
P0287R0 2016-02-15 Reply-To: gdr@microsoft.com

Simple Contracts for C++ (R1)

Gabriel Dos Reis
Microsoft

J. Daniel García
Universidad Carlos III de Madrid

Francesco Logozzo
Facebook

Manuel Fähndrich

Google
Shuvendu Lahiri

Microsoft

Abstract

We present a minimal system for expressing interface requirements as contracts. They

provide basic mitigation measures for early containment of undesired program behavior.

The set of facilities suggested in this proposal is deliberately kept to the minimum of pre-

conditions and post-conditions. Contracts are part of an operation’s interface, but not

part of its type. That is, while the expression of contracts is logically part of the operation’s

interface, the actual code verifying the conditions are part of the operation’s

implementation.

1 WHAT ARE CONTRACTS?

Contracts are requirements that an operation puts on its arguments for successful completion and set of

guarantees it provides upon successful completion. The former is known as pre-condition and the latter

is called post-condition. Contracts are part of the interface of an operation as a programmer (consumer

or producer) sees it, e.g. “What do I have to do to call this function?” and “What may I rely on when

implementing this function?” However, contracts (as suggested in this proposal) are not part of the type

system.

Contracts are not a general error reporting mechanism, nor are they substitute for testing frameworks.

Rather, they offer a basic mitigation measure when a program goes wrong because of mismatch of

expectations between parts of a program. Contracts are conceptually more like structured assert()

integrated into the language, playing by the language semantics rules – therefore basis for principled

program analysis and tooling.

There is a strong desire in the C++ community, as evidenced by the number of contracts proposals [1] [2]

[3] [4] [5] [6] and continued discussions in the C++ committee (e.g. at the Urbana, IL, 2014 meeting) for

language support to express contracts directly in a program.

1.1 CONTRACTS: INTERFACE SPECIFICATION
Contracts are part of the interface of an operation, but not part of its type. A contract expresses what the

caller of a function must do to satisfy the expectations the callee places on its arguments. Consequently,

the expression of a contract must logically be part of the declaration of the operation.

N4415 Simple Contracts for C++

2

1.2 CONTRACTS: CHECKING IS IMPLEMENTATION
For simplicity and usability reasons, contracts are not part of the type of an operation. However, ideally,

a function invocation should display the same observable behavior whether the function is called directly

(e.g. by name) or indirectly (e.g. via a pointer to function). Therefore, the checking of contract, the

concrete codes asserting the requirements or the promise an operation makes, must conceptually be

part of the implementation of the operation.

1.3 SYNTAX
So, how we do express contracts in code? Clearly we need a syntactic place to put a pre-condition or a

post-condition. There are various ways to achieve this. Either a contract is expressed in the declaration

of a function, or it is expressed separately through a “proclamation” declaration of some sort. The one

concern with expressing contracts in declaration is that the “obvious” place to put contracts is becoming

“crowded”. An advantage of specifying a contract in a proclamation declaration is that it could be done

“retroactively, after the fact” separate from function declaration and does not need to compete for the

syntactically crowded space. However, this is also a problem as one must now maintain coherence

between declarations, definitions, and proclamations. Furthermore, member functions can be declared

only once and a general design principle of C++ is that all that is to be known about a class “interface” is

known at the closing brace of its definition. Therefore, contracts must appear in the function declaration

– not as a post facto extension.

Should we reach out for new keywords, e.g. expects for pre-conditions and ensures for post-conditions?

This proposal takes an alternative route and suggests the use of C++ attributes for expressing contracts:

 [[expects: condition]] for saying that an operation expects condition to hold for a call to

complete successfully

 [[ensures: condition]] for saying that an operation guarantees condition to hold after a

successful call

For example, a pre-condition contract of the indexing operator of a Vector class could be written:

T& operator[](size_t i) [[expects: i < size()]];

Similarly, a post-condition contract on a constructor of an ArrayView class could be expressed as:

ArrayView(const vector<T>& v) [[ensures: data() == v.data()]];

Note that in a correct program, contracts can be freely ignored without changing the observable behavior.

This is in line with the general understanding of semantics impacts of attributes on correct programs.

In addition to these pre- and post-condition, this proposal suggests condition assertion in the body of a

function definition in the form

[[assert: condition]];

1.4 OPERATIONAL SEMANTICS
The simplest operational semantics of a contract is as follows:

N4415 Simple Contracts for C++

3

 The “condition” of a contract (pre-condition or post-condition) is type-checked in the scope of the

function’s parameter declarations. For a member function, that includes the enclosing class’s

scope. The same holds for any (friend) function lexically declared in a class.

