return
nullptr if it fails to obtain storage, and if a global allocation function is selected, the ::operator
new(size_t, nothrow_t) form shall be used. If an allocation function returns nullptr, the
coroutine returns control to the caller of the coroutine and the return value is obtained by a call
to P::get_return_object_on_allocation_failure(). The allocation function used in this
case must have a non-throwing noexcept-specification.

9 The coroutine state is destroyed when control flows off the end of the coroutine or the destroy
member function (18.11.2.5) of an object of type std::experimental::coroutine_handle<P>
associated with this coroutine is invoked. In the latter case objects with automatic storage
duration that are in scope at the suspend point are destroyed in the reverse order of the con-
struction. The storage for the coroutine state is released by calling a non-array deallocation
function (3.7.4.2). If destroy is called for a coroutine that is not suspended, the program has
undefined behavior.

10 The deallocation function’s name is looked up in the scope of P . If this lookup fails, the dealloca-
tion function’s name is looked up in the global scope. If deallocation function lookup finds both
a usual deallocation function with only a pointer parameter and a usual deallocation function
with both a pointer parameter and a size parameter, then the selected deallocation function shall
be the one with two parameters. Otherwise, the selected deallocation function shall be the func-
tion with one parameter. If no usual deallocation function is found, the program is ill-formed.
The selected deallocation function shall be called with the address of the block of storage to be
reclaimed as its first argument. If a deallocation function with a parameter of type std::size_t
is used, the size of the block is passed as the corresponding argument.

11 When a coroutine is invoked, a copy is created for each coroutine parameter. Each such copy
is an object with automatic storage duration that is direct-initialized from an lvalue referring to
the corresponding parameter if the parameter is an lvalue reference, and from an xvalue referring
to it otherwise. A reference to a parameter in the function-body of the coroutine is replaced by
a reference to its copy. The initialization and destruction of each parameter copy occurs in the
context of the called coroutine. Initializations of parameter copies are sequenced before the call

§ 8.4.4 14

c© ISO/IEC N4649

to the coroutine promise constructor and indeterminately sequenced with respect to each other.
The lifetime of parameter copies ends immediately after the lifetime of the coroutine promise
object ends. [Note: If a coroutine has a parameter passed by reference, resuming the coroutine
after the lifetime of the entity referred to by that parameter has ended is likely to result in
undefined behavior. —end note]
[Example:

// ::operator new(size_t, nothrow_t) will be used if allocation is needed
struct generator {

struct promise_type;
using handle = std::experimental::coroutine_handle<promise_type>;
struct promise_type {

int current_value;
static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
auto get_return_object() { return generator{handle::from_promise(*this)}; }
auto initial_suspend() { return std::experimental::suspend_always{}; }
auto final_suspend() { return std::experimental::suspend_always{}; }
auto yield_value(int value) {

current_value = value;
return std::experimental::suspend_always{};

}
};
bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
int current_value() { return coro.promise().current_value; }
~generator() { if(coro) coro.destroy(); }

private:
generator(handle h) : coro(h) {}
handle coro;

};
generator f() { co_yield 1; co_yield 2; }

int main() {
auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

—end example]
12 [Example:

// using a stateful allocator
class Arena;
struct my_coroutine {

struct promise_type {
...
template <typename... TheRest>
void* operator new(std::size_t size, Arena& pool, TheRest const&...) {

return pool.allocate(size);
}
void operator delete(void* p, std::size_t size) {

// reference to a pool is not available
// to the delete operator and should be stored
// by the allocator as a part of the allocation
Arena::deallocate(p, size);

}
};

§ 8.4.4 15

c© ISO/IEC N4649

};

my_coroutine f(Arena& a) {
// will call my_coroutine::promise_type::operator new(<required-size>, a)
// to obtain storage for the coroutine state
co_yield 1;

}

int main() {
Arena memPool;
for (int i = 0; i < 1’000’000; ++i) f(memPool);

};

—end example]

