
Splitting node and array allocation in

allocators

Document number: P0310R0
Date: 2016-03-19
Project: Programming Language C++
Audience: Library Evolution Working Group
Reply to: Marcelo Zimbres (mzimbres@gmail.com)

Abstract: This is a non-breaking proposal to the C++ standard that aims
to reduce allocator complexity, support realtime allocation and improve per-
formance of node-based containers by making a clear distinction between
node and array allocation in the std::allocator traits interface. Two
new member functions are proposed, allocate node and deallocate node.
We also propose that the container node type should be exposed to the user.
A prototype implementation is provided.

Size management adds undue difficulties
and inefficiencies to any allocator design

A. ALEXANDRESCU

1

mailto:mzimbres@gmail.com

Contents

1 Introduction 3
1.1 Node allocation . 3
1.2 Use case . 4
1.3 Exposing the node type . 5
1.4 Further considerations . 6

2 Motivation and scope 6
2.1 Why avoid the standard allocator 6
2.2 Benchmarks . 7
2.3 General motivations . 7

3 Impact on the Standard 8
3.1 New std::allocator traits members 8
3.2 The node type . 9

4 Acknowledgment 10

5 References 10

A Alternative approaches 11
A.1 allocate(n) with n = 1 . 11
A.2 Provide a constexpr max size() that returns 1 11

2

1 Introduction

The importance of linked data structures in computer science, like trees
and linked lists, cannot be over-emphasised, yet, in the last couple of years
it has become a common trend in C++ to move away from such data struc-
tures due to their sub-optimal memory access patterns [1, 2, 3]. In fact,
many people today prefer to use the flat alternatives and pay O(n) insertion
time, than O(1) at the cost of memory fragmentation and unpredictable
performance loss.

We believe in fact, that the “Don’t pay for what you don’t use” premise is
not being met on node-based containers due to the restrictive array-oriented
allocator interface. This proposal tries to fix what the author believes to
be the root of problem: The lack of distinction between node and array
allocation. We propose here a complete split between these two allocation
techniques by means of a non-breaking addition to std::allocator traits.

1.1 Node allocation

Node allocation is one of the simplest allocation techniques available, but yet
a very powerful one. The simplicity comes from the fact that allocation and
deallocation reduces to pushing and popping from the linked list of nodes,
like shown in the code below. It is powerful because it is very fast, perform
in hard-real-time and causes minimal memory fragmentation.

1 po in t e r a l l o c a t e (std : : s i z e t /∗ can ’ t handle n∗/)
2 {
3 po in t e r q = ava i l ; // The next f r e e node
4 i f (a v a i l)
5 av a i l = ava i l−>next ;
6

7 re turn q ;
8 }
9

10 void d e a l l o c a t e (po in t e r p , std : : s i z e t /∗ can ’ t handle n∗/)
11 {
12 p−>next = ava i l ;
13 av a i l = p ;
14 }

The reasons why this allocation technique is not fully supported in C++
is related to the current array oriented interface of allocators. The member
function allocate(n) may be called with n 6= 1, meaning that the alloca-

3

tor now has to implement array allocation strategies instead of much more
simple and efficient node allocation.

Before going into more details, let us see with a use case, how this pro-
posal provides better solution over the current array oriented interface.

1.2 Use case

The example below uses the allocation technique from the previous section
to write code that is fast, simple and uses the minimum amount of memory.
A linked list served with a couple of nodes allocated on the stack

1 us ing a l l o c t = r t : : node a l l o ca to r<int >;
2 us ing node type = typename std : : l i s t <int , a l l o c t > : : node type ;
3

4 // Buf f e r f o r 100 e lements .
5 std : : array<char , 100 ∗ s i z e o f (node type)> bu f f e r = {{}} ;
6 a l l o c t a l l o c (bu f f e r) ;
7

8 std : : l i s t <int , a l l o c t > l 1 (a l l o c) ;
9 // I n s e r t s e lements . A l l o ca t i on and d e a l l o c a t i o n implemented

10 // with 6 l i n e s o f code .
11 l 1 = {27 , 1 , 60} ;
12 . . .

Some of the features of this code are

• It uses the container node type, to calculate the minimum amount
of memory to support 100 elements in the list. As a consequence
the buffer is compact, improving cache locality and causing minimal
fragmentation.

• The allocator knows it is doing node allocation and does not make the
node size bigger to store bookkeeping information. You do not pay for
space you do not use.

