Stream parallelism patterns

J. Daniel Garcia
David del Río
Manuel F. Dolz
Javier García-Blas
Luis M. Sanchez

Marco Danelutto
Massimo Torquati

Computer Science Department
University of Pisa

Computer Science and
Engineering Department
University Carlos III of Madrid

1 Motivation

With the approval of the library parallelism extensions, first as a TS [1] and later as part of the upcoming C++17 standard [2], C++ programmers are able to use a number of generic parallel algorithms with low effort. However, all these algorithms help to solve what is commonly known as data parallel problems.

Although the standard library offers a number of specific algorithms (e.g. sort()), it also offers more general algorithms that have been commonly referred as parallel patterns. Examples of those data parallel patterns are transform(), reduce(), inclusive_scan(), and exclusive_scan().

We think that those patterns should be complemented with other families of parallel patterns such as stream parallel patterns.

Stream parallel patterns have all in common that they process a stream of data and perform continuous processing on that data stream. In this initial paper, we focus on four specific patterns: farm, pipeline, filter, and stream-reduce.

2 Stream parallel patterns

Stream parallel patterns exploit parallelism in the processing of different items belonging to one or more input data streams. In general, an input data stream is characterized by having a elements of a given type and being able to provide items, one after the other, that will be used by some computation. While those patterns might be seen similar in some cases to existing traditional data parallel algorithms, a key difference is that neither the full sequence nor the number of items in the sequence are known in advance.

2.1 Approaches to manipulating streams

Two approaches can be considered to manipulate streams in different patterns:

- A data oriented approach: using data types for input and output streams.
- A more functional approach, through generation and consumption functions (or more generally, callable objects).

Using a data oriented approach can be achieved by using two types: a type for representing an input stream and a type for representing an output stream.

```cpp
input_stream<int> s1 = get_input_stream();
output_stream<double> s2 = get_output_stream();
```

// Sequential processing of stream
while (!s1.finished()) {
 auto x = s1.get();
 auto y = compute(x);
 s2.put(y);
}

This approach could also be obtained by using types satisfying the concepts of InputIterator for input streams and OutputIterator for output streams. However, using iterators requires a mechanism to signal when the input stream has finished producing data.

A different approach could be representing the source and sink streams as callable objects. The source stream becomes a callable object returning an item each time. A protocol needs to be established to signal the end of the stream. One option would be to return a pair with a value and a bool. However, a different approach would be to return an optional<value>, signaling the end of stream with an empty object. Then, a source stream can be represented by a callable object that produce an optional<value>,

```cpp
auto source = [&ifile] {
    if (!ifile) return optional<int>();
    else {
        int x;
        ifile >> x;
        return make_optional(x);
    }
};
```

and a sink stream can be represented by a callable object that takes an optional<value>.

```cpp
auto sink = [&ofile] (optional<double> v) {
    if (v) ofile << *v:
}
```

// Sequential processing of stream
for (optional<int>&& x = source(); x; x=source()) {
 auto y = compute(*x);
sink(y);
}

2.2 Composing complex patterns

Being able to compose complex patterns from simpler ones is a highly desirable characteristic as it allows to express a complex stream computation by nesting simpler stream computation steps. Moreover, the ability to express a stream pattern in multiple ways provides the ability to perform transformations on the computation structures to improve performance [3].

To be able to compose patterns, we represent separately the idea of stream source and stream sink. Every top-level pattern may then take those streams to be able to get input data and store output data. We call those elements collectively the bounds of the computation.

```cpp
bounds b{  
    [&infile] { return (!infile)?optional<int>{[]):make_optional(read_value(infile)); }  
    [&ofile] (int x) { ofile << x << endl; }
};
```

Any pattern may take as an argument those bounds to interact with external streams.

```cpp
patternA(par,
    bounds{
        [&infile] { return (!infile)?optional<int>{[]):make_optional(read_value(infile)); }  
        [&ofile] (int x) { ofile << x << endl; }
    },
    [int x] { return x/2; }
);
```
3 Farm

A farm, sometimes also referred as a task farm or a stream map (in reference to the functional and data parallel map pattern), performs a transformation on every item coming from an input stream and generates a new output stream of items. The computations performed during the transformation are considered fully independent one from the other.

There is a single key parameter to a farm pattern:

- A single transformation function operating on stream individual data.

Parallel execution of a farm pattern may be controlled by a number of optional parameters (with default values):

- **Parallelism degree**: Number of parallel threads of execution performing computations on different elements from the input stream and generating elements to the output stream.

- **Distribution policy**: Policy used to distribute input data items to computation execution threads. A possible strategy is performing round-robin. Another possible strategy is allowing each free execution thread to take data items (auto-scheduling).

- **Granularity**: Number of consecutive items taken by an execution thread. Appropriate granularity depends highly on the size of individual data items and the inter-arrival time.

- **Ordering**: Specifies if output needs to be ordered or can produce values in an unordered fashion (with regard to input arrival ordering).

Given an input stream with data items of type T and an output stream with data items of type U. A farm transformer is any callable object f where the statement:

```
T input;
U output = f(input);
```

is a valid statement.