§ 8.4.4 16

c© ISO/IEC N4649

9 Classes [class]
No changes are made to Clause 9 of the C++ Standard.

Classes 17

c© ISO/IEC N4649

10 Derived classes [class.derived]
No changes are made to Clause 10 of the C++ Standard.

Derived classes 18

c© ISO/IEC N4649

11 Member Access Control [class.access]
No changes are made to Clause 11 of the C++ Standard.

Member Access Control 19

c© ISO/IEC N4649

12 Special member functions [special]
12.1 Constructors [class.ctor]
Add new paragraph after paragraph 5.

6 A constructor shall not be a coroutine.

12.4 Destructors [class.dtor]
Add new paragraph after paragraph 16.

17 A destructor shall not be a coroutine.

12.8 Copying and moving class objects [class.copy]
Add a bullet to paragraph 31:

— in a coroutine (8.4.4), a copy of a coroutine parameter can be omitted and references to
that copy replaced with references to the corresponding parameter if the meaning of the
program will be unchanged except for the execution of a constructor and destructor for the
parameter copy object

Modify paragraph 33 as follows:
33 When the criteria for elision of a copy/move operation are met, but not for an exception-declaration,

and the object to be copied is designated by an lvalue, or when the expression in a return
or co_return statement is a (possibly parenthesized) id-expression that names an object with
automatic storage duration declared in the body or parameter-declaration-clause of the innermost
enclosing function or lambda-expression, overload resolution to select the constructor for the copy
or the return_value overload to call is first performed as if the object were designated by an
rvalue. If the first overload resolution fails or was not performed, or if the type of the first
parameter of the selected constructor or return_value overload is not an rvalue reference to
the object’s type (possibly cv-qualified), overload resolution is performed again, considering the
object as an lvalue. [Note: This two-stage overload resolution must be performed regardless of
whether copy elision will occur. It determines the constructor or return_value overload to be
called if elision is not performed, and the selected constructor or return_value overload must
be accessible even if the call is elided. —end note]

§ 12.8 20

c© ISO/IEC N4649

13 Overloading [over]
13.5 Overloaded operators [over.oper]
Add co_await to the list of operators in paragraph 1 before operators () and [].
Add the following paragraph after paragraph 5.

6 The co_await operator is described completely in 5.3.8. The attributes and restrictions found
in the rest of this subclause do not apply to it unless explicitly stated in 5.3.8.

§ 13.5 21

c© ISO/IEC N4649

14 Templates [temp]
No changes are made to Clause 14 of the C++ Standard.

Templates 22

c© ISO/IEC N4649

15 Exception handling [except]
No changes are made to Clause 15 of the C++ Standard.

Exception handling 23

c© ISO/IEC N4649

16 Preprocessing directives [cpp]
No changes are made to Clause 16 of the C++ Standard.

Preprocessing directives 24

c© ISO/IEC N4649

17 Library introduction [library]
17.6.1.3 Freestanding implementations [compliance]
Add a row to Table 16 for coroutine support header <experimental/coroutine>.

Table 16 — C++ headers for freestanding implementations

Subclause Header(s)
<ciso646>

18.2 Types <cstddef>
18.3 Implementation properties <cfloat> <limits> <climits>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.10 Other runtime support <cstdalign> <cstdarg> <cstdbool>
18.11 Coroutines support <experimental/coroutine>
20.10 Type traits <type_traits>

Atomics <atomic>

§ 17.6.1.3 25

c© ISO/IEC N4649

18 Language support library
[language.support]
18.1 General [support.general]
Add a row to Table 30 for coroutine support header <experimental/coroutine>.

Table 30 — Language support library summary

Subclause Header(s)
18.2 Types <cstddef>

<limits>
18.3 Implementation properties <climits>

<cfloat>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.11 Coroutines support <experimental/coroutine>

<csignal>
<csetjmp>
<cstdalign>

18.10 Other runtime support <cstdarg>
<cstdbool>
<cstdlib>
<ctime>

18.10 Other runtime support [support.runtime]
Add underlined text to paragraph 4.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this
International Standard. A setjmp/longjmp call pair has undefined behavior if replacing the
setjmp and longjmp by catch and throw would invoke any non-trivial destructors for any
automatic objects. A call to setjmp or longjmp has undefined behavior if invoked in a suspension
context of a coroutine (5.3.8).
See also: ISO C 7.10.4, 7.8, 7.6, 7.12.