• Very simple and fast allocator where allocation and deallocation trans-
lates into only a couple of pointers assignments. No array allocation
strategy had to be implemented.

The reasons why we cannot write this code in current C++ will be better
explained below, but shortly said

4

• The allocator has to provide array allocation since allocate(n) may
be called with n 6= 1, as a result the allocator gets unnecessarily com-
plicated and the size of the buffer to support 100 elements is not any-
more clear since it depends on the array allocation strategy/algorithm.

• The container node type and therefore its size is unknown.

1.3 Exposing the node type

In current C++, there is no straightforward way of knowing the size of
the node the allocator will serve. At runtime it is known only when the
rebound allocator instance is constructed, which occurs when the container
is constructed. It is a tricky to use this information. As shown in the example
above the user may want to use it to pre-allocate space for a certain number
of elements.

Another situation where the node type is useful is when implementing
node allocators for unordered containers. Usually, unordered containers re-
bind twice and there is no way of knowing which rebound type is used for
array or node allocation. Once the node type is exposed the allocator can be
specialized for the desired type, offering node allocation functions accord-
ingly.

The difficult in exposing the node type is the recursiveness of the prob-
lem. The node type is not known until the container type is known, which
in turn depends on the allocator type to be defined and the allocator type
cannot be defined before the node type is known.

At a first glance we may quite naturally demand the node type to be in-
dependent of the container and of the allocator, however, due to the support
for fancy pointers in c++, the following cannot be implemented in general

1 // Cannot always hold f o r g ene ra l A1 nd A2 .
2 s t a t i c a s s e r t (std : : i s same< std : : l i s t <T, A1> : : node type
3 , s td : : l i s t <T, A2> : : node type>, ””) ;

The solution we propose here is to offer a rebind structure in the node
type, so that the specialization can get rid of the allocator pointer type, that
the node type happened to be defined with. In other words, we can get the
node type from a container defined with any allocator and rebind to a node
with a different pointer type. Recursiveness is bypassed this way.

5

1.4 Further considerations

The influence of fragmentation on performance is well known on the C++
community and subject of many talks in conferences, therefore I am not
going to repeat results here. The interested reader can refer to [2, 3] for
example.

The split between node and array allocation has been successfully im-
plemented in the Boost.Container library, but the mechanism is based on
C++03 instead of std::allocator traits.

For an allocator that explores features proposed here, please see the
project [6]. For a general talk on allocators and why size management
is a problem [7]. For related proposal, please see [5]. For an alternative
approaches to support node allocation, please see appendix A.

2 Motivation and scope

Given the popularity of the standard allocator, it is important to give rea-
sons why it should be avoided as a first option for node allocations. I will fo-
cus on the use case given above, where we want to serve an std::list<int>

with a certain number of nodes.

2.1 Why avoid the standard allocator

1. Nodes go necessarily on the heap. For only 100 elements I would
preferably use the stack.

2. The node size is small (≈ 20bytes), it is not recommended allocating
them individually on the heap. Fragmentation begins to play a role if
I have many lists or bigger n (see benchmarks below).

3. Each heap allocation is an overhead: all the code inside malloc, plus
system calls and allocation strategies. (I only need 20 bytes of space
for a node!). Most importantly, the standard allocator does not know
we are doing node allocations and cannot optimize it.

4. Unknown allocated size. Does it allocate more space to store informa-
tion needed by the algorithm? How much memory I am really using?

All this is overkill for a simple list with a couple of elements. When the
number of elements gets bigger and the nodes go to the heap, the situa-
tion gets much worser for standard allocator or any custom allocator that
implements array allocation strategies. This is the topic of the next section.

6

2.2 Benchmarks

In the previous section we gave some motivation on why one should avoid
the standard allocator, but what about a custom allocator? To test how
much improvement we can get with custom allocators I tested my own non-
optimized implementation of a node allocator against allocators shipped
with GCC. The graphs can be seem below. The node allocator has never
been slower, in fact, it was most of the time faster than any other fine-tuned
allocator.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·105

0

0.2

0.4

0.6

0.8

1

Number of elements

T
im

e(
s)

std::allocator
rt::node allocator

gnu cxx:: pool alloc
gnu cxx::bitmap alloc

gnu cxx:: mt alloc

Figure 1: Source code can be found in [6].

