
Doc No. P0489R0
Date: 2016-10-18

Project: Programming Language C++
Reply To: Barry Hedquist, beh@peren.com

Subject: WG21 Working Paper, Late Comments, ISO/IEC CD 14882

Attached is a WG21 Working Paper containing Late Comments on ISO/IEC CD 14882,
Programming Language C++. These comments were not submitted in time to be registered as
National Body Comments, but should be considered as possible issues against SC 22, N3151,
ISO/IEC CD 14882.

mailto:beh@peren.com

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 1 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 LATE COMMENTS THE FOLLOWING COMMENTS WERE
SUBMITTED TOO LATE TO BE INCLUDED IN
AN NB POSITION, BUT SHOULD BE
CONSIDERED AS POSSIBLE ISSUES AGAINST
THE WORKING PAPER SC22 N5131.

1

 3.6.2 - 3.6.4 te Several places in the standard do not correctly

specify construction and destruction ordering in

the presence of threads. For example, they often

say “happens before” when they do not intend to

allow memory_order_consume-based ordering.

They allow concurrent construction at arbitrary

points, and are unclear about the threads in

which construction occurs, often allowing

deadlock. CWG 1784 and 2046 point out

additional issues.

Adopt wording improvements along the lines of

P0250R2

2 18.10.5 te The current wording for signal handlers is

inadequate. The current wording was never

entirely consistent, e.g. it requires functions in the

intersection of C and C++ with C linkage,

something that doesn’t technically exist. The

change to refer to C11 raises further questions as

to whether thread_local variables are allowed in

signal handlers. Whether or not a function is safe

to use as a signal handler really depends only on

whether it avoids certain constructs, not whether

it is expressible in C.

Adopt P0270R1. This is a rebase of a document

that was almost adopted in Oulu.

3 8.5 p3 te The current wording is unclear about when the

`get` functions are called. It can be read as

saying that it must be done eagerly, or as saying

that it’s unspecified. Either option makes this

unusable for types such as `expected`/`error_or`,

where the value must not be accessed if there

was an error.

Specify that each evaluation of the name calls the

appropriate get function. This would further

simplify the creation of reference wrappers by re-

creating them for each use rather than having

"variables".

4 LBNL disagrees with the following USNB The LBNL delegation would rather see these

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0250r2.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0270r1.html

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 2 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

 comment:

Adopt the full expression evaluation order

proposal (P0145R3, failed to reach consensus
when proposed during the plenary at the Oulu

2015 meeting (CWG Motion 9)).

features rigorously reviewed by the committee and

added in a future standard.

5

 LBNL Disagrees with the following USNB
Comment:

Add requires clauses and expressions from the

Concepts TS (N4377, failed to reach consensus
when proposed during the plenary at the

Jacksonville 2015 meeting (EWG Motion 1)).

The LBNL delegation would rather see these
features rigorously reviewed by the committee and

added in a future standard.

6

 LBNL disagrees with the following USNB
Comment:

Change statically-checkable conditions in
Requires: clauses to Preconditions: clauses in the

Standard Library (P0411R0, in the post Oulu
2015 meeting mailings).

The LBNL delegation would rather see these

features rigorously reviewed by the committee and
added in a future standard.

7

 LBNL disagrees with the following USNB
comment:

Add default comparison operators (N4475 and
P0221R2, failed to reach consensus when

proposed during the plenary at the Oulu 2015
meeting (CWG Motion 10)).

The LBNL delegation would rather see these

features rigorously reviewed by the committee and
added in a future standard.

8

 LBNL disagrees with the following USNB
comment:

Add operator.() (P0416R0, CWG declined to

make a motion proposing this for C++17 at the
Oulu 2015 meeting as the wording was not

ready).

The LBNL delegation would rather see these
features rigorously reviewed by the committee and

added in a future standard.

9

 LBNL disagrees with the following USNB
comment:

Change structured bindings syntax from [] to { }

(P0144R1, EWG strongly preferred [] over { } at
the Jacksonville 2015 meeting).

