
Resolving LWG Issues re common_type

Document #: WG21 P0435R1
Date: 2016-11-11
Revises: P0435R0
Project: JTC1.22.32 Programming Language C++
Audience: LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Introduction: what’s wrong? . . . 1
2 Expository implementation 2
3 Proposed wording 4

4 Acknowledgments 5
5 Bibliography 5
6 Document history 5

Abstract

LWG issues 2465 and 2763 have seen considerable recent churn. Experimentation has revealed
that these Issues’ latest Proposed Resolutions do not pass all expected tests. This paper presents
revised wording as well as a corresponding implementation that does pass the tests of desired
behavior. This wording also addresses the first part of LWG issue 2460 as well as several
other concerns, and takes a step toward addressing a recent renewed request for a “code-based
definition.”

The longer we listen to one another — with real attention — the more
commonality we will find in all our lives. That is, if we are careful to
exchange with one another life stories and not simply opinions.

— BARBARA DEMING

On dit quelquefois: «Le sens commun est fort rare.»
[People sometimes say: “Common sense is quite rare.”]

— VOLTAIRE, né FRANÇOIS-MARIE AROUET

1 Introduction: what’s wrong?

Among the metafunctions in <type_traits>, common_type is unique: it is the only one that
programmers may specialize. However, programmers should not have to provide specializations
for all combinations of cv-qualifications and reference qualifications. Alas, correct specification of
this part of the design has proven to be exceptionally elusive, as evidenced by the recent churn in
addressing LWG 2465 as well as the recently-added LWG 2763. Judicious use of the decay trait
has materially improved the specification, but the timing of its application has not always been
clear.

At the time of writing, there are some problems with the cited issues’ latest Proposed Resolu-
tions. In addition to several wording nits, there are two issues of vital substance:

• LWG 2763 presents a “merged” resolution with LWG 2465, but it is incomplete in that it
omits 2465’s necessary changes to common_type’s table entry.

Copyright c© 2016 by Walter E. Brown. All rights reserved.

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0435r0.pdf
mailto:webrown.cpp@gmail.com

2 P0435R1: Resolving LWG Issues re common_type

• LWG 2465 observes that “the current P/R no longer decays the type of the conditional
expression,” but incorrectly describes that lack as “harmless.”

The cumulative effect of the above seems fatal to the Proposed Resolutions as written in the LWG
Issues List [LWG]. In particular, experimentation has revealed that implementations conforming to
those specifications do not exhibit intended behavior: they fail several of the relevant conformance
tests supplied with libc++, for example.

In addition to the above issues, the following concerns were privately pointed out:

• [namespace.std]/1 already contains a blanket provision that restricts what specializations a
program may write in namespace std:

A program may add a template specialization for any standard library template to
namespace std only if the declaration depends on a user-defined type. . . .

Therefore, the common_type specification can be slightly simplified by appealing to those
restrictions.

• The requirement on applying the common_type trait omits the possibility of an unbounded
array type. Other multi-parameter traits have no such restriction, and there seems no
reason to enforce it here. We have opted to treat this somewhat more generally to avoid the
possibility of an ODR violation such as the following:

1 struct A; struct B; // incomplete types
2 · · · common_type_t<A*, B*> · · · // no member ’type’ => ill-formed

4 struct A { }; struct B : A { }; // now complete types
5 · · · common_type_t<A*, B*> · · · // now well-formed => ODR violation

• common_type specializations have no required semantics. Given our understanding of
common_type’s original intent and of its behavior when applied to fundamental types, we
believe it reasonable to require (a) that each of the argument types in such a specialization
be explicitly convertible to the common type, and (b) that the common type of T and U always
denote the same type as the common type of U and T.

While such concerns are not part of the LWG issues under discussion, we have nonetheless
addressed them herein. Therefore, for all these reasons, this paper’s proposed wording (§3), which
makes the appropriate adjustments to the wording from the Issues List, is recommended.