18.11 Coroutines support library [support.coroutine]
Add this subclause to Clause 18.

1 The header <experimental/coroutine> defines several types providing compile and run-time
support for coroutines in a C++ program.
Header <experimental/coroutine> synopsis

§ 18.11 26

c© ISO/IEC N4649

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

// 18.11.1 coroutine traits
template <typename R, typename... ArgTypes>

struct coroutine_traits;

// 18.11.2 coroutine handle
template <typename Promise = void>

struct coroutine_handle;

// 18.11.2.7 comparison operators:
bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

// 18.11.3 trivial awaitables
struct suspend_never;
struct suspend_always;

} // namespace coroutines_v1
} // namespace experimental

// 18.11.2.8 hash support:
template <class T> struct hash;
template <class P> struct hash<std::experimental::coroutine_handle<P>>;

} // namespace std

18.11.1 Coroutine traits [coroutine.traits]
1 This subclause defines requirements on classes representing coroutine traits, and defines the class

template coroutine_traits that satisfies those requirements.
2 Users may specialize coroutine_traits to customize the semantics of coroutines.

18.11.1.1 Struct template coroutine_traits [coroutine.traits.primary]
1 The header <experimental/coroutine> defines the primary template coroutine_traits such

that if ArgTypes is a parameter pack of types and if R is a type that has a valid (14.8.2) mem-
ber type promise_type, then coroutine_traits<R,ArgTypes...> has the following publicly
accessible member:

using promise_type = typename R::promise_type;

Otherwise, coroutine_traits<R,ArgTypes...> has no members.

18.11.2 Struct template coroutine_handle [coroutine.handle]
namespace std {
namespace experimental {
inline namespace coroutines_v1 {

§ 18.11.2 27

c© ISO/IEC N4649

template <>
struct coroutine_handle<void>
{

// 18.11.2.1 construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.2 export/import
constexpr void* address() const noexcept;
constexpr static coroutine_handle from_address(void* addr);

// 18.11.2.4 observers
constexpr explicit operator bool() const noexcept;
bool done() const;

// 18.11.2.5 resumption
void operator()();
void resume();
void destroy();

private:
void* ptr; // exposition only

};

template <typename Promise>
struct coroutine_handle : coroutine_handle<>
{

// 18.11.2.1 construct/reset
using coroutine_handle<>::coroutine_handle;
static coroutine_handle from_promise(Promise&);
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.3 import
constexpr static coroutine_handle from_address(void* addr);

// 18.11.2.6 promise access
Promise& promise() const;

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

1 Let P be the promise type of a coroutine (8.4.4). An object of type coroutine_handle<P > is
called a coroutine handle and can be used to refer to a suspended or executing coroutine. A
default constructed coroutine_handle object does not refer to any coroutine.
18.11.2.1 coroutine_handle construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: address() == nullptr.
static coroutine_handle from_promise(Promise& p);

2 Requires: p is a reference to a promise object of a coroutine.

§ 18.11.2.1 28

c© ISO/IEC N4649

3 Returns: a coroutine handle h referring to the coroutine.
4 Postconditions: addressof(h.promise()) == addressof(p).

coroutine_handle& operator=(nullptr_t) noexcept;
5 Postconditions: address() == nullptr.
6 Returns: *this.

18.11.2.2 coroutine_handle export/import [coroutine.handle.import.export]

constexpr void* address() const noexcept;

1 Returns: ptr.
static coroutine_handle coroutine_handle<>::from_address(void* addr);

2 Requires: addr was obtained via a prior call to address().
3 Postconditions: from_address(address()) == *this.

18.11.2.3 coroutine_handle import [coroutine.handle.import]

static coroutine_handle from_address(void* addr);

1 Requires: addr was obtained via a prior call to address().
2 Postconditions: from_address(address()) == *this.

18.11.2.4 coroutine_handle observers [coroutine.handle.observers]

constexpr explicit operator bool() const noexcept;

1 Returns: true if address() != nullptr, otherwise false.
bool done() const;

2 Requires: *this refers to a suspended coroutine.
3 Returns: true if the coroutine is suspended at its final suspend point, otherwise false.