The LBNL delegation would rather see these
features rigorously reviewed by the committee and

added in a future standard.

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 3 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

10

 te Adopt operator dot as approved by the EWG and
with the ambiguity problem found by CWG
resolved.

Adopt the proposal as described in P0416r0 and
P0252R2 with the revised wording addressing
CWG’s observations.

11 te Adopt “std::byte” as approved by EWG for
C++17.

Adopt the proposal as described in P0298r1.

12 8.5 1 te Revert the structured binding syntax from [] to {}.
The original proposal used {}, but it was asserted
that [] was aesthetically better and introduced no
problems. Unfortunately, using [] introduces
ambiguities related to attributes and lambdas.
These ambiguities can be handled, but they don’t
occur for {}. The similarity between [] for
decomposition and for lambda capture was used
as an argument for [] over {}, but that similarity is
misleading (and therefore potentially confusing)
because the semantics are totally different:
introduction of new names as opposed to creating
bindings to names in scope. The {} notation is
more likely to fit with a future expansion into the
area of functional-programming pattern matching.

Change the structured binding delimiters to curly
braces.

13 7.1.6 [1] and [3] te Whatever else “inline variables” do, they will
cause harm by making it easier to introduce
global variables and data races.

Remove “inline variables” from the CD. In other
words, back out p0386r2.
Instead, consider adjusting the definition of ODR
to allow in-class initialization of static data
members to be taken as definition and to allow
constexpr values to be unified by the linker.

14 te Default comparisons, as described in P0221R3
proved controversial. The vast majority of
negative comments related to operators < and
<=. Operators == and != represent a coherent
and useful subset of that proposal.

Adopt the (apparently) non-controversial default
== and != from P0221R2

15 27.10.8.4.11 3.1 ed A “mismatched element” cannot be equal to an
iterator.

Rephrase in terms of the iterators produced by

mismatch().

16 27.10.8.4.11 3.3.1 ge path("c:foo").lexically_relative

("c:\\bar")==path("..\\foo")

 is nonsense.

Don’t construct .. elements for the special

leading components.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0416r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0252r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0298r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0386r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0221r2.html

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 4 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

17 27.10.8.4.11 3.3.2 te The behavior illustrated in the last assertion is
appropriate only for differing roots, and as given
makes the function useless for relative paths.

Again, treat roots specially (instead of begin()).

18 27.10.8.4.11 4 te The behavior in the case corresponding to the
previous comment is disastrously wrong.

Fix the underlying function as above.

19 27.10.8.5 2 ge It is surprising that a path is a container of

paths.

Again, use string_type for individual components
(including the special leading components for
consistency).

20 27.10.11 1 ge The anemic status structure causes inefficiency
and race conditions from multiple queries.

Add to it if at all possible (and then use const

file_status& parameters everywhere, as

befits a larger structure).

21 27.10.12 te This class is just a trivial wrapper for path. Remove it and use path instead (or

string_type; see below).

22 27.10.13 6 te It is cumbersome to always assemble the full

path including the iterator’s directory.

Follow, among many others, Python’s

os.listdir() and supply basenames; then

just use string_type, since it’s one

component.

23 27.10.14.1 28 te This function name is an ugly implementation
detail.

Call it skip_subdirectory() or just

skip().

24 27.10.15.1 1 ge absolute(path("c:foo"),path

("d:\\bar"))==path

("c:\\bar\\foo")

is nonsense.

Some redesign is needed to address the
unfortunate existence of drive-relative filenames
that are neither absolute nor relative.

25 27.10.15.4 4.2 ge What attributes are copied? Specify them.

26 27.10.15.6 5 te The time complexity assumes that the individual
syscalls take constant time.

Specify count of syscalls, or drop the intuitively
obvious complexity statement altogether.

27 27.10.15.7 5 te The restriction of attribute specification to copying
from an exemplar prevents sensible security
measures like mode 700 for race prevention.

Add overload that accepts a perm.

28 27.10.15.10 ge It’s important that this function might misbehave if Mention create_directory_symlink().

