
Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 10

US
001

 General The TS travels in terms of function objects rather than

Callable. The C++ 17 standard is moving towards a

more general specification. Rather than a function

object, anything that can be processed by INVOKE with

the appropriate signature should be allowed.

Use invokable terminology throughout the TS instead of

function object.

GB 1
002

 Ge The BSI would like to ensure that outstanding
issues on the issues lists are all considered before
the final TS is produced

CA1

003

 GE We do not have technical comments on the
document, however, we note that the format of the
document is inconsistent with the ISO IEC
Directives part 2, and with the ISO Online
Browsing Platform, which makes the following
clauses available publically, clauses 1, 2 and
three.

Restructure the document such that

Clause 1 is scope

Clause 2 is Normative References

Clause 3 is Terms and Definitions

Place other material in clauses 4, 5, 6, etc.

FR1
004

 13.2.2

13.2.7

te Implementing asynchronous operations or

executors as described in paragraphs 13.2.2 and

13.2.7 could be perfomed with the use of

coroutines.

It would be necessary to clarify or assess the

complexity of this code if it was to use one or

other of the different proposals now faced (PDTS

22277 and P009R1)

US
005

 03

2 te The normative reference to the POSIX standard should

not be a non-normative note.

Either add another paragraph with a normative

reference to the POSIX standard, or remove the [Note –

end note] mark-up on this paragraph.

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 10

US
006

 13.02

 ge The 'CompletionToken' mechanism used to determine

the return types of initiating functions has teachability

drawbacks due to its complexity. Also, there would be a

high cost if users were to replicate this kind of interface

in medium and higher-level libraries built upon the

Networking TS. A simpler interface whereby initiating

functions have invokable parameters is sufficiently

extendable, as they are, to work with futures.

Make initiating functions use invokable callbacks instead

of completion tokens as in Boost.ASIO.

GB 2
007

 13.02.1

 Te "No constructor ... shall exit via an exception" over-
specification.

This is probably a copy/paste error introduced

when this text was copied from the standard (I
believe from [allocator.requirements]).

The intent is only that copy and move constructors
shall not throw, and I think that is already covered
by "copy operation, move operation". Other
constructors not covered by the ProtoAllocator?
requirements should be allowed to throw.

Delete "constructor," so that the sentence reads
"No comparison operator, copy operation, move

operation, or swap operation on these types shall
exit via an exception."

GB 3
008

 13.02.2

 Te Reentrancy and run/dispatch.

In 17.6.5.8 [reentrancy] the C++14 standard says:

"Except where explicitly specified in this standard,
it is implementation-defined which functions in the

Standard C++ library may be recursively
reentered."

In the executor requirements, the intention is that
the dispatch() function may be recursively

reentered. A statement to this effect may need to
be added to the requirements. (All dispatch()

member functions provided by executors in the TS
itself should then by implication allow reentrancy.)

Explicitly specify that dispatch functions can be

recursively re-entered.

GB 4
009

 13.02.2

 Te "No constructor ... shall exit via an exception" over-

specification.

This is probably a copy/paste error introduced

when this text was copied from the standard (I
believe from [allocator.requirements]).

Delete "constructor," so that the sentence reads

"No comparison operator, copy operation, move
operation, swap operation, or member functions

context, on_work_started, and on_work_finished on
these types shall exit via an exception."

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 10

The intent is only that copy and move constructors
shall not throw, and I think that is already covered

by "copy operation, move operation". Other
constructors not covered by the Executor

requirements should be allowed to throw.

GB 5
010

 13.02.2

 Te Executor requirements table refers to undefined
name 'Func'.

The Executor requirements table entries for
'dispatch', 'post' and 'defer' refer to an undefined

name 'Func', in
'DECAY_COPY(forward<Func>(f))'. This name is

not listed in the paragraph preceding the table.

Fix the requirements table so that either the name
'Func' is defined, or so that the requirements for

'dispatch', 'post' and 'defer' are specified without
referring to this type.