 The pre-condition of an operation is evaluated before any other statement in the function’s body.

If the result is true, then normal control of execution continues to the first statement in the body

of the function. Otherwise, further execution is not guaranteed: either the program aborts, or

throws an exception, or if it is allowed to continue then the behavior is undefined. Whichever of

these alternatives is chosen is implementation-defined. That is, an implementation may offer

translation modes to check all contracts, or only pre-conditions, or only post-conditions, or ignore

runtime checking of a contract.

 Similarly, the post-condition is evaluated after evaluation of the return value (if any) and after the

destruction of any local variables, but before control is transferred back to the caller. If the

evaluation yields true then control continues as it normally would. Otherwise, the program is

abnormally terminated as in the pre-condition case. Note that the post-condition of a function is

not evaluated as part of an exceptional transfer of control.

 Finally, an assertion of the form [[assert: condition]]; is evaluated as part of the normal

control flow through the body of a function, but additionally subject to any implementation-

defined control of runtime contract checking as in the case of pre- and post-conditions.

1.5 CONTROL OF CONTRACT ASSERTIONS
As explained in the previous section, the basic conceptual model of pre-condition or a post-condition is

as if the expression assert(condition) is evaluated at the appropriate place. There are several design

choices and practical considerations here.

First, there ought to be an ability to turn on and off contract checking, or just to enable partial contract

checking (e.g. only pre-conditions, or only post-conditions). We do not believe that this facility has to be

in form of “feature test macros” accessible in the source program. Remember that for a correct program

executed with correct data, ignoring contracts (e.g. turning contract checking off) should not have any

effect on permissible observable behavior of the program. It is in some sense a form of optimization –

dead code removal. Consequently, we encourage implementations to offer switches to select level of

contract checking: on, off, pre-condition only, post-condition only.

Second is the question of the granularity of control. Should contract checking be control per function

declaration basis, per class definition, per namespaces, per translation, or just whole sale program?

Clearly, a per-function or whole-program control is impractical for most programs. Similarly, a per-class

or per-namespace control is a road to anarchy. This proposal suggests at least a per-translation unit

control of contract assertion, and more generally around “components” (e.g. libraries), or just at the

complete program level.

Finally, an std::abort() in case of contract failure may not be appropriate for some programs – despite

the fact that today, a contract failure results in undefined behavior; at least as far as standard library

components are concerned. For programs that can afford it or need it, it might makes sense for

implementations to offer throwing exceptions (such as std::precondition_failure,

std::postcondition_failure, or std::assertion_failure) instead of an unrecoverable program

termination via std:abort(). However, it is a critical design criteria that contracts be usable in embedded

N4415 Simple Contracts for C++

4

systems or other resource-constrained systems that cannot afford exceptions. A callback mechanism with

setting of various pointers to functions to control contract assertion is equally challenging in terms of

removing “dead codes” – many safety-critical systems operate under strict policies of not including codes

they don’t run.

Consistent with EWG’s expressed preference at the 2014 Urbana, IL, meeting, we recommend that the

means of contract assertions be implementation-defined, but should allow “all, none, pre-condition, post-

condition” contract checking on per translation unit basis.

1.6 FACILITIES DELIBERATELY LEFT OUT
This proposal has an extreme focus on simplicity and deliberately leaves out several facilities found useful

in more elaborate “programming by contracts” systems. These include “invariants”, “abstract states” or

“ghost variables”, conditions on exceptional transfer of control, etc. These facilities are left out not as a

result of value judgment about their usefulness. Rather, we put a premium on simplicity and an

evolutionary approach to contracts for C++.

Note that there are at least two notions of invariants: (1) representation invariants; and (2) logical

invariants. A representation invariant is generally about the object representation of a class, whereas a

logical invariant expresses invariant about the abstract data structure that a class is designed to

materialize. For example, take a RedBlackTree class designed to represent a red black tree. Assume

further that a RedBlackTree object contains the root node as member. A representation invariant

expresses a constraint on that root node (i.e. the direct member of the tree object) that it is colored

“black”, where as a logical invariant may express the fact every node reachable from the root and that is

colored “red” has two children colored “black” and that every path from a given node to its descendant

leaves contains exactly the same nodes colored “black”. This example shows a similarity with the ‘physical

const’ vs. ‘logical const’ distinction in current C++. Consequently, we are postponing invariants as possible

future extensions of this minimal contract system.

