
Document Number: P0350R0

Date: 2016-05-24

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: SG1

Integrating datapar with parallel
algorithms and executors

ABSTRACT

This paper discusses a new execution policy for integrating datapar with parallel
algorithms.

CONTENTS

0 Remarks 1
1 Introduction 1

1.1 Parallel Algorithms . 1
1.2 Executors . 1
1.3 Future Work . 2

2 Parallel Algorithms 2
2.1 Example . 2
2.2 Wording for the policy . 7
2.3 Wording for individual algorithms . 8

3 Executors 9
A Acknowledgements 9
B Bibliography 10

P0350R0 0 Remarks

0 REMARKS

• This documents talks about “vector” types/objects. In general this will not re-
fer to the std::vector class template. References to the container type will
explicitly call out the std prefix to avoid confusion.

• [P0214R1] is the last paper on datapar.

1 INTRODUCTION

1.1 parallel algorithms

Parallel Algorithms enable implementations of the existing STL algorithms to use
non-sequential semantics when executing the user-supplied code (explicit callable
or implicit operator call). The first argument to the algorithm function determines
this change in execution semantics via an execution policy. This paper introduces a
new execution policy, called datapar_execution. datapar_execution requires user-
provided function objects to be callable with datapar<T, Abi> arguments instead of
the T arguments the std::sequential variant would use. The algorithm therefore
processes chunks of datapar<T, Abi>::size() objects concurrently. The execution
order of the chunks retains the sequential semantics of the non-parallel algorithms.

As a consequence, the applicability of the execution policy is limited to iterators
where datapar<Iterator::value_type> is a valid template instantiation of datapar.
A future extension of datapar may lift this restriction by allowing certain (or all) user-
defined types as first template argument to datapar.

1.2 executors

Executors abstract execution resources (see e.g. [P0058R1]). One of the execution re-
sources this covers is SIMD units (or any other comparable data-parallel execution).
[P0058R1] shows an example for a vector_executor implementation using #pragma
simd. An alternative approach (competing or complementary) uses datapar to ex-
press the data parallelism via the type system. The user-provided function object to
the executor’s execute function follows the same idea as for the parallel algorithms.
The executor passes an index object to the user-provided function object to identify
the partition of the work the function needs to process. For a datapar_executor this
index object could be a new type identifying an index range. Overloads of the sub-
script operator (or other functions) can be used to load/store datapar objects using
this index range object.

1

P0350R0 2 Parallel Algorithms

1 vector<float> data;
2 data.resize(99);
3 iota(datapar_execution, data.begin(), data.end(), 0.f);
4 for_each(datapar_execution, data.begin(), data.end(), [](auto &x) {
5 x *= x;
6 });

Listing 1: Example using datapar_execution with iota and for_each.

1.3 future work

Finally, though not covered in this paper, we should consider using datapar as the ABI
type that enables calling into vectorized functions from code executed via std::par_-
vec or from a vector_executor as suggested in [P0058R1].

2 PARALLEL ALGORITHMS

2.1 example

Consider the example in Listing 1. The iota and for_each functions each could create
an internal datapar iterator adaptor, depending on the iterator category. Being able
to determine whether the storage, the iterator points to, is contiguous, is most im-
portant in this context as it enables vector loads and stores. Since the std::vector
iterators are contiguous iterators, the example implementations shown in Listing 2
and Listing 3 could be used for the example.

Both implementations might be improved with a prologue that enables aligned
loads and stores. Also note that for_each allows the Function parameter to mutate
the argument if the iterator is a mutable iterator. The implementation uses a compile-
time trait to determine whether the function f uses a reference parameter, in which
case it stores the temporary datapar object back. Otherwise, the store is optimized
away.

Figure 1 shows a visualization how the iota implementation works. The init data-
par object is stored via vector stores to 4 (native datapar::size()) elements in the
std::vector. In each iteration the init object is incremented by datapar::size()
and stored to the following elements in the std::vector. Since the std::vector has
99 elements, the last three elements cannot be initialized with a vector store of four
elements. Instead the epilogue recursion generates a new init datapar object for
size 2 and subsequently for size 1.

Figure 2 visualizes the end of the for_each implementation. The main for loop
processes four elements of the std::vector in parallel. It executes a vector load,
calls the user-provided function with the temporary datapar object, and executes

2

P0350R0 2 Parallel Algorithms

1 template <size_t N>
2 void epilogue(ContiguousIterator first, ContiguousIterator last,
3 ContiguousIterator::value_type first_value);
4

5 template <>
6 inline void epilogue<0>(ContiguousIterator, ContiguousIterator,
7 ContiguousIterator::value_type) {}
8

9 template <size_t N>
10 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
11 ContiguousIterator::value_type first_value) {
12 if (distance(first, last) >= N) {
13 using V = datapar<ContiguousIterator::value_type, abi_for_size_t<N>>;
14 const V init = sequence_from_zero<V>() + first_value;
15 store(init, std::addressof(*first), flags::unaligned);
16 first += V::size();
17 }
18 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
19 }
20