US
011

 13.02.2

async.reqmts.e

xecutor

Table 4 ge Without knowing more about what kind of executor is

being used, a user will have difficulty deciding which of

the three functions to use to add a task to an executor.

It is preferable to limit the options for adding tasks to a

generic executor. Concrete executors can add

additional functions if required.

Remove the defer function from executors, as that is

the least well-defined. This would match the existing

Boost ASIO implementation.

US
012

 13.02.3

async.reqmts.e

xecutionconte

xt

Table 5 te Missing ~ in row 2 x. X() should be x.~X()

US
013

 13.02.4

async.reqmts.s

ervice

paragraph 5 te "user-defined function objects" - user defined is

possibly over-specification. In other parts of the TS it

refers to types not specified by this TS. If there are

function objects defined in the standard, they should

also be destroyed.

remove "user-defined"

US
014

 13.02.7.12

async.reqmts.a

sync.completio

Para 2 te This seems to be respecifying INVOKE Reword using INVOKE

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 10

n

GB 6
015

 13.07

 Te Reentrancy and use_service/make_service.

The intention is that both use_service and
make_service may make nested calls (from the

Service constructor) to use_service or
make_service. Obviously these nested calls will

require a different Service template argument. I am
uncertain if calling these function templates with

different template arguments counts as recursive
reentrance, but if it does then we may need to add

a sentence explicitly specifying that this is
permitted.

Decide if it's needed and add a suitable sentence.

GB 7
016

 14.02.1

 Te run()/run_one() specification overly restrictive on

users.

Both the run() and run_one() functions include the
following statement:

"Must not be called from a thread that is currently

calling a run function."

This restriction was originally added as a way to
prevent users from entering a kind of "deadlock".

This is because run() and run_one() can block until
the io_context runs out of work. Since outstanding

work includes currently executing function objects,
if a function object makes a nested call to

run()/run_one() that nested call could block forever
as the work count can never reach zero.

However, it has been brought to Chris Kohlhoff's

attention by users that there are valid use cases
for making these nested calls. Deadlock can be

avoided if some other condition will cause

Strike those sentences from both those places.

Make it the responsibility of the user to avoid the
conditions for deadlock.

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 5 of 10

run()/run_one() to exit (e.g. an exception, explicit
call to stop, run_one finished running a single

function, etc). This condition can be known ahead
of time by the user.

The existing implementation in asio does not make

any beneficial use of this restriction.

GB 8
017

 14.02.1

 Te Reentrancy and run functions.

The intention is that the run functions may be

recursively reentered. We may want add a
sentence explicitly specifying this.

Explicitly specify that run functions can be
recursively re-entered.

GB 9
018

 16 Te user-provided overloads of buffer_size intended?

Is it intended that users can provide overloads of

buffer_size for user-defined buffer sequence
types? Is it something we should consider? I'm

thinking about basic_streambuf and user defined
alternatives, it can compute buffer_size for its input

and output sequences in constant time.

Consider making buffer_size a customization point.

GB
10
019

 16.02

 Te Relax strict aliasing requirement for user-defined
buffer sequence iterators.

See LWG issue 2779.

See LWG issue 2779.

GB
11
020

 16.02, 16.7

 Te Consider adding noexcept to buffer sequence
requirements

[buffer.reqmts.mutablebuffersequence],
[buffer.reqmts.constbuffersequence],

[buffer.seq.access]

Adding "Shall not exit via an exception." to the the
requirements for net::buffer_sequence_begin(x)

and 'net::buffer_sequence_end(x).

Requiring that the conversion of the iterator value

type to const_buffer or mutable_buffer should not
exit via exception.

(And perhaps place the same requirement on the
iterator traversal and dereference too, although I'm

not sure if this is already implied elsewhere in the
standard?)

Adding noexcept to the buffer sequence access
functions.