2.3 General motivations

Let us see some general motivations on why support for node allocation is
desirable

1. Support the most natural and one of the fastest allocation scheme for
linked data structures. In libstd++ and libc++ for example, it is
already possible (by chance) to use this allocation technique, since n
is always 1 on calls of allocate(n).

7

2. Node-based containers do not manage allocation sizes but unnecessar-
ily demand this feature from their allocators, with a cost in perfor-
mance and overall allocator complexity.

3. Support hard-realtime allocation for node-based containers through
pre-allocation and pre-linking of nodes. This is highly desirable to
improve C++ usability in embedded systems.

4. State of the art allocators like boost::node allocator [4] achieve
great performance gains optimizing for the n = 1 case.

5. Avoid wasted space behind allocations. It is pretty common that allo-
cators allocate more memory than requested to store information like
the size of the allocated block.

6. Keep nodes in as-compact-as-possible buffers, either on the stack or
on the heap, improving cache locality, performance and making them
specially useful for embedded programming.

3 Impact on the Standard

The following additions are required in the standard.

3.1 New std::allocator traits members

We require the addition of two new member functions and a typedef in
std::allocator traits as follows

1 template<c l a s s Al loc>
2 s t r u c t a l l o c a t o r t r a i t s {
3 // Equal to Al loc : : n od e a l l o c a t i o n on l y i f present ,
4 // std : : f a l s e t y p e otherw i s e . Array a l l o c a t i o n with
5 // a l l o c a t e (n) i s ru l ed out i f i t i s s td : : t rue type .
6 us ing nod e a l l o c a t i o n on l y = std : : f a l s e t y p e
7 // Ca l l s a . a l l o c a t e nod e () i f p re sent otherw i se c a l l s
8 // Al loc : : a l l o c a t e (1) . Memory a l l o c a t e with t h i s func t i on
9 // must be dea l l o c a t ed with dea l l o c a t e node .

10 po in t e r a l l o c a t e nod e (Al loc& a) ;
11 // Ca l l s a . d ea l l o c a t e node (po in t e r) i f p re sent otherwi s e
12 // c a l l s A l loc : : d e a l l o c a t e (p , 1) . Can only be used with
13 // memory a l l o c a t e d with a l l o c a t e nod e .
14 void dea l l o c a t e node (Al loc& a , po in t e r p) ;
15 } ;

8

These additions provide the following options inside node-based containers

1. Array allocation only. This is the status quo. Libraries can con-
tinue to call allocate(n) if they want, but since the majority of
implementations use n = 1, they may be simply implemented with
allocate node(), regardless of whether the allocator provides this
function or not. The implementation of allocate node() in the
std::allocator traits falls back to allocate(1) when the alloca-
tor does not provide one.

2. Node allocation only. In this case, the user is required to set the
typedef node allocation only to std::true type in the allocator
and provide allocate node(). The user is not required to provide
allocate(n).

3. Array and node allocation together. It is possible to use both
array and node allocation when the user provides allocate node and
sets node allocation only to std::false type. I am unaware if this
option is useful.

3.2 The node type

We require the following node interface on node based containers

1 template <c l a s s T, c l a s s Ptr>
2 s t r u c t node type {
3 us ing va lue type = T;
4 us ing po in t e r = // Usual ly taken from std : : p o i n t e r t r a i t s <Ptr>
5 template<c l a s s U, c l a s s K>
6 s t r u c t reb ind { us ing other = node type<U , K>; } ;
7 // . . . implementation d e t a i l s
8 } ;

We also require the node type to be independent of the container with
the exception of the allocator type, for example, the following code should
compile.

9

1 us ing s e t type1 = r t : : set<T, C1 , A1>;
2 us ing s e t type2 = r t : : set<T, C2 , A2>;
3

4 us ing po in t e r = // Arbitray po in t e r type .
5 us ing node type1 =
6 typename s e t type1 : : node type : : template rebind<T, po inter >;
7 us ing node type2 =
8 typename s e t type2 : : node type : : template rebind<T, po inter >;
9 s t a t i c a s s e r t (std : : i s same<node type1 , node type2 > : : value , ””) ;

All node-based containers are affected: std::forward list, std::list,
std::set, std::multiset, std::unordered set, std::unordered multiset,
std::map, std::multimap, std::unordered map, std::unordered multimap

4 Acknowledgment

I would like thank people that gave me any kind of feedback: Ville Vouti-
lainen, Nevin Liber, Daniel Gutson, Alisdair Meredith. Special thanks go to
Ion Gaztañaga for suggesting important changes in the original design and
David Krauss for suggesting other approaches.