1.7 WHAT ARE THE ABI IMPACTS?
Does this proposal require an ABI change or an ABI breakage? No. This proposal does not break ABI, nor

does it require an ABI change or innovation. An implementation that systematically ignores contracts after

type checking, is a conforming implementation. Similarly, an implementation that systematically inserts

assert() corresponding to pre-conditions and post-conditions in function bodies is also a conforming

implementation. None of these implementation strategies requires ABI modification or invention.

Similarly, anything in between (e.g. checking pre-conditions only, or checking post-conditions only) does

not require an ABI change.

On the other hand, an implementation can take advantage of the additional information available in

contracts for code generation purposes, as long as it satisfies the usual “as if” rule. In particular, an

implementation with multiple entrypoint/exitpoint features may push contract checking to call sites if

judged beneficial. However, none of this is required by this proposal.

N4415 Simple Contracts for C++

5

2 LANGUAGE INTEGRATION

2.1 MULTIPLE DECLARATIONS
When a function can be declared multiple times (e.g. at namespace scopes), should contracts be repeated

or omitted? Well, ideally, an entity should be declared only once – the default practice in the module

world. However, for simplicity, we suggest the following: in a given translation unit, if a declaration of an

entity has a contract, then any subsequent declaration that mentions the same contract should have

identical expression (in the ODR sense) of that contract. Furthermore if a function declaration has a

contract, then its definition must also have that contract. We do not require implementations to check

this rule across translation units. Note that it is permitted for a declaration not to have a contract and

only the definition to mention one. This allows programs to conceal contracts from public interfaces, as

questionable as that might be.

2.2 CONTRACT CONDITIONS AND SIDE EFFECTS
What kind of expression is acceptable in contracts? Contract conditions should be side effect free. That

is, their evaluation should not produce any difference in the program’s observable behavior. One could

approximate this requirement by saying that contract conditions are as if they were the body of a

constexpr function. However, we don’t expect most useful contract conditions to involve only constexpr

functions in practice (e.g. std::vector<T>::size). One could also attempt to define yet another class of

expressions and require implementations to enforce those restriction s, but that is added complexity with

little benefit. We’ve concluded that it is more effective to simply state that contract conditions are

expected to be side effect free.

2.3 VIRTUAL FUNCTIONS OVERRIDER
A virtual function overrider inherits the contracts from the base class function it is overriding. However,

if an overrider repeats a contract, it must match exactly the original function declaration. It cannot weaken

nor can it strengthen the contract. Note that this restriction also applies to a virtual function that

simultaneously overrides a function from several base classes. Example:

struct A {

 bool f() const;

 bool g() const;

 virtual string bhar() [[expects: f() && g()]];

 virtual int hash() [[ensures: g()]];

 virtual void gash() [[expects: g()]];

 virtual double fash(int i) const [[expects: i > 0]];

};

struct B : A {

 string bhar() override [[expects: f()]]; // ERROR: weakening.

 int hash() override [[ensures: f() && g()]]; // ERROR: strengthening.

 void gash() override [[expects: g()]]; // OK: repeat from base.

 double fash(int) override; // OK: inherited from base.

};

N4415 Simple Contracts for C++

6

Note that weakening a pre-condition of an overrider is technically sound; this proposal does not suggest

that ability for simplicity reasons. Similarly, strengthening a post-condition is theoretically sound; this

proposal does not propose that capability out of simplicity concerns.

2.4 ACCESSIBILITY OF MEMBERS REFERENCED IN CONTRACTS
Since a contract is part of the interface of a function and class members can be referenced in the

expression of a member function contract, there have been some concerns over possible abstraction

leakage. We propose a very simple rule: class members referenced in a contract for a member function

should be of an accessibility at least as permissive as the member function itself. That is:

 A public member function can only reference public members in its contracts

 A protected member function can reference protected or public members in its contracts

 Finally, a private member function can reference all members in its contracts.

To close the loop, a friend declaration of a function lexically at a class scope can only reference public

members of that class.

2.5 ATTRIBUTE SYNTAX
The attribute syntax for contracts suggested in this proposal, e.g. [[expects: condition]] or

[[ensures: condition]], does not strictly conform to the C++11 notation. For that, it would have to

use a matching pair of parenthesis around the “condition” instead of a colon: [[expects(condition)]]

and [[ensures(condition)]]. We find that in practice, the colon notation (as suggested in this proposal)

makes for easier to read contracts than the more lispy C++11 attribute notation. This small extension to

attribute syntax is useful (at least for readability) beyond contracts.