The current implementation in asio assumes that
these never throw, and in general I think low level

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 6 of 10

buffer operations should not throw.

US
021

 16.02.1

16.2.2

 te buffer.requirements.mutablebuffersequence

buffer.requirements.constbuffersequence

Please address LEWG 2779.

GB
12
022

 16.05

 Te const_buffer is a view

const_buffer [buffer.const] is a non-owning type

that consists of a pointer and a size.

In the same vein, it would make sense to rename

mutable_buffer [buffer.mutable] to something like
buffer_span. While there is no naming precedence

for this in C++17, there are various span proposals
(e.g. P0122R1 and P0123R1.)

Consider renaming const_buffer to buffer_view
partly to indicate that users must keep the

underlying, owning buffer alive during operations
that involve const_buffer, and partly for naming

consistency with string_view.

US
023

 16.05
[buffers.const
]

 ed const_buffer operator+= is missing from the index
of library names

Add const_buffer operator+= to the index of library
names.

GB
13
024

 18 Te The derived socket types basic_datagram_socket

and basic_stream_socket should specify that their
native_handle_type is the same as

basic_socket::native_handle_type.

Add such specification

GB
14
025

 18.05

 Te Add integer_option helper.

When using socket options that are not defined by
[socket.opt], users have to create their own class

that follows the GettableSocketOption?
[socket.reqmts.gettablesocketoption] or

SettableSocketOption?
[socket.reqmts.settablesocketoption] concepts.

As the majority of socket options are integral, it
would ease the burden of using such socket

options if an integer_option helper class was
available (basically the same as

asio::detail::socket_option::integer.) Its use would
boil down to:

using maximum_segment_size_type =
net::integer_option<IPPROTO_TCP,

http://cplusplus.github.io/LWG/lwg-active.html#2779

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 7 of 10

TCP_MAXSEG>;

maximum_segment_size_type mtu;

socket.get_option(mtu);

A similar helper class for boolean socket options

could also be added.

GB
15
026

 18.06, 18.9

 Te Consider adding release() member functions to
basic_socket and basic_socket_acceptor

Historically, Asio has not provided this facility as it
could not be portably implemented using the

preferred OS-specific mechanisms. Specifically, on
Windows, once a socket was associated to an I/O

completion port it could not be disassociated. This
means that the socket could not be truly released

for arbitrary use by the user. However, as of
Windows 8.1, the ability to disassociate a socket is

available (via the kernel API
NtSetInformationFile?). This means that release()

can be portably implemented.

Add the following member functions to both
basic_socket and basic_socket_acceptor:

native_handle_type release();

native_handle_type release(error_code& ec);

with effects that any pending asynchronous
operations are cancelled and ownership of the

native handle is transferred to the caller.

GB
16
027

 18.06, 18.9

 Te Consider adding constructors to basic_socket and

basic_socket_acceptor to move a socket to
another io_context

Historically, Asio has not provided this facility as it
could not be portably implemented using the

preferred OS-specific mechanisms. Specifically, on
Windows, once a socket was associated to an I/O

completion port it could not be disassociated. This
means that the socket could not be moved from

one io_context to another. However, as of
Windows 8.1, the ability to disassociate a socket is

available (via the kernel API
NtSetInformationFile?). This means that the ability

to move sockets between io_contexts can be
portably implemented.

Add constructors to basic_socket (and to derived

classes basic_stream_socket,
basic_datagram_socket), and to

basic_socket_acceptor, e.g.:

basic_socket(io_context& ctx, basic_socket&& rhs);

with effect that pending asynchronous operations
are cancelled on rhs, and then ownership of the

underlying socket is transferred to the newly
created socket object with the associated

io_context.

GB
17
028

 18.09.1

 Te [socket.acceptor.cons] move ctor missing

postcondition.

The postconditions for the basic_socket_acceptor

move ctor don't have any postconditions on

Add "native_handle()} returns the prior value of

rhs.native_handle()."

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 8 of 10

native_handle().

