
Document number: P0288R0
Date: 2016–02–13
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)
Revises: N4543

A polymorphic wrapper for all Callable objects (rev. 2)
A new template unique_function is proposed. It is just like std::function, minus the
copy constructor and copy assignment operator. This allows it to wrap function objects
containing non-copyable resources. It also helps to express the idea of an operation that can only
be performed once.

1. Motivation
In the beginning, boost::function was designed as a generalization of function pointers —
as opposed to a radically broad notion of function values. Function objects were small and
stateless. Users with a penchant for adventure and compiler diagnostics could use
boost::bind, and given a few arguments, it would push function into the heap allocation
regime. More prudent engineering would call for a manually-defined local class, filtered through
boost::ref to squash the inefficient value semantics.
Times have changed. Lambda-capture syntax like [u = std::move(u)](io_response r)
{r.send_next(u);} is not only trendy, but safe and convenient. Functional programming
patterns are actually gaining traction, which means that real-world function objects are expected
to do whatever other objects do, and to encapsulate whatever might be found in a local scope.
Non-copyable objects are not uncommon, and non-copyability is viral.
Separately, since function is useful as an interface type, it can delegate resource ownership to
a library. Before a library frees a resource, it may still be safely referenced locally. Such cases
require a guarantee that the target object used by the library is the original one and not a copy.
Finally, when performance analysis finds that a copying a particular class causes a bottleneck,
one may wish to delete its copy constructor, to prevent the problem from returning. Likewise,
copy constructors of target objects that are never copied are template bloat.

1.1. Difficulty of workarounds
An event dispatching system, for example, might wish to manage ownership of event handler
objects via std::function. This would require that the user provide copyable objects even
though each will remain unique.
Current workarounds include using reference_wrapper as the function target type, trying to
pass a unique std::function object always by reference or reference_wrapper, or
defining an always-throwing copy constructor. These sacrifice overhead or user-friendly
ownership semantics for artificial copyability.

�1

With unique_function
An event-handler map is trivial to implement if the library is willing to demand that the handlers
be copyable. The end result is optimal, but inflexible.
std::map< std::string, std::function< void() > > commands;
 // ^ Want unique_function here.

template< typename ftor >
void install_command(std::string name, ftor && handler) {
 commands.insert({ std::move(name),
 std::forward< ftor >(handler) });
}

Without unique_function
Improving the external interface quality by allowing non-copyable types is fairly difficult.
Efficiency is also reduced. In particular, we need two parallel type erasures.
struct owned_function {
 // Order of these members is significant, and this must remain an aggregate.
 std::function< void() > wrapper;
 std::unique_ptr< void, void (*)(void *) > alloc;
};
std::map< std::string, owned_function > commands;

template< typename ftor, typename ... a >
void install_command(std::string name, a && ... arg) {
 auto ptr = std::make_unique<ftor>(std::forward< a >(arg) ...);
 commands.insert(std::make_pair(
 std::move(name), owned_function {
 std::ref(* ptr.get()),
 { // unique_ptr constructor arguments
 ptr.release(), // Must call get() before release().
 [] (void *p) { delete static_cast< ftor * >(p); }
 },
 }
));
}

template< typename ftor >
void install_command(std::string name, ftor && handler) {

install_command< std::decay_t< ftor >, ftor && >
(std::move(name), std::forward< ftor >(handler));

}

Plenty of other solutions exist, perhaps some simpler than this. Arriving at a simple solution is
hard, though! The above has non-obvious aspects in overload resolution, order of evaluation, and
unique_ptr deleter customization. It works around some unimplemented DRs and exposes
some other bugs. Many solutions are less flexible or incorporate extraneous functionality such as
data structures. None are easy or efficient enough, and certainly none are idiomatic.

�2

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2354
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66284

2. Proposal
A new template unique_function is introduced. Its members and their behavior are identical
to std::function, except:

• Its copy constructor and copy assignment operator are defined as deleted.

• It does not use (nor require the existence of) copy constructors of target objects.

• Zero-overhead converting constructors and assignment operators from the corresponding
std::function specialization are provided.

