

Document number P0529R0

Date 2016-11-23

Author Richard Smith <richard@metafoo.co.uk>

Audience Evolution

Wording changes for proposed
Modules TS extensions

Wording for portions of P0273R0

Introduction
This paper provides wording changes for three extensions to the Modules TS proposed in
P0273R0 and approved by EWG in Jacksonville:

● The module-declaration specifying that a translation unit is a module must be the first
declaration in the source file. Vote: 6 | 14 | 9 | 2 | 0 1

● Module partitions, allowing a single module (and its notion of module ownership) to
be split across multiple interface files. Vote: 11 | 12 | 3 | 4 | 0

● Module implementations begin with "module implementation M " stanza rather
than "module M ". Vote: 10 | 11 | 8 | 3 | 0

Consolidated wording is provided specifying all three features. The baseline for this wording
is N4610 plus the proposed resolutions for issues from the Jacksonville modules issues list.

Wording
In 2.10 [lex.name] Table 2 (“Identifiers with special meaning”), add:

implementation
partition

Change grammar changes to 3.5 [basic.link] as follows (unchanged productions are
not quoted):

translation-unit :

module-head opt toplevel-declaration-seq opt

1 Per WG21 convention for 5-way polls, these results are:
Strongly in favor | in favor | neutral | against | strongly against

mailto:richard@metafoo.co.uk
http://wg21.link/p0273r0

module-head :
module module-key opt module-name attribute-specifier-seq opt ;

module-key : one of
implementation partition

toplevel-declaration:
module-declaration
module-export-declaration
module-import-declaration
exported-fragment-group
global-module-declaration
proclaimed-ownership-declaration
declaration

module-declaration:
module module-name attribute-specifier-seq opt ;

module-import-declaration :
import module-name attribute-specifier-seq opt ;
import partition string-literal ;

fragment:
module-import-declaration
global-module-declaration
declaration

global-module-declaration:
module { toplevel-declaration-seq opt }

module-name :
module-name-qualifier -seq opt identifier

module-name-qualifier-seq:
module-name-qualifier .
module-name-qualifier-seq identifier .

module-name-qualifier :
module-name-qualifier opt identifier .

Drafting note: the changes to module-name are just a simplification, with no normative
impact.

Add a new paragraph before 3.5 [basic.link] paragraph 2:

A translation unit that has a module-head is a module unit , and is part of the module named
by its module-name . A module unit with the module-key implementation is a module
implementation unit ; any other module unit is a module interface unit . For each
module-name that is used by a program, there shall be exactly one module interface unit for
that module with no module-key , which is the principal module interface unit for the module.
The principal module interface unit shall have a transitive interface dependency (7.2.2) on
each other module interface unit for the module.

Change in new bullet in 3.5 [basic.link] paragraph 2

— When a name has module linkage, the entity it denotes is owned by a module M and can
be referred to by names from other scopes of module units of the same module unit (7.7) or
from other scopes of the same translation unit other module units part of M.

Drafting note: the changes here address the inconsistency in wording between this bullet
and bullet 1, and the awkward “other module units part of M” phrasing.

Delete 7.7 [basic.modules] paragraph 1

A translation-unit shall contain at most one module-declaration [...]

Change in 7.7 [basic.modules] paragraph 2

A module is a collection of module units designating the same module-name in their
module-head s, at most one of which contains. A module implementation unit (3.5) shall not
contain export-declaration s or exported-fragment-group s or module-export-declaration s.
Such a distinguished module unit is called the module interface unit. Any other module unit
is called a module implementation unit.

Change in 7.7 [basic.modules] paragraph 3

A module unit purview starts at the module-declaration and extends to the end of the
translation unit. The purview of a module unit comprises all declarations within that module
unit that are not within a global-module-declaration . The purview of a module M is the set of
module unit purviews of M’s module units.

Change in 7.7 [basic.modules] paragraph 5

The global module is the collection of all declarations not in the purview of any
module-declaration, including those declared within a global-module-declaration in a module
unit. By extension, such declarations are said to be in the purview of the global module. [
Note: The global module has no name and is not introduced by any module-declaration. A
global-module-declaration does not establish a scope. — end note]

Change in 7.7.1 [dcl.module.interface] paragraph 1

[...] All entities with linkage other than internal linkage declared in a module interface unit of a
module M are visible to all module implementation units of M. [...]

Change in 7.7.2 [dcl.module.import] paragraph 1

An import-declaration without the partition specifier makes exported declarations from
the interface of the nominated module visible to name lookup in the current translation unit,
in the same namespaces and contexts as in the nominated module. [Note: The entities are
not redeclared in the translation unit containing the import-declaration. — end note] [
Example]

Add a new paragraph after in 7.7.2 [dcl.module.import] paragraph 1

An import-declaration with the partition specifier makes declarations with external
linkage from the nominated translation unit visible to name lookup in the current translation
unit, in the same namespaces and contexts as in the nominated translation unit. The
mapping from string-literal s to translation units is implementation-defined. The translation
unit containing the import-declaration and the nominated translation unit shall be module
interface units of the same module. [Example:
 // translation unit "a"
 module partition M;
 struct A {};

 // translation unit "b"
 module partition M;
 import partition "a";
 struct B : A {};

 // principal module interface unit
 module M;
 import partition "b";
 B *b; // OK
 A *a; // error: not visible, partition b does not re-export

 // module implementation unit
 module M;
 A make_a(); // OK, interface is implicitly visible
— end example]

Change in 7.7.2 [dcl.module.import] paragraph 2

A module M1 has a dependency on a module M2 if any module unit of M1 contains an
import-declaration without the partition specifier nominating M2. A module shall not have
a dependency on itself.

Change in 7.7.2 [dcl.module.import] paragraph 3

A module interface unit M1 has an interface dependency on a module interface unit M2 if the
module interface unit of M1 contains an import-declaration nominating M2. A module
interface unit shall not have a transitive interface dependency on itself.

End