21 void iota(datapar_execution_policy, ContiguousIterator first, ContiguousIterator last,
22 float first_value) {
23 using V = datapar<ContiguousIterator::value_type, datapar_abi::native>;
24 V init = sequence_from_zero<V>() + first_value;
25 const V stride = static_cast<float>(V::size());
26 for (; distance(first, last) >= V::size(); first += V::size(), init += stride) {
27 store(init, std::addressof(*first), flags::unaligned);
28 }
29 epilogue<V::size() / 2>(first, last, init[V::size() - 1] + 1);
30 }

Listing 2: Implementation idea for the iota function used in Listing 1.

3

P0350R0 2 Parallel Algorithms

1 template <size_t N>
2 void epilogue(ContiguousIterator first, ContiguousIterator last, UnaryFunction f);
3

4 template <>
5 inline void epilogue<0>(ContiguousIterator, ContiguousIterator, UnaryFunction) {}
6

7 template <size_t N>
8 inline void epilogue(ContiguousIterator first, ContiguousIterator last,
9 UnaryFunction f) {

10 using V = datapar<ContiguousIterator::value_type, abi_for_size_t<N>>;
11 V tmp = load<V>(std::addressof(*first), flags::unaligned);
12 f(tmp);
13 if (is_functor_argument_mutable<UnaryFunction, V>::value) {
14 store(tmp, std::addressof(*first), flags::unaligned);
15 }
16 epilogue<V::size() / 2>(first, last, f);
17 }
18

19 void for_each(datapar_execution_policy, ContiguousIterator first,
20 ContiguousIterator last, UnaryFunction f) {
21 using V = datapar<ContiguousIterator::value_type, datapar_abi::native>;
22 for (; distance(first, last) >= V::size(); first += V::size()) {
23 V tmp = load<V>(std::addressof(*first), flags::unaligned);
24 f(tmp);
25 if (is_functor_argument_mutable<UnaryFunction, V>::value) {
26 store(tmp, std::addressof(*first), flags::unaligned);
27 }
28 }
29 epilogue<V::size() / 2>(first, last, f);
30 }

Listing 3: Implementation idea for the for_each function used in Listing 1.

4

P0350R0 2 Parallel Algorithms

0
1
2
3

0
1
2
3

+
+
+
+

4
4
4
4

=
=
=
=

4
5
6
7

4
5
6
7

+
+
+
+

4
4
4
4

=
=
=
=

8
9

10
11

88
89
90
91

+
+
+
+

4
4
4
4

=
=
=
=

92
93
94
95

96
96

+
+

0
1

=
=

96
97

98 + 0 = 98

Figure 1: Visualization of chunking the iota call with 𝒲T = 4 in Listing 1.

a vector store back to the same memory location. The remaining three elements
are again handled by an epilogue recursion which divides the number of processed
elements by 2 with every step.

For both algorithms it would be perfectly valid to implement the epilogue as a
sequential loop using datapar objects with size 1.

5

P0350R0 2 Parallel Algorithms

92
93
94
95

*
*
*
*

92
93
94
95

=
=
=
=

92²
93²
94²
95²

96
97

*
*

96
97

=
=

96²
97²

98 * 98 = 98²

Figure 2: Visualization of chunking the foreach call with 𝒲T = 4 in Listing 1.

6

P0350R0 2 Parallel Algorithms

2.2 wording for the policy

Add a new execution policy to [N4582, §20.18.2]:
§20.18.2 [execpol.syn]

// 20.18.6, parallel+vector execution policy:
class parallel_vector_execution_policy;

// 20.18.7, datapar execution policy:
class datapar_execution_policy;

// 20.18.78, execution policy objects:
constexpr sequential_execution_policy sequential{ unspecified };
constexpr parallel_execution_policy par{ unspecified };
constexpr parallel_vector_execution_policy par_vec{ unspecified };
constexpr datapar_execution_policy datapar_execution{ unspecified };

Renumber §20.18.7 to §20.18.8 and add §20.18.7 [execpol.datapar]:

class datapar_execution_policy { unspecified };

1 The class datapar_execution_policy is an execution policy type used as a unique type to disambiguate
parallel algorithm overloading and indicate that a parallel algorithm’s execution may be vectorized using
datapar for interfacing with user-provided functionality.

Add to §20.18.8 [parallel.execpol.objects]:

constexpr datapar_execution_policy datapar_execution{ unspecified };

[N4582, §25.2.2] defines requirements on user-provided function objects. This might
be the right place to add:

§25.2.2 [algorithms.parallel.user]

3 Function objects passed into parallel algorithms instantiated with the datapar_execution execution policy shall
be callable with any argument of type datapar<T, Abi>, where T is the type obtained from dereferencing the
iterator.

