
Document Number: P0374R0
Date: 2016-05-30

Reply to: josedaniel.garcia@uc3m.es
Audience: SG1.

Stream parallelism patterns

J. Daniel Garcia
David del Rio
Manuel F. Dolz

Javier Garcia-Blas
Luis M. Sanchez

Computer Science and
Engineering Department

University Carlos III of Madrid

Marco Danelutto
Massimo Torquati

Computer Science Department
University of Pisa

1 Motivation

With the approval of the library parallelism extensions, first as a TS [1] and later as part of the upcoming
C++17 standard [2], C++ programmers are able to use a number of generic parallel algorithms with low effort.
However, all these algorithms help to solve what it is commonly known as data parallel problems.

Although the standard library offers a number of specific algorithms (e.g. sort()), it also offers more general
algorithms that have been commonly referred as parallel patterns. Examples of those data parallel patters are
transform(), reduce(), inclusive scan(), and exclusive scan().

We think that those patterns should be complemented with other families of parallel patterns such as stream
parallel patterns.

Stream parallel patterns have all in common that they process a stream of data and perform continuous
processing on that data stream. In this initial paper, we focus on four specific patterns: farm, pipeline, filter,
and stream-reduce.

2 Stream parallel patterns

Stream parallel patterns exploit parallelism in the processing of different items belonging to one or more input
data streams. In general, an input data stream is characterized by having a elements of a given type and being
able to provide items, one after the other, that will be used by some computation. While those patterns might
be seen similar in some cases to existing traditional data parallel algorithms, a key difference is that neither the
full sequence nor the number of items in the sequence are known in advance.

2.1 Approaches to manipulating streams

Two approaches can be considered to manipulate streams in different patterns:

• A data oriented approach: using data types for input and output streams.

• A more functional approach, through generation and consumption functions (or more generally, callable
objects).

Using a data oriented approach can be achieved by using two types: a type for representing an input stream
and a type for representing an output stream.

input stream<int> s1 = get input stream();
output stream<double> s2 = get output stream();

// Sequential processing of stream

1

while (!s1. finished ()) {
auto x = s1.get();
auto y = compute(x);
s2.put(y);
}

This approach could also be obtained by using types satisfying the concepts of InputIterator for input
streams and OutputIterator for output streams. However, using iterators requires a mechanism to signal when
the input stream has finished producing data.

A different approach could be representing the source and sink streams as callable objects. The source
stream becomes a callable object returning an item each time. A protocol needs to be established to signal
the end of the stream. One option would be to return a pair with a value and a bool. However, a different
approach would be to return an optional<value>, signaling the end of stream with an empty object. Then, a
source stream can be represented by a callable object that produce an optional<value>,

auto source = [&ifile] {
if (! ifile) return optional<int>{};
else {
int x;
ifile >> x;
return make optional(x);
}
};

and a sink stream can be represented by a callable object that takes an optional<value>.

auto sink = [&ofile] (optional<double> v) {
if (v) ofile << ∗v:

}

// Sequential processing of stream
for (optional<int> && x = source(); x; x=source()) {
auto y = compute(∗x);
sink(y);
}

2.2 Composing complex patterns

Being able to compose complex patterns from simpler ones is a highly desirable characteristic as it allows to
express a complex stream computation by nesting simpler stream computation steps. Moreover, the ability to
express a stream pattern in multiple ways provides the ability to perform transformations on the computation
structures to improve performance [3].

To be able to compose patterns, we represent separately the idea of stream source and stream sink. Every
top-level pattern may then take those streams to be able to get input data and store output data. We call those
elements collectively the bounds of the computation.

bounds b{
[& infile] { return (! infile)?optional<int>{}:make optional(read value(infile)); }
[& ofile] (int x) { ofile << x << endl; }
};

Any pattern may take as an argument those bounds to interact with external streams.

patternA(par,
bounds{

[& infile] { return (! infile)?optional<int>{}:make optional(read value(infile)); }
[& ofile] (int x) { ofile << x << endl; }
},
[] (int x) { return x/2; }

);

2

3 Farm

A farm, sometimes also referred as a task farm or a stream map (in reference to the functional and data parallel
map pattern), performs a transformation on every item coming from an input stream and generates a new output
stream of items. The computations performed during the transformation are considered fully independent one
from the other.

There is a single key parameter to a farm pattern:

• A single transformation function operating on stream individual data.

Parallel execution of a farm pattern may be controlled by a number of optional parameters (with default
values):

• Parallelism degree: Number of parallel threads of execution performing computations on different
elements from the input stream and generating elements to the output stream.

• Distribution policy: Policy used to distribute input data items to computation execution threads. A
possible strategy is performing round-robin. Another possible strategy is allowing each free execution
thread to take data items (auto-scheduling).

• Granularity: Number of consecutive items taken by an execution thread. Appropriate granularity
depends highly on the size of individual data items and the inter-arrival time.

• Ordering: Specifies if output needs to be ordered or can produce values in an unordered fashion (with
regard to input arrival ordering).

Given an input stream with data items of type T and an output stream with data items of type U. A farm
transformer is any callable object f where the statement:

T input;
U output = f(input);

is a valid statement.
Making use of a standalone farm pattern requires specifying a source, a transformer, and a sink.

int read value(istream & is) {
int x;
is >> x;
return x;
}

farm(par,
bounds{

[& infile] { return (! infile)?optional<int>{}:make optional(read value(infile)); },
[&outfile] (double x) { ofile << x << endl; }
},
[] (int x) { return 1.0/x; }

);

A simpler form of farm can be specified for the cases where the source and sink are not specified. Note that
this second form is useful only in compositions.

auto f1 = farm(par,
[] (int x) { return 1.0/x; }

);

This form is useful in cases where the farm will be used inside another more complex pattern.

another pattern(par,
do something,
farm(par, [] (const vector<int> & v) { return max element(begin(v), end(v)); },
do something else

);

3

4 Pipeline

A pipeline performs a computation in several stages. The first stage takes data items from an input stream.
Each stage takes data produced from previous stage and performs a transformation computation generating
data items for the next stage. All those stages may be performed in parallel.