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 5 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

to is a directory.

29 27.10.15.13 te Access to the file ID (device/inode pair, for
POSIX) is superior to an equivalence test: it can
be used as a lookup key and avoids re-checking
a single reference file repeatedly.

Add a function that returns an unspecified type
that supports all comparisons, possibly to replace

equivalent(). Include support for lstat().

30 27.10.15.13 3 ed The explicit check for s1==s2 is ill-formed (there

is no operator==()) and could race (if, say,

the permissions are changed concurrently).

Omit the check: it’s enough that they “resolve to
the same file system entity”, however the
implementation can determine that.

31 27.10.15.13 5 te It is surprising that the error_code overload

throws in certain, very specific, cases.

Rely on the normal error handling for non-existent
paths.

32 27.10.15.13 5 te In particular, it is unhelpful to reject special files
outright.

Let the implementation compare their identities.

33 27.10.15.21 ge It is surprising that, for example, a FIFO is both

is_fifo() and is_other().
Rename is_other() to is_special(), or

remove it.

34 27.10.15.25 5 te Could a direction of error in the stored time be
guaranteed?

Add a postcondition if so.

35 27.10.15.26 te Why is there no way to read permissions? Add an overload to do so.

36 27.10.15.26 te The error_code overload should be

noexcept.

Add it.

37 27.10.15.26 2 te Why have symlink_nofollow,

add_perms, and remove_perms share a

bitmask with the actual permissions?

Make these separate types (just bool for

nofollow) and parameters.

38 27.10.15.26 2 te There is an implication that the operation is
atomic, which is unimplementable.

Clarify that it is a non-atomic convenience (or that
it can cause a file system race, if that is desired).

39 27.10.15.29 3 ge Several surprises can occur with symlinks:

Consider /box/src/, a symlink

/box/link /dest, and /dest/file.

 Then

relative("/box/link/file","/box")

 produces ../dest/file instead of

Remove the function, and supply its specified
expression as an example for

weakly_canonical(); there is likely no

consensus for a particular solution on which to
standardize for the problem of generating relative
paths in the presence of symlinks.

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 6 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

link/file (similarly for a source of

/box/src).

If the paths do not (yet) exist, they might be
created including symlinks and have the answer
be wrong.

40 27.10.15.31 1 te What happens if the path is symlink/? Some

versions of Boost reject it with the (incorrect,
according to POSIX) 'Not a directory: "symlink/"'

It is inconsistent to test symlink when

symlink/ was specified, so the obvious

behavior is to remove the contents of the directory
and then fail to remove the symlink.

41 27.10.15.31 3 te It would be useful to know the number of
successful removals in case of error.

Return that number (so long as it is acceptable for

error detection to be through the error_code).

42 27.10.15.33 1 ed file_size() has no argument. Add p.

43 27.10.15.33 3 ge It is odd to be missing ftruncate() from

POSIX given truncate().

Add it, or a function like it.

44 27.10.15.38 ge The function name is inconsistent with other
similar functions in this subclause.

Rename it to system_absolute().

45 27.10.15.38 6 ge It appears that this function is unreliable exactly in
the situation for which it is designed.

Remove it unless it can be made reliable.

46 27.10.15.40 2 te Do components for which errors occur (in
determining whether they are symlinks) count as
existing or not?

Presumably, specify that they do not, since they

would be poor input to canonical() which

expects them to exist (which would not be able to
be verfiied).

47 27.10.15.40 4 te The file system’s state can change at any time,
so the suggested caching is incorrect.

Remove the suggestion, unless it is meant to be
UB for such changes to occur.

ISO/IEC CD 14882, Late Comments – p0489r0 Date: Oct 18, 2016 Document: SC22 N5131 Project: 14882

MB/

NC1

Line

number

(e.g. 17)

Clause/

Subclause

(e.g. 3.1)

Paragraph/

Figure/

Table/

(e.g. Table 1)

Type of

comment2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2 Type of comment: ge = general te = technical ed = editorial

page 7 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