5 References

[1] Sean Middleditch, http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2015/p0038r0.html

[2] Chandler Carruth, Efficiency with Algorithms, Performance with Data
Structures (https://www.youtube.com/watch?v=fHNmRkzxHWs)

[3] Scott Meyers, Cpu Caches and Why You Care (https://www.youtube.
com/watch?v=WDIkqP4JbkE)

[4] http://www.boost.org/doc/libs/1_58_0/boost/container/node_

allocator.hpp

[5] Ion Gaztañaga, http://www.open-std.org/jtc1/sc22/wg21/docs/

papers/2006/n2045.html

[6] https://github.com/mzimbres/rtcpp

[7] Andrei Alexandrescu, std::allocator Is to Allocation what std::vector Is
to Vexation (https://www.youtube.com/watch?v=LIb3L4vKZ7U)

10

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0038r0.html
https://www.youtube.com/watch?v=fHNmRkzxHWs
https://www.youtube.com/watch?v=WDIkqP4JbkE
https://www.youtube.com/watch?v=WDIkqP4JbkE
http://www.boost.org/doc/libs/1_58_0/boost/container/node_allocator.hpp
http://www.boost.org/doc/libs/1_58_0/boost/container/node_allocator.hpp
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2045.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2045.html
https://github.com/mzimbres/rtcpp
https://www.youtube.com/watch?v=LIb3L4vKZ7U

[8] http://www.open-std.org/pipermail/embedded/2014-December/

000335.html

[9] https://groups.google.com/a/isocpp.org/forum/#!topic/

std-proposals/ccwOpTxM_xE

[10] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/

n2980.pdf

A Alternative approaches

There are other possible approaches to support node allocation that are
worth knowing of. I will describe them here, so that the committee can
compare them.

A.1 allocate(n) with n = 1

This seems the easiest way to perform node allocation. Once the standard
guarantees n will be always 1, there is no more need to provide new node
allocation functions for node-based containers. The parameter n can be
simply ignored. The allocate and deallocate can be implemented in
terms of node-allocation-only functions, for example

1 po in t e r a l l o c a t e (std : : s i z e t /∗ n i s ignored ∗/)
2 {
3 re turn a l l o c a t e nod e () ;
4 }
5

6 void d e a l l o c a t e (po in t e r p , std : : s i z e t /∗ n i s ignored ∗/)
7 {
8 dea l l o c a t e node () ;
9 }

The problem with this approach is that it prevents array allocation inside
node-based containers, which means it can be viewed as a narrowing of the
current interface.

A.2 Provide a constexpr max size() that returns 1

This scheme can achieve the same goals as my main proposal and does not
require any addition to std::allocator traits. Libraries should check if

11

http://www.open-std.org/pipermail/embedded/2014-December/000335.html
http://www.open-std.org/pipermail/embedded/2014-December/000335.html
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/ccwOpTxM_xE
https://groups.google.com/a/isocpp.org/forum/#!topic/std-proposals/ccwOpTxM_xE
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2980.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2980.pdf

max size() can be evaluated at compile time and take appropriate action
i.e. ensure allocate(n) is always called with n = 1. I did not adopted it
due to some disadvantages I see with it

1. It does not make containers implementation simpler.

2. Function names should reflect that array and node allocation have dif-
ferent semantics, apart from the storage size. If memory expansion
(realloc) is added in the future, it should only work with storage al-
located with allocate(n) but not with storage allocated for nodes.
This allows node allocations to avoid extra bookkeeping data to mark
the storage as non-expandable.

3. It requires the user to specialize std::allocator traits to provide
a constexpr max size() since the default is not constexpr. This is
not bad but I prefer to avoid it if I can.

4. Other static information like propagate on container copy assignment,
etc, are provided as typedef so I prefer to keep the harmony.

5. It sounds more like a hack of the current allocator interface to achieve
node allocation than a full supported feature.

12

	Introduction
	Node allocation
	Use case
	Exposing the node type
	Further considerations

	Motivation and scope
	Why avoid the standard allocator
	Benchmarks
	General motivations

	Impact on the Standard
	New std::allocator_traits members
	The node type

	Acknowledgment
	References
	Alternative approaches
	allocate(n) with n = 1
	Provide a constexpr max_size() that returns 1