2 Expository implementation

This section presents an implementation that conforms to the specifications proposed in §3. It has
successfully passed all relevant parts of the libc++ tests and of proprietary tests. Namespaces have
been omitted here for clarity of exposition; the unedited code was compiled using GCC version
7.0.0 20160807 with significant options -std=c++1z and -fconcepts.1

2.1 Exposition-only helpers
1 // result type of conditional operator:
2 template< class T, class U >
3 using
4 cond_t = decltype(false ? declval<T>() : declval<U>());
5

1See http://melpon.org/wandbox/permlink/Y0E3NFXYO66Y7zOK for an alternate implementation, by Tomasz
Kamiński, that employs only C++14 technology. In particular, nested enable_ifs, combined with the detection idiom,
replace requires-clauses to select among the code segments corresponding to the various bullets of the wording proposed
in §3. However, in private correspondence granting permission to share the link, Kamiński commented that the present
paper’s “current implementation. . . is a lot cleaner in expressing intent.”

http://melpon.org/wandbox/permlink/Y0E3NFXYO66Y7zOK

P0435R1: Resolving LWG Issues re common_type 3

6 // verify that neither type needs further decay:
7 template< class T, class U >
8 constexpr bool
9 are_already_decayed_v = is_same_v< T, decay_t<T> >

10 and is_same_v< U, decay_t<U> >;

2.2 Declarations per [meta.type.synop]

11 // other transformation trait:
12 template< class... >
13 struct
14 common_type;
15

16 // result alias:
17 template< class... Ts >
18 using
19 common_type_t = typename common_type<Ts...>::type;

2.3 Per-bullet definitions2

20 // (3.1):
21 template< class... >
22 struct
23 common_type { };
24

25 // (3.2):
26 template< class T >
27 struct
28 common_type<T0> : decay<T0> { };
29

30 // (3.3), case (3.3.1):
31 template< class T1, class T2 >
32 requires not are_already_decayed_v<T1,T2>
33 struct
34 common_type<T1,T2> : common_type< decay_t<T1>, decay_t<T2> > { };
35

36 // (3.3), case (3.3.2):
37 template< class T1, class T2 >
38 requires are_already_decayed_v<T1,T2>
39 and requires { typename cond_t<T1,T2>; }
40 struct
41 common_type<T1,T2> : decay< cond_t<T1,T2> > { };
42

43 // (3.4):
44 template< class T1, class T2, class... R >
45 requires sizeof...(R) > 0
46 and requires { typename common_type_t<T1,T2>; }
47 struct
48 common_type<T1,T2,R...> : common_type< common_type_t<T1,T2>, R... > { };

2Comments identify the corresponding numbered bullets and subbullets in §3.

4 P0435R1: Resolving LWG Issues re common_type

3 Proposed wording3

The following wording is intended (a) to resolve LWG Issues 2465, 2763, and (the first part of)
2460, and (b) to address the other concerns raised in §1.

3.1 Edit the entry for common_type in Table 46 — “Other transformations” as shown below. Note
that the sentences deleted here will reappear (with significant adjustments) in the new Note B,
below.

Unless this trait is specialized (as specified in Note B, below), Tthe member typedef type shall be
defined or omitted as specified in Note A, below. If it is omitted, there shall be no member type.
All typesEach type in the parameter pack T shall be complete, or (possibly cv) void, or an array
of unknown bound. A program may specialize this trait if at least one template parameter in the
specialization is a user-defined type. [Note: Such specializations are needed when only explicit
conversions are desired among the template arguments. — end note]

3.2 Edit 20.15.7.6 [meta.trans.other]/3 (and its subbullets) as shown below.

3 Note A: For the common_type trait applied to a parameter pack T of types, the member type
shall be either defined or not present as follows:

(3.1) — If sizeof...(T) is zero, there shall be no member type.

(3.2) — If sizeof...(T) is one, let T0 denote the sole type inconstituting the pack T. The
member typedeftypedef-name type shall denote the same type as decay_t<T0>.