2.6 FUNCTION POINTERS
Contracts are not part of the type system. In particular, the address of a function with contracts has the

function type as if there were no contract. Example:

double f(double x) [[expects: x >= 0]];

double (*pf)(double) = &f; // OK.

However, it is possible to declare a pointer to a function with a contract. Initializing or assigning to such

pointer is valid only if the contracts are equal. Example:

double f(double x) [[expects: x >= 0]];

double (*pf)(double x) [[expects: x >= 0]] = &f; // OK.

double g(double);

double (*pg)(double x) [[expects: x != 0]] = &g; // ERROR.

For the same reasons, if function type (or a pointer to function type) alias is used to declare a function,

any contracts in the alias declaration does not transfer to the function or to the pointer to function. This

is just a particular instance of a much more general problem that implementations face today, outside of

any contract considerations. Consequently, any “solution” in this space should be applicable to non-

N4415 Simple Contracts for C++

7

contract declarations. Any “solution” in this space will have to deal with (type) template argument

deduction.

3 SYNERGY WITH ANALYSIS TOOLS

As reported previously [7], production analysis tools for C++ programs can build on standard source-level
contract annotations to provide greater reliability and safety. Furthermore, many popular C++ bug finding
tools support custom annotations to allow programmers to express intents to add checks and suppress
false alarms. In particular:
 Clang, quote from [8]: "The Clang frontend supports several source-level annotations in the form of

GCC-style attributes and pragmas that can help make using the Clang Static Analyzer more useful.
These annotations can both help suppress false positives as well as enhance the analyzer's ability to
find bugs."

 SAL, quote from [9]: "SAL is the Microsoft source code annotation language. By using source code
annotations, you can make the intent behind your code explicit. These annotations also enable
automated static analysis tools to analyze your code more accurately, with significantly fewer false
positives and false negatives."

 The popular Coverity static analysis tools for C/C++ provide source code annotations to suppress
false positives [10].

A standard notation for expressing interface requirements will help reduce the fragmentation of the
analysis tools ecosystem while fostering portable checking.

Furthermore, we believe any contract system should be coherent with the current type system. Indeed,
contracts are complement to the type system, for expressing properties that are clumsy to express in
static type system. In particular, any notion of contract strengthening or weakening contract should be
designed to be coherent with covariance and contravariance. It would be unsound to add strengthening
of pre-conditions, and it would be equality unsound to add notion of weakening of post-conditions. Any
such addition (even if just for convenience) will render the system unusable for analysis tools and will
defeat the purpose of increasing safety.

4 COMPARISON TO BLOOMBERG’S PROPOSAL: N4378

The latest Bloomberg proposal (10th iteration) [11] is a scaled down version of previous iterations [3] [6].

Although it is titled “Language Support for Contract Assertions”, the language support is not apparent and

the system is best viewed (and most effectively used) as “an assertion framework”. The entire

infrastructure relies on manual insertion of assertions at points where the programmer intends to have a

check in an implementation. There is no provision for expressing contracts at the interface level. Nor is

there a formal structure that compilers and analysis tools can effectively use, and at scale. We suspect the

intent here is that contracts are best expressed in informal English, never in code at the interface level,

and checks should be inserted in implementation. Obviously, this does not help analysis tools, nor does

it help ensure that actual contracts are expressed unambiguously to callers. Furthermore, the global

nature of the assertion control callback is probably suitable for development environments with a central

authority that controls how assertions are used; but it is not suitable for most environments where

programs are composed out of several parts possibly developed by different teams or organizations or

http://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html

N4415 Simple Contracts for C++

8

components developed with different constraints. We should not underestimate the value of per-

component control of contract assertions.

Perhaps, the most obvious point of synergy is that the “cheap to evaluate assertions” of N4378 that are

placed at the beginning of a function definition may be candidates as formal pre-conditions (as defined in

this proposal).

5 COMPARISON TO N4293

The proposal N4293 [12] by the second author is a revision based on committee discussions held at the

2014 Urbana, IL, meeting, which also includes a summary of EWG directions.

The most important difference between this proposal and N4293 is syntax. While N4293 adds new

keywords for contracts, here we propose to use attributes. As explained in earlier sections, this choice

underscores the notion that removing contracts from a correct program does not change its observable

behavior. This is in complete alignment with the general expected use of attributes. Furthermore, N4293

required checking the absence of side effects in contracts while this proposal does not require this kind

of checks.

There are several suggested facilities from N4293 that are not provided by this proposal, for the sake of

simplicity. They can be considered for future extensions. These features include references to previous

parameters values, and reference to a function return value in post-conditions. Besides, in N4293 several

checking modes where defined. In contrast, this proposal leaves freedom to implementations on several

valid approaches for correct programs.

