Document Number: PO386R2
Date: 2016-06-24
Hal Finkel (hfinkel@anl.gov) and Richard Smith (richard@metafoo.co.uk)

Inline Variables

Proposal summary

The inline specifier can be applied to variables as well as to functions. A variable declared
inline has the same semantics as a function declared inline: it can be defined, identically, in
multiple translation units, must be defined in every translation unit in which it is odr-used, and
the behavior of the program is as if there is exactly one variable.

Changes since P0386R1

e The constexpr specifier implies in1ine only for static data members, not also for
namespace-scope variables.

Proposed wording (relative to N4594)
In 3.1p2 change:
A declaration is a definition unless [...] it declares a non-inline static data member in a class

definition (9.2, 9.4), it declares a static data member outside a class definition and the variable
was defined within the class with the constexpr specifier (this usage is deprecated; see D.X).

[..]

In 3.2p4 change:

Every program shall contain exactly one definition of every non-inline function or variable that
is odr-used in that program; no diagnostic required. [...] An inline function or variable shall be
defined in every translation unit in which it is odr-used.

In 3.2p6, change:

There can be more than one definition of a class type (Clause 9), enumeration type (7.2), inline
function with external linkage (7.1.2X), inline variable with external linkage, [...] in a program
provided that each definition appears in a different translation unit, and provided that the
definitions [are the same]

In 3.5p3, change:

A name having namespace scope (3.3.6) has internal linkage if it is the name of
e a non-inline variable of non-volatile const-qualified type that is neither explicitly declared
extern nor previously declared to have external linkage; or

In 3.6.3p1, change:

Dynamic initialization of a non-local variable with static storage duration is unordered if the
variable is an implicitly or explicitly instantiated specialization, is partially-ordered if the variable
is an inline variable that is not an implicitly or explicitly instantiated specialization, and otherwise
is ordered [Note: an explicitly specialized non-inline static data member or variable template
specialization has ordered initialization. — end note].<paragraph break>

Dynamic initialization of non-local variables V and W with static storage duration are ordered
as follows:

e |fV and W have Variables-with ordered initialization and V is defined before W within a
single translation unit, they-shal-be-initiatizec-n-the-erderof-theirdefinitionsin-the
transtation—unit the initialization of V is sequenced before the initialization of W.

e [f V has partially-ordered initialization, W does not have unordered initialization, and V is
defined before W in every translation unit in which W is defined, the initialization of V is
sequenced before the initialization of W if the program does not start a thread (1.10) and
otherwise happens before the initialization of W.

e Otherwise, if a program starts a thread {36-3)_before either VV or W is initialized, the
subsequent initializations of V and W are a-variable-is unsequenced-withrespectto-the
initialization-of a-variable-definedina-different-transiatienunit.

e Otherwise, the |n|t|aI|zat|0ns of V and W are a—vaﬁab+e—rs mdetermlnately sequenced—w&h

[Note: This definition permits initialization of a sequence of ordered variables concurrently W|th
another sequence. — end note]

In 3.6.3p2, change:

It is implementation-defined whether the dynamic initialization of a non-local non-inline variable
with static storage duration happens before the first statement of main. If the initialization is
deferred to happen after the first statement of main, it happens before the first odr-use (3.2) of
any non-inline function or non-inline variable defined in the same translation unit as the variable
to be initialized. [...]

Add a new paragraph after 3.6.3p2:

It is implementation-defined whether the dynamic initialization of a non-local inline variable with
static storage duration happens before the first statement of main. If the initialization is deferred
to happen after the first statement of main, it happens before the first odr-use (3.2) of that
variable.

In 3.6.3p3, change:

It is implementation-defined whether the dynamic initialization of a non-local non-inline variable
with static or thread storage duration is sequenced before the first statement of the initial
function of the thread. If the initialization is deferred to some point in time sequenced after the
first statement of the initial function of the thread, it is sequenced before the first odr-use (3.2) of
any non-inline variable with thread storage duration defined in the same translation unit as the
variable to be initialized.

In 7.1p1, add inline to the list of decl-specifier. Add a new subclause, “The inline specifier’,
7.1.X, as follows:

pl: The inline specifier can be applied only to the declaration or definition of a variable or
function.