There are no changes to std::function whatsoever. The new template can be placed in
namespace std or within std::experimental. Let its feature test macro be called
__cpp_lib_[experimental_]unique_function.
The Fundamentals TS already specifies a class experimental::function with polymorphic
allocation policies. Its changes are orthogonal to this proposal, but to this author’s knowledge no
current public implementation exists. This proposal’s prototype also implements P0043 Function
wrappers with allocators and noexcept, which generalizes the allocation features of
experimental::function and thus could be used as the basis for a shipping implementation
of it. Bearing std::function interoperability in mind, though, direct adoption into the
standard is preferable.

2.1. Rationale
This is a minimalistic proposal. Other problems exist in std::function, but they are better
solved separately.

Introducing a new template
A new primary template is introduced, as opposed to a specialization of std::function. Good
generic code is written against an interface (e.g. Callable or availability of target), without
naming an implementation (e.g. function). Existing templates which do hard-code function
support may not be compatible with unique_function anyway.

Naming
The name unique_function is chosen because it only permits one instance of the target value.
Like unique_ptr, it does not generate duplicate copies. While it is possible for two function
objects to have identical invocation behavior, this does not necessarily contradict uniqueness:
Behavioral equivalence is an impossible problem. On the other hand, it is intuitive to think of
resources managed by e.g. unique_ptr as unique. When a reader sees unique_function, it
may be assumed that it holds, and is, such a resource.
Another possible name is move_only_function. This would confusingly refer to the behavior
of the wrapper itself as opposed to qualities of the wrapped object. The target may be copyable,
or (given in-place construction) non-movable.
When such a utility has been implemented (see §6 Implementations below), unique_function
has been the more popular name.

�3

Interoperability
When std::function is converted to unique_function, the target is transferred just as if it
were a copy- or move-construction. No wrapping overhead will be added when an interface
migrates std::function parameters to unique_function.

No in-place construction
In-place construction has been removed from this proposal since N4543. It may be added as a
uniform interface with variant, any, and other type-erasure facilities.

const safety
One known defect of std::function is that it offers a const-qualified call operator which
invokes the target by a non-const access path. This problem is not addressed by this proposal. It
is addressed by P0045R0 §2.1, which is pending revision. The solution is threefold:
1. Introduce a wrapper which performs const access: function<void() const>.
2. Add a const-unqualified operator() overload to the wrappers which already exist.
3. Deprecate the const-qualified call operator in unqualified wrappers.
Ignoring the first step, the second two steps are already conforming, and do not require any
proposal.
Rather than introduce unique_function with a soon-to-be deprecated call operator signature,
we could simply never provide it in the first place. However, this would render const
unique_function uncallable, with no user recourse except to switch back to function or to
use const_cast. (For example, a unique_function nonstatic member would not be callable
from a const& reference to a class.)

3. Usage
unique_function is available as a solution when std::function balks at a non-copyable
target. In the broad middle ground of usage where wrappers may be copied but aren’t, the choice
between unique_function and std::function comes down to aesthetics.

Interfaces
Non-template interfaces taking function objects are encouraged to accept unique_function
instead of std::function. Like function, it should canonically be passed by value. Moving
should incur minimal overhead, and there is no potentially expensive copy or heap allocation.
When returning polymorphic function objects to the user, it is still better to use std::function
if possible, for the sake of flexibility.

Passing by value
std::ref (the factory function for std::reference_wrapper) is used to non-destructively
pass unique_function using the by-value convention, for example to the standard Algorithms
library, when it will not be retained.

�4

This is also a good practice for std::function, as it achieves equivalent behavior without
incurring a potentially expensive copy.

4. Standardese
Differences are given relative to the working draft N4567, following the contingency that the
class is added to the standard as opposed to a Fundamentals TS edition.
First, adjust [func.wrap] §20.9.12 to broader scope.

¶1 This subclause describes a polymorphic wrapper class templates that encapsulates
encapsulate arbitrary callable objects.

To avoid extensive text duplication, it is proposed to specify unique_function in the same
clause as function.