Making use of a standalone farm pattern requires specifying a source, a transformer, and a sink.

```cpp
int read_value(istream & is) {
    int x;
    is >> x;
    return x;
}

farm(par,
    bounds{
        [& infile] { return (! infile)?optional<int>{}:make Optional(read_value(infile)); },
        [& outfile] (double x) { ofile << x << endl; }
    },
    [] (int x) { return 1.0/x; })
);
```

A simpler form of farm can be specified for the cases where the source and sink are not specified. Note that this second form is useful only in compositions.

```cpp
auto f1 = farm(par,
    [] (int x) { return 1.0/x; })
);
```

This form is useful in cases where the farm will be used inside another more complex pattern.

```cpp
another_pattern(par,
    do something,
    farm(par, [] (const vector<int> & v) { return max_element(begin(v), end(v)); }),
    do something else)
);
4 Pipeline

A pipeline performs a computation in several stages. The first stage takes data items from an input stream. Each stage takes data produced from previous stage and performs a transformation computation generating data items for the next stage. All those stages may be performed in parallel.

A pipeline takes a number of callable objects:

- The first callable object is a generator that does not take any argument and produces data items from first type $T_1$.
- Every intermediate stage takes data items from type $T_i$ and generates data items from type $T_{i+1}$.
- The last callable object is a consumer that takes data items from type $T_n$.

Given an input stream with data items of type $T_0$, an output stream of type $T_n$, and a number of intermediate transformation functions $f_i$, the following expressions are valid:

\[
\begin{align*}
T_0 x_0; \\
T_1 x_1 &= f_1(x_0); \\
T_2 x_2 &= f_2(x_1); \\
&\quad // \ldots \\
T_n x_n &= f_n(x_{n-1});
\end{align*}
\]

Making use of a pipeline function requires specifying a number of intermediate transformation functions and source and sink callable objects.

\[
\begin{aligned}
\text{pipeline}(par, \\
\quad \text{bounds}\{ \\
\quad \quad [\& \text{infile }] &-> \text{optional}<\text{frame}> \{ \text{return} \ \text{read\_frame(infile)}; \}; \\
\quad \quad [\& \text{outfile}] \quad (\text{frame} \ f) \ \{ \ \text{write\_frame(outfile, f)}; \}; \\
\quad \}\}, \\
\quad \quad [\text{frame} \ f] \ \{ \ \text{return} \ \text{filter1}(f); \}, \\
\quad \quad [\text{frame} \ f] \ \{ \ \text{return} \ \text{filter2}(f); \}
\};
\end{aligned}
\]

A second form without source and sink allows composition.

\[
\begin{aligned}
\text{farm}(par, \\
\quad \text{bounds}\{ \\
\quad \quad [\& \text{infile }] &-> \text{optional}<\text{frame}> \{ \text{return} \ \text{read\_frame(infile)}; \}; \\
\quad \quad [\& \text{outfile}] \quad (\text{frame} \ f) \ \{ \ \text{write\_frame(outfile, f)}; \}; \\
\quad \}\}, \\
\quad \quad \text{pipeline}(par, \\
\quad \quad \quad [\text{frame} \ f] \ \{ \ \text{return} \ \text{filter1}(f); \}, \\
\quad \quad \quad [\text{frame} \ f] \ \{ \ \text{return} \ \text{filter2}(f); \}
\}
\);
\end{aligned}
\]

5 Filter

The filter pattern selects data items from an input data stream according to a predicate so that only data items that satisfy it are sent to the output stream.

There is a single key parameter to the filter pattern:

- A predicate function operating on the stream individual data.

The parallel execution of a filter pattern may be controlled by the same parameters of the farm pattern.

Given an input stream with data items of type $T$, a filter predicate is any callable object $p$ where the following statements are valid:

\[
\begin{align*}
T x; \\
\text{bool} \ c = p(x);
\end{align*}
\]

Making use of a filter pattern requires specifying a generator, a consumer, and a predicate. In this case the data type returned by the generator function and the data type received by the consumer function must have compatible types.
filter (par,
bounds{
    [& infile ] -> optional<frame> { return read_file(infile); },
    [& outfile ] (frame f) { write_frame(outfile , f); }
},
[] (const frame & f) { return is_valid(f); })
);  

However, the most common use of the filter pattern is to act as an intermediate stage in a higher order pattern.

pipeline(par,
bounds{
    [& infile ] -> optional<frame> { return read_file(infile); },
    [& outfile ] (frame f) { write_frame(outfile , f); }
},
filter (par, [] (const frame & f) { return f.is_valid(); },
farm(par, [] (const frame & f) { return f.enhance(); })
);

6 Stream reduce

The stream-reduce pattern applies a reduction operation on data items from an input stream delivering result to an output stream.

Parameters for the stream-reduce pattern are:

- A reduction function which is a binary operation allowing to reduce two elements from the input stream.
- The window size which defines the number of input data items that are needed to produce an output data item.
- The window distance which defines the distance between the start of two consecutive windows.

Given an input stream with data items of type T, a reduction function is any callable object r where the following statements are valid:

T x, y, z;
z = r(x,y);

Making use of a stream-reduce pattern requires specifying a reduction function, a window size, and a window distance.

stream_reduce(par, 1000, 10,
bounds{
    [& infile ] -> optional<int> { return (!infile)?optional<int>{}:make_optional(read_value(infile)); },
    [& outfile ] (int x) { write_value(outfile ,x); }
},
[] (int x, int y) { return max(x,y); })
);

As in previous case, stream-reduce is also suitable for composition:

farm(par,
bounds{
    [& infile ] -> optional<int> { return (!infile)?optional<int>{}:make_optional(read_value(infile)); },
    [& outfile ] (int x) { write_value(outfile ,x); }
},
stream_reduce(par, 1000, 1000, [] (int x, int y) { return max(x,y); })
);

7 Implementation experience

There is a number of different library solutions providing stream parallel patterns. For example, the FastFlow [4] (http://mc-fastflow.sourceforge.net/) library offers all these patterns as a library with a more traditional API. Other examples include StreamIt (http://groups.csail.mit.edu/cag/streamit/) and Intel TBB (which offers partial support).
Acknowledgments

This work has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement n. 609666 and from the European Union H2020 Programme under grant agreement n. 644235.

References