Move 7.1.2p2 (“A function declaration with an inline specifier declares an inline function [...]”)
unchanged into 7.1.X as p2

p3: A variable declaration with an inline specifier declares an inline variable.

Move 7.1.2p3 into 7.1.X, split into two paragraphs, and modify as indicated:

p4: A function defined within a class definition is an inline function.<paragraph break>

p5: The inline specifier shall not appear on a block scope furetion declaration.[Footnote] If
the inline specifier is used in a friend function declaration, that declaration shall be a
definition or the function shall have previously been declared inline.

Move 7.1.2p4 into 7.1.X and modify as indicated:

p6: An inline function or variable shall be defined in every translation unit in which it is odr-used

and shall have exactly the same definition in every case (3.2). [Note: A call to the inline function
or a use of the inline variable may be encountered before its definition appears in the translation
unit. — end note] If the definition of a function or variable appears in a translation unit before its
first declaration as inline, the program is ill-formed. If a function or variable with external linkage

is declared inline in one translation unit, it shall be declared inline in all translation units in which
it appears; no diagnostic is required. An inline function or variable with external linkage shall

have the same address in all translation units. [Note: A static local variable in an extern inline
function always refers to the same object (3.2). A type defined within the body of an extern inline
function is the same type in every translation unit. — end note |

Remove inline from the list of function specifiers in 7.1.2p1.
In 7.1.5p1, change:

The constexpr specifier shall be applied only to the definition of a variable or variable
template; or the declaration of a function or function template;-erthe-deetaration-of-a-static-data
memberofaliteral-type{3-9). A function or static data member declared with the constexpr
specifier is implicitly an inline function or variable (7.1.X). If any declaration of a function or
function template has a constexpr specifier, then all its declarations shall contain the
constexpr specifier. [...]

In 7.1.5p2, change:

A constexpr specifier used in the declaration of a function that is not a constructor declares
that function to be a constexpr function. Similarly, a constexpr specifier used in a constructor
declaration declares that constructor to be a constexpr constructor. cerstexprfunctions-and

plicithintinef . 7.4-2).

In 9.2.3.2p2, change:

The declaration of a non-inline or uninitialized static data member in its class definition is not a
definition and may be of an incomplete type other than cv-qualified void.

In 9.2.3.2p3, change:

If a non-volatile non-inline const static data member is of integral or enumeration type, its
declaration in the class definition can specify a brace-or-equal-initializer in which every
initializer-clause that is an assignment-expression is a constant expression (5.20). A-static-data

aﬁpeaHH—eeﬂs%aﬁt—e*pfeeaens——eﬁd—He’fe—} The member shall still be deflned in a namespace
scope if it is odr-used (3.2) in the program and the namespace scope definition shall not contain
an initializer. An inline static data member can be defined in the class definition and may specify
a brace-or-equal-initializer. If the member is declared with the constexpr specifier, it may be
redeclared in namespace scope with no initializer (this usage is deprecated; see D.X).
Declarations of other static data members shall not specify a brace-or-equal-initializer.

In 14.7.2p10, change:

Except for inline functions and variables, declarations with types deduced from their initializer
or return value (7.1.6.4), const variables of literal types, variables of reference types, and class
template specializations, explicit instantiation declarations have the effect of suppressing the
implicit instantiation of the entity to which they refer. [...]

In 14.7.3p12, change:
An explicit specialization of a function or variable template is inline only if it is declared with the

inline specifier or defined as deleted, and independently of whether its function or variable
template is inline. [Example:

template<class T> void f£(T) { /* ... */ }

template<class T> inline T g(T) { /* ... */ }

template<> inline void f<>(int) { /* ... */ } // OK: inline
template<> int g<>(int) { /* ... */ } // OK: not inline

— end example |

In Annex D, add a new subclause, “Redeclaration of static constexpr data members”, D.X, with
the following content:

For compatibility with prior C++ International Standards, a constexpr static data member may be
redundantly redeclared outside the class with no initializer. This usage is deprecated. [

Example:

struct A {

static constexpr int n = 5; definition (declaration in C++ 2014)
1:
const int A::n;: redundant declaration (definition in C++ 2014)

— end example]