20.9.12.2 Class template function Call wrapper classes [func.wrap.func]

In [func.wrap.func] §20.9.12.2, add a unique_function synopsis after that of function.
The exact text as follows may be out of date: It should reflect any adopted changes to
function. Currently, P0090 proposes to remove the result and argument typedefs, and
noexcept could be restored to the move constructor and/or swap. In the following text block
only, comments after declarations are editorial notes, not part of the proposed synopsis.
Informative comments should be inserted to match function.

template<class> class unique_function;

template<class R, class... ArgTypes >
class unique_function<R(ArgTypes...)> {
public:

typedef R result_type; // Annotate these four members as per function.
typedef T1 argument_type; // Omit all if P0090 is accepted.
typedef T1 first_argument_type;
typedef T2 second_argument_type;

// construct/copy/destroy:
unique_function() noexcept;
unique_function(nullptr_t) noexcept;
unique_function(const unique_function&) = delete;
unique_function(unique_function&&); // noexcept equivalently to function.
template<class F> unique_function(F);
template<class A> unique_function(allocator_arg_t, const A&)

noexcept;
template<class A> unique_function(allocator_arg_t, const A&,

nullptr_t) noexcept;
template<class A> unique_function(allocator_arg_t, const A&,

unique_function&&);

�5

template<class F, class A> unique_function(allocator_arg_t,
const A&, F);

unique_function& operator=(const unique_function&) = delete;
unique_function& operator=(unique_function&&);
unique_function& operator=(nullptr_t) noexcept;
template<class F> unique_function& operator=(F&&);
template<class F> unique_function& operator=(reference_wrapper<F>)

noexcept;

~unique_function();

// function modifiers:
void swap(unique_function&) noexcept;

// function capacity:
explicit operator bool() const noexcept;

// function invocation:
R operator()(ArgTypes...) const;

// function target access:
const std::type_info& target_type() const noexcept;
template<class T> T* target() noexcept;
template<class T> const T* target() const noexcept;

};

// Null pointer comparisons:
template <class R, class... ArgTypes>
bool operator==(const unique_function<R(ArgTypes…)>&, nullptr_t)  

noexcept;
template <class R, class... ArgTypes>
bool operator==(nullptr_t, const unique_function<R(ArgTypes...)>&)  

noexcept;
template <class R, class... ArgTypes>
bool operator!=(const unique_function<R(ArgTypes...)>&, nullptr_t)  

noexcept;
template <class R, class... ArgTypes>
bool operator!=(nullptr_t, const unique_function<R(ArgTypes...)>&)  

noexcept;

// specialized algorithms:
template <class R, class... ArgTypes>
void swap(unique_function<R(ArgTypes...)>&,  

unique_function<R(ArgTypes...)>&); // noexcept equivalently to function.

template<class R, class... ArgTypes, class Alloc>
struct uses_allocator<unique_function<R(ArgTypes...)>, Alloc>

: true_type { };

�6

Adjust the high-level description following the synopsis.

¶1 The function class template provides and unique_function class templates provide
polymorphic wrappers that generalize the notion of a function pointer. Wrappers can store, copy,
and call arbitrary callable objects (20.9.1), given a call signature (20.9.1), allowing functions to
be first-class objects.
¶3 The A polymorphic call wrapper is a specialization of the function or unique_function
class template. Each such specialization is a call wrapper (20.9.1) whose call signature (20.9.1) is
R(ArgTypes...).

Add a paragraph to clarify the present method of description.

¶4 The following clauses describe the templates function and unique_function. The
identifier PolymorphicCallWrapper denotes either function or unique_function. In
descriptions of class members, PolymorphicCallWrapper refers to the enclosing class.

Adjust the constructor specifications in [func.wrap.func.con] §20.9.12.2.1. Note that a new
paragraph is inserted before ¶10.

¶1 When any function polymorphic call wrapper constructor that takes a first argument …
function PolymorphicCallWrapper() noexcept;
template <class A> function PolymorphicCallWrapper(allocator_arg_t,  

const A& a) noexcept;

¶2 Postconditions: !*this.
function(nullptr_t) noexcept;
template <class A> function PolymorphicCallWrapper(allocator_arg_t,  

const A& a, nullptr_t) noexcept;

¶3 Postconditions: !*this.
function(function PolymorphicCallWrapper&& f);
template <class A> function PolymorphicCallWrapper(allocator_arg_t,  

const A& a, function&& f);

¶6 Effects: …
template<class F> function PolymorphicCallWrapper(F f);
template <class F, class A> function PolymorphicCallWrapper  

(allocator_arg_t, const A& a, F f);

¶7 Requires: For function constructors, F shall be CopyConstructible. For
unique_function constructors, F shall be MoveConstructible.
¶9.3 — F is an instance of the function a polymorphic call wrapper class template, and !f.
¶10 Otherwise, if F is a polymorphic call wrapper class with template parameters R and
Args..., the target of *this is move-constructed from the target of f.
¶10 ¶11 Throws: …