(3.3) — If sizeof...(T) is two, let the first and second types constituting T be denoted
by T1 and T2, respectively, and let D1 and D2 denote the same types as decay_t<T1> and
decay_t<T2>, respectively.

(3.3.1) — If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote
the same type, if any, as common_type_t<D1, D2>.

(3.3.2) — Otherwise, let C denote the same type, if any, as decay_t< decltype(false ?
declval<D1>() : declval<D2>())>. [Note: This will not apply if there is a specialization
common_type<D1, D2>. — end note]

In either case, the member typedef-name type shall denote the same type, if any, as C.
Otherwise, there shall be no member type. [Note: When is_same_v<T1, T2> is true, the
effect is equivalent to that of common_type<T1>. — end note]

(3.4) — If sizeof...(T) is greater than onetwo, let T1, T2, and R, respectively, denote
the first, second, and (pack of) remaining types comprisingconstituting T. [Note: —
end note] Let . . . whose first operand is . . . , whose second operand is . . . , and whose third
operand is Let C denote the same type, if any, as common_type_t<T1, T2>. If there is
such a type C, the member typedeftypedef-name type shall denote the same type, if any, as
common_type_t<C, R...>. Otherwise, there shall be no member type.

3.3 Insert the following new paragraph immediately after the last bullet of the above Note A
paragraph, and renumber subsequent paragraphs accordingly. Note that this text was initially
relocated here after its excision from Table 46.

3All proposed additions and deletions are relative to the post-Oulu Working Draft [N4606]. Editorial instructions and
drafting notes are displayed against a gray background.

P0435R1: Resolving LWG Issues re common_type 5

4 Note B: Notwithstanding the provisions of [meta.type.synop], and pursuant to [namespace.std],
Aa program may specialize this trait if at least one template parameter in the specialization is a
user-defined typecommon_type<T1, T2> for distinct types T1 and T2 such that is_same_v<T1,
decay_t<T1>> and is_same_v<T2, decay_t<T2>> are each true. [Note: Such specializations
are needed when only explicit conversions are desired amongbetween the template arguments. —
end note] Such a specialization need not have a member named type, but if it does, that member
shall be a typedef-name for an accessible and unambiguous cv-unqualified non-reference type C
to which each of the types T1 and T2 is explicitly convertible. Moreover, common_type_t<T1, T2>
shall denote the same type, if any, as does common_type_t<T2, T1>. No diagnostic is required
for a violation of this Note’s rules.

4 Acknowledgments

Special thanks to Alisdair Meredith, Casey Carter, Eric Niebler, Howard Hinnant, Marshall Clow,
Nevin Liber, Stephan T. Lavavej, and Tomasz Kamiński for productive discussions regarding
numerous subtleties of this surprisingly difficult-to-specify component.

5 Bibliography

[LWG] Marshall Clow, et al.; “C++ Standard Library Active Issues List (Revision D100).” Retrieved 2016-
08-14. Online: http://cplusplus.github.io/LWG/lwg-active.html.

[N4606] Richard Smith: “Working Draft, Standard for Programming Language C++,” ISO/IEC JTC1/SC22/
WG21 document N4606 (post-Oulu mailing), 2016-07-12.
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4606.pdf.
Same content as “C++17 CD Ballot Document,” ISO/IEC JTC1/SC22/WG21 document N4604
(post-Oulu mailing), http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4604.pdf.

6 Document history

Version Date Changes

0 2016-10-14 • Published as P0435R0.

1 2016-11-11 • Use “constitute” (not “comprise”) throughout proposed wording. • Restored type com-
pleteness requirements from [N4606]. • Adopted wording tweaks recommended by the
Project Editor. • Published as P0435R1.

http://cplusplus.github.io/LWG/lwg-active.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4606.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4604.pdf

	Title
	Contents
	Abstract
	1 Introduction: what's wrong?
	2 Expository implementation
	3 Proposed wording
	4 Acknowledgments
	5 Bibliography
	6 Document history