GB
18
029

 19.01.1

 Te [socket.streambuf.cons] Add missing error()
postconditions.

The basic_socketstreambuf constructors do not
give any postconditions for the ec_ member.

Add "and !error()" to paragraphs 2 and 4. Add
"error() == rhs_p.error()" and "!rhs_a.error()" to

paragraph 6.

GB
19
030

 19.01.1

 Te [socket.streambuf.cons] Cover changes to rhs in
operator= effects.

The assignment operator for
basic_socketstreambuf doesn't state the effects on

the RHS.

Change "*this has the observable state it would
have had if it had been move constructed from rhs"

to "*this and rhs have the observable state they
would have had if *this had been move constructed

from rhs"

US
031

 20.01

socket.algo.co

nnect

para 1 and 2 te template parameter InputIterator not used in

declaration, but EndpointSequence is.

change class InputIterator to class
EndpointSequence in error code versions.

US
032

 20.02

socket.algo.asy

nc.connect

Para 1 te The second version of async_connect also uses

InputIterator as the template parameter, where it

should be EndpointSequence.

change class InputIterator to class EndpointSequence

GB
20
033

 21.01

 Te Shorten ip::resolver_errc enumerator names.

These enumerator names predate enum classes

as a language feature and were so named to
eliminate likely name clashes with other entities in

the same namespace. The enumerator
"host_not_found_try_again" is particularly long and

could be shortened.

Rename the enumerator
"host_not_found_try_again" to "try_again".

GB
21
034

 21.04.3,
21.6.3

 Te Consider ip::address::is_loopback() and
ip::address_v6::is_loopback() behaviour for IPv4-

mapped IPv6 addresses

Currently the ip::address_v6::is_loopback() and

ip::address::is_loopback() functions return false for
an IPv4-mapped IPv6 address that maps IPv4

loopback. This behaviour follows the

Consider whether to alter the specification of
ip::address::is_loopback() and

ip::address_v6::is_loopback() such that they
additionally return true if passed an IPv4 loopback

address as an IPv4-mapped IPV6 address.

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 9 of 10

implementation of the IN6_IS_ADDR_LOOPBACK
macro and RFC 4291.

An Asio user has proposed that these functions
should return true for IPv4 loopback addresses

that are mapped to IPv4-mapped IPv6 address.

US
035

 21.11
[internet.netw
ork.v4]

 ed The argument name in operator<< is not
consistent with the argument name in operator<<
in [internet.network.v4.io]

Change the argument name from “addr” to “net”

US
036

 21.12
[internet.netw
ork.v6]

 ed The argument name in operator<< is not
consistent with the argument name in operator<<
in [internet.network.v6.io]

Change the argument name from “addr” to “net”

US
037

 21.12,
21.12.04
[internet.netw
ork.v6]

 ed There is a cut-and-paste error in in the declaration
of make_network_v6. “string_v6” has been used
instead of “string_view”.

Change the occurrences of “const string_v6&” to
“string_view”

US
038

 21.21.01
[internet.multi
cast.outboun
d]

 ed There is a cut-and-paste error in the description of
the name() member function. The document says
“*_MULTICAST_HOPS” where “*_MULTICAST_IF”
is intended.

Change “IPV6_MULTICAST_HOPS” to
“IPV6_MULTICAST_IF”, and
“IP_MULTICAST_HOPS” to “IP_MULtiCAST_IF”

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_AFNOR.docx: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_ANSI.docx: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_BSI.doc: Collation successful

D:\ISO\data\prod_iso_comment-collation\work\temp\ISO_IEC PDTS 19216_SCC.doc: Collation successful

Collation of files was successful. Number of collated files: 4

SELECTED (number of files): 4

Template for comments and secretariat observations Date:2017-02-17 Document: WG21 N4643 Project: 19216

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 10 of 10

PASSED TEST (number of files): 4

FAILED TEST (number of files): 0

CCT - Version 4.0/2015