�7

function PolymorphicCallWrapper& operator=  
(function PolymorphicCallWrapper&& f);

¶14 ¶15 Effects: …
function PolymorphicCallWrapper& operator=(nullptr_t) noexcept;

¶16 ¶17 Effects: …
template<class F> function PolymorphicCallWrapper& operator=(F&& f);

¶19 ¶20 Effects: function PolymorphicCallWrapper(std::forward<F>(f))  
.swap(*this);

template<class F> function PolymorphicCallWrapper& operator=  
(reference_wrapper<F> f) noexcept;

¶22 ¶23 Effects: function PolymorphicCallWrapper(f).swap(*this);
~function PolymorphicCallWrapper();

¶24 ¶25 Effects: …

Likewise adjust swap in [func.wrap.func.mod].

void swap(function PolymorphicCallWrapper& other) noexcept;

¶1 Effects: …

Likewise adjust the comparison operators in [func.wrap.func.nullptr].

template <class R, class... ArgTypes>
bool operator==(const function PolymorphicCallWrapper<R(ArgTypes...)>&  

f, nullptr_t) noexcept;
template <class R, class... ArgTypes>
bool operator==(nullptr_t, const function PolymorphicCallWrapper  

<R(ArgTypes...)>& f) noexcept;

¶1 Returns: !f.
template <class R, class... ArgTypes>
bool operator!=(const function PolymorphicCallWrapper<R(ArgTypes...)>&  

f, nullptr_t) noexcept;
template <class R, class... ArgTypes>
bool operator!=(nullptr_t, const function PolymorphicCallWrapper  

<R(ArgTypes...)>& f) noexcept;

¶2 Returns: (bool) f.

And swap again in [func.wrap.func.alg].

template<class R, class... ArgTypes>
void swap(function PolymorphicCallWrapper<R(ArgTypes...)>& f1,  

function PolymorphicCallWrapper<R(ArgTypes...)>& f2);

�8

¶1 Effects: f1.swap(f2);

5. Future directions
Given in-place construction, unique_function would support non-movable target objects.
This feature was removed since the previous revision, N4543, and it will be proposed again
separately.
It may typically be easier to implement SFINAE, not a hard error, when a std::function
constructor encounters a non-copyable target type. If function and unique_function obtain
their constructors from a common template, unique_function cannot evaluate
is_copy_constructible if that metafunction may instantiate a copy constructor. Let’s keep
an eye on this issue, but it’s not a defect yet.
It is possible, without added overhead, to convert a unique_function value to function,
provided it was initialized by conversion from function. This could be implemented as an
explicit conversion, with an exception thrown upon failure.

6. Implementations
Matt Calabrese and Geoffrey Romer implemented a unique_function together with further
extensions. They worked to combat bloat and developed the principle of minimizing constructor
ODR-use.
In mid 2014, Agustín “K-ballo” Bergé implemented a unique_function within the HPX
library.
In early 2015, StackOverflow user “Yakk” implemented a move_only_function to answer a
question. S/he included support of value categories and const-qualification as well.1

In mid 2015, I attempted to implement this proposal within the libc++ function
implementation. Due to difficulties in achieving interoperability of target objects, I gave up and
started from scratch.
My cxx_function library implements this proposal together with P0042R0 std::recover: 2

undoing type erasure, P0043R0 Function wrappers with allocators and noexcept, P0045R0
Overloaded and qualified std::function, and in-place construction. It adds little compile-
time overhead and it outperforms libc++ and libstdc++ at runtime.
In early 2016, the function2 library by Denis Blank (Naios) likewise implements a 3

unique_function together with other enhancements including rvalues and cv-qualifiers.
It is likely that other implementations exist. This idea is ripe for standardization.

 http://stackoverflow.com/questions/28179817/how-can-i-store-generic-packaged-tasks-in-a-container1

 https://github.com/potswa/cxx_function2

 http://naios.github.io/function2/3

�9

http://naios.github.io/function2/
http://stackoverflow.com/questions/28179817/how-can-i-store-generic-packaged-tasks-in-a-container
https://github.com/potswa/cxx_function
https://github.com/K-ballo/hpx/blob/master/hpx/util/detail/unique_function_template.hpp