A pipeline takes a number of callable objects:

• The first callable object is a generator that does not take any argument and produces data items from
first type T1.

• Every intermediate stage take data items from type Ti and generates data items from type Ti+1.

• The last callable object is a consumer that takes data items from type Tn.

Given an input stream with data items of type T0, an output stream of type Tn, and a number of intermediate
transformation functions fi, the following expressions are valid:

T0 x0;
T1 x1 = f1(x0);
T2 x2 = f2(x1);
// ...
Tn xn = fn(xn−1);

Making use of a pipeline function requires specifying a number of intermediate transformation functions and
source and sink callable objects.

pipeline(par,
bounds{

[& infile] −> optional<frame> { return read frame(infile); },
[&outfile] (frame f) { write frame(outfile , f); }
},
[] (frame f) { return filter1 (f); },
[] (frame f) { return filter2 (f); }

);

A second form without source and sink allows composition.

farm(par,
bounds{

[& infile] −> optional<frame> { return read frame(infile); },
[&outfile] (frame f) { write frame(outfile , f); }
},
pipeline(par,

[] (frame f) { return filter1 (f); },
[] (frame f) { return filter2 (f); }

)
);

5 Filter

The filter pattern selects data items from an input data stream according to a predicate so that only data items
that satisfy it are sent to the output stream.

There is a single key parameter to the filter pattern:

• A predicate function operating on the stream individual data.

The parallel execution of a filter pattern may be controlled by the same parameters of the farm pattern.
Given an input stream with data items of type T, a filter predicate is any callable object p where the following

statements are valid:

T x;
bool c = p(x);

Making use of a filter pattern requires specifying a generator, a consumer, and a predicate. In this case the
data type returned by the generator function and the data type received by the consumer function must have
compatible types.

4

filter (par,
bounds{

[& infile] −> optional<frame> { return read file(infile); },
[&outfile] (frame f) { write frame(outfile , f); }
},
[] (const frame & f) { return is valid(f); }

);

However, the most common use of the filter pattern is to act as an intermediate stage in a higher order
pattern.

pipeline(par,
bounds{

[& infile] −> optional<frame> { return read file(infile); },
[&outfile] (frame f) { write frame(outfile , f); }
},
filter (par, [] (const frame & f) { return f. is valid (); },

farm(par, [] (const frame & f) { return f.enhance(); }
);

6 Stream reduce

The stream-reduce pattern applies a reduction operation on data items from input stream delivering result to
an output stream.

Parameters for the stream-reduce pattern are:

• A reduction function which is a binary operation allowing to reduce two elements from the input stream.

• The window size which defines the number of input data items that are needed to produce an output data
item.

• The window distance which defines the distance between the start of two consecutive windows.

Given an input stream with data items of type T, a reduction function is any callable object r where the
following statements are valid:

T x, y, z;
z = r(x,y);

Making use of a stream-reduce pattern requires specifying a reduction function, a window size, and a window
distance.

stream reduce(par, 1000, 10,
bounds{

[& infile] −> optional<int> { return (!infile)?optional<int>{}:make optional(read value(infile)); },
[&outfile] (int x) { write value(outfile ,x); }
},
[] (int x, int y) { return max(x,y); }

);

As in previous case, stream-reduce is also suitable for composition:

farm(par,
bounds{

[& infile] −> optional<int> { return (!infile)?optional<int>{}:make optional(read value(infile)); },
[&outfile] (int x) { write value(outfile ,x); }
},
stream reduce(par, 1000, 1000, [] (int x, int y) { return max(x,y); }

);

7 Implementation experience

There is a number of different library solutions providing stream parallel patterns. For example, the FastFlow [4]
(http://mc-fastflow.sourceforge.net/) library offers all these patterns as a library with a more traditional
API. Other examples include StreamIt (http://groups.csail.mit.edu/cag/streamit/) and Intel TBB (which offers
partial support).

5

Acknowledgments

This work has received funding from the European Union Seventh Framework Programme (FP7/2007–2013)
under grant agreement n. 609666 and from the European Union H2020 Programme under grant agreement n.
644235.

References

[1] ISO/IEC JTC1/SC22. Programming Languages – Technical Specification for C++ Extensions for Paral-
lelism. International Technical Specification ISO/IEC 19570:2015, ISO, December 2015.

[2] ISO/IEC JTC1/SC22. The Parallelism TS Should be Standardized. Working Paper P0024R1, ISO/IEC
JTC1/SC22/WG21, February 2016.

[3] Vladimir Janjic, Christopher Brown, Kevin Hammond, Kenneth Mackenzie, Marco Aldinucci, Marco Dane-
lutto, and J. Daniel Garcia. RPL: A Domain-Specific Language for Designing and Implementing Parallel
C++ Application. In 24th Euromicro International Conference on Parallel, Distributed and Network Based
Processing (PDP 20126), Heraklion, Greece, February 2016.

[4] Marco Danelutto and Massimo Torquati. Structured parallel programming with ”core” fastflow. In Viktória
Zsók, Zoltán Horváth, and Lehel Csató, editors, Central European Functional Programming School, volume
8606 of LNCS, pages 29–75. Springer, 2015.

6