18.11.2.5 coroutine_handle resumption [coroutine.handle.resumption]

void operator()();
void resume();

1 Requires: *this refers to a suspended coroutine.
2 Effects: resumes the execution of the coroutine. If the coroutine was suspended at its final

suspend point, behavior is undefined.
3 Synchronization: a concurrent resumption of a coroutine by multiple threads may result in

a data race.
void destroy();

4 Requires: *this refers to a suspended coroutine.
5 Effects: destroys the coroutine (8.4.4).
6 Synchronization: a concurrent resumption of a coroutine by multiple threads may result in

a data race.

18.11.2.6 coroutine_handle promise access [coroutine.handle.promise]

Promise& promise() const;

1 Requires: *this refers to a coroutine.
2 Returns: a reference to the promise of the coroutine.

§ 18.11.2.6 29

c© ISO/IEC N4649

18.11.2.7 Comparison operators [coroutine.handle.compare]

bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.address() == y.address().
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: less<void*>()(x.address(), y.address()).
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

3 Returns: !(x == y).
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

4 Returns: (y < x).
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

5 Returns: !(x > y).
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

6 Returns: !(x < y).

18.11.2.8 Hash support [coroutine.handle.hash]

template <class P> struct hash<experimental::coroutine_handle<P>>;

1 The template specialization shall meet the requirements of class template hash (20.9.12).

18.11.3 Trivial awaitables [coroutine.trivial.awaitables]
The header <experimental/coroutine> defines suspend_never and suspend_always as fol-
lows.

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

struct suspend_never {
constexpr bool await_ready() const noexcept { return true; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};
struct suspend_always {

constexpr bool await_ready() const noexcept { return false; }
constexpr void await_suspend(coroutine_handle<>) const noexcept {}
constexpr void await_resume() const noexcept {}

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

§ 18.11.3 30

	Contents
	List of Tables
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 General
	4.1 Acknowledgements
	4.2 Implementation compliance
	4.3 Feature testing
	4.4 Program execution
	4.5 Lexical conventions
	4.6 Basic concepts
	4.7 Dynamic storage duration

	5 Expressions
	5.3 Unary expressions
	5.3.8 Await

	5.17 Assignment and compound assignment operators
	5.19 Constant expressions
	5.20 Yield

	6 Statements
	6.5 Iteration statements
	6.5.4 The range-based for statement

	6.6 Jump statements
	6.6.3 The return statement
	6.6.3.1 The co_return statement

	7 Declarations
	7.1 Specifiers
	7.1.5 The constexpr specifier
	7.1.6.4 auto specifier

	8 Declarators
	8.4 Function definitions
	8.4.4 Coroutines

	9 Classes
	10 Derived classes
	11 Member Access Control
	12 Special member functions
	12.1 Constructors
	12.4 Destructors
	12.8 Copying and moving class objects

	13 Overloading
	13.5 Overloaded operators

	14 Templates
	15 Exception handling
	16 Preprocessing directives
	17 Library introduction
	17.6.1.3 Freestanding implementations

	18 Language support library
	18.1 General
	18.10 Other runtime support
	18.11 Coroutines support library
	18.11.1 Coroutine traits
	18.11.1.1 Struct template coroutine_traits

	18.11.2 Struct template coroutine_handle
	18.11.2.1 coroutine_handle construct/reset
	18.11.2.2 coroutine_handle export/import
	18.11.2.3 coroutine_handle import
	18.11.2.4 coroutine_handle observers
	18.11.2.5 coroutine_handle resumption
	18.11.2.6 coroutine_handle promise access
	18.11.2.7 Comparison operators
	18.11.2.8 Hash support

	18.11.3 Trivial awaitables