The following subsection in [N4582, §25.2.3] defines the semantics of the execution
policies. A new paragraph for datapar_execution is needed. The intent is to

7

P0350R0 2 Parallel Algorithms

1. constrain execution to the calling thread,

2. allow implementations to assume unordered access for all internal element
access functions (most importantly loads and stores),

3. apply user-provided function objects in the order the datapar chunks are cre-
ated from sequential iteration over the iterator(s).

§25.2.3 [algorithms.parallel.exec]
9 The invocations of element access functions in parallel algorithms invoked with an execution policy object of

type datapar_execution_policy are permitted to execute in an unordered fashion in the calling thread, except
for the application of user-provided function objects. User-provided function objects are called with an imple-
mentation-defined number of sequence elements combined into a datapar<T, Abi> object. The type for Abi
is chosen by the implementation. It may be different for subsequent applications of the user-provided function in
the same parallel algorithm invocation. The type for T is the decayed type of the sequence elements. The order
of elements in the datapar object is equal to the order of the corresponding elements in the sequence argument.
The invocation order of user-provided function objects is sequential.

[N4582, §25.2.4 (2.2)] needs to add datapar_execution_policy.
§25.2.4 (2.2) [algorithms.parallel.exceptions]

If the execution policy object is of type sequential_execution_policy, datapar_execution_policy, or
parallel_execution_policy, the execution of the algorithm exits via an exception.

There is no need for multiple exceptions when applying user-provided function
objects. The need for exception lists only arises in the vector-parallel execution of
iterator operations.

2.3 wording for individual algorithms

I have not identified the need for any additional wording in the subsections on the
individual algorithms for the datapar_execution_policy at this point.

It might be useful to only require MoveConstructible user-provided functions in-
stead of the stricter requirement of CopyConstructible.

8

P0350R0 3 Executors

1 std::vector<float> data = ...;
2 datapar_executor exec;
3 exec.execute([&](auto idx) {
4 auto x = data[idx]; // decltype(x) is datapar<float, Abi>
5 where(x < 0, x) += 360.f;
6 data[idx] = x;
7 }, data.size());

Listing 4: Example use of the datapar_executor.

3 EXECUTORS

Consider the example in Listing 4. The line 3 requests the datapar_executor to
generate index objects for the index range 0–data.size(). The type of the index
object is determined via deduction and can be different in subsequent invocations of
the callable. For example, if data.size() is 13, the first idx object may denote the
range 0–7, the second idx object denotes 8–11, and the third idx object denotes 12.
An overload of the subscript operator of std::vector in line 4 turns the expression
into an efficient SIMD vector load operation.1 Line 5 modifies the elements of x that
are negative. Line 6 finally stores the result back to data.

The example shows how the executor solves the “load store problem” of datapar:
Requiring the user to explicitly partition the loop into different chunk sizes and call
loads and stores explicitly is more low-level than we want the average user to work.
The executor solves this and at the same time enables better composition with the
upcoming facilities for concurrency in C++.

A ACKNOWLEDGEMENTS

This work was supported by GSI Helmholtzzentrum für Schwerionenforschung and
the Hessian LOEWE initiative through the Helmholtz International Center for FAIR (HIC
for FAIR).

1 Note that the executor cannot know anything about the alignment of data. Therefore, the conser-
vative approach must default to unaligned loads and stores. Load-store flags, applicable to load and
store operations of datapar, could be incorporated into the type of idx. The question remains, how
the execute function determines those flags. This likely needs to be a template parameter of the
datapar_executor class.

9

P0350R0 B Bibliography

B BIBLIOGRAPHY

[P0058R1] Jared Hoberock, Michael Garland, and Giroux Olivier. P0058R1: An Inter-
face for Abstracting Execution. ISO/IEC C++ Standards Committee Paper.
2016. url: http://www.open- std.org/jtc1/sc22/wg21/docs/papers/
2016/p0058r1.pdf.

[P0214R1] Matthias Kretz. P0214R1: Data-Parallel Vector Types & Operations. ISO/IEC
C++ Standards Committee Paper. 2016. url: http://www.open- std.org/
jtc1/sc22/wg21/docs/papers/2016/p0214r1.pdf.

[N4582] Richard Smith, ed. Working Draft, Standard for Programming Language
C++. ISO/IEC JTC1/SC22/WG21, 2016. url: http : / / www . open - std . org /
jtc1/sc22/wg21/docs/papers/2016/n4582.pdf.

10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0058r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0058r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0214r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4582.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4582.pdf

	0 Remarks
	1 Introduction
	1.1 Parallel Algorithms
	1.2 Executors
	1.3 Future Work

	2 Parallel Algorithms
	2.1 Example
	2.2 Wording for the policy
	2.3 Wording for individual algorithms

	3 Executors
	A Acknowledgements
	B Bibliography