6 FORMAL WORDING

The following proposed modifications to the language definition are with respect to the Working Draft,

document number N4296.

Augment the grammar production attribute in paragraph 7.6.1/1 as follows

attribute:

 attribute-token attribute-argument-clause_opt

 attribute-token : balanced-token-seq

Modify paragraph 7.6.2/3 as follows:

[…] Unless specified otherwise, if a keyword (2.11) or an alternative token (2.5) that

satisfies the syntactic requirements of an identifier (2.10) is contained in an attribute-

token, it is considered an identifier. Unless specified otherwise, no name lookup (3.4) is

performed on any of the identifiers contained in an attribute-token.

Add a new section 7.6.6 titled “Contracts” as follows:

An attribute-specifier of the form [[expects: balanced-token-seq]] or [[ensures:

balanced-token-seq]] is a contract. A contract may appear only as part of the attribute-

N4415 Simple Contracts for C++

9

specifier-seq of parameters-and-qualifiers in a declarator (8). The balanced-token-seq

shall satisfy the syntactic and semantics constraints of an expression (5) and shall be

contextually convertible to the type bool. Names contained in the balanced-token-seq are

looked up (3.4) in the context of the declarator. The expression in a contract is potentially

evaluated, and entities referenced in the contract are subject to the usual One Definition

Rule (3.2). That expression shall be free of side effects, no diagnostic required.

The evaluation semantics of contracts are further expanded in 6.6, 8.4, 12.1. [Note:

contract evaluations may be freely omitted for correct programs with correct data without

change in the observable behavior of the abstract machine. –end note]

Augment paragraph 6.6.3/3 as follows:

The evaluation of a post-condition contract (if any) is sequenced after the destruction of

the local variables. The behavior of the program is unspecified if the post-condition

evaluates to false. [Note: implementations are encouraged to document which behavior

they choose, e.g. abrupt termination or continuation with unpredictable behavior. –end

note]. Any parameter referenced in the condition is evaluated to the value it has at the

point of the post-condition assertion.

Add a new paragraph 8.4.1/9: as follows:

If a function declaration has a pre-condition contract, the corresponding contract

assertion is conceptually part of the function body, and is considered the first statement

of the function-body. Any parameter in the pre-condition is evaluated to the value of its

corresponding argument.

Add a new paragraph 12.1/13 as follows:

The contract assertion of a pre-condition (if any) of a constructor is executed before its

ctor-initializer.

Add a new paragraph 3.2/7 as follows:

If a function declaration in a program has a contract, then its definition shall repeat the

same contract. No diagnostic is required if the definition is not in the same translation

unit as the non-defining declaration with contract.

7 ACKNOWLEDGMENT

We are grateful to folks who provided feedback on early drafts of this proposal, helping us to make it a

stronger proposal. Special thanks to Jonathan Caves, Pavel Curtis, Joe Duffy, Chris Hawblitzel, Aaron

Lahman, Neil MacIntosh, Andrew Pardoe, Bjarne Stroustrup, Herb Sutter.

8 REFERENCES

N4415 Simple Contracts for C++

10

[1] D. Abrahams, L. Crowl, T. Ottosen and J. Widman, "Proposal to Add Contract Programming to C++

(Revision 2)," ISO/IEC JTC1/SC22/WG21, 2005.

[2] L. Crowl and T. Ottosen, "Proposal to Add Contract Programming to C++ (Revision 4)," ISO/IEC

JTC1/SC22/WG21, 2006.

[3] J. Lakos, A. Zakharov and A. Beels, "Centralized Defensive-Programming Support for Narrow

Contracts (Revision 6)," 2014.

[4] A. Krzemieński, "Value Constraints," ISO/IEC JTC1/SC22/WG21, 2014.

[5] A. Meredith, "Library Preconditions are a Language Feature," ISO/IEC JTC1/SC22/WG21, 2014.

[6] J. Lakos, A. Zakharov, A. Beels and N. Myers, "Language Support for Runtime Contract Validation

(Revision 8)," ISO/IEC JTC1/SC22/WG21, 2014.

[7] G. Dos Reis, S. Lahiri, F. Logozzo, T. Ball and J. Parsons, "Contracts for C++: What Are the Choices?,"

ISO/IEC JTC1/SC22/WG21, 2014.

[8] Clang. [Online]. Available: http://clang-analyzer.llvm.org/annotations.html.

[9] Microsoft, "Microsoft Source Annotation Language," [Online]. Available:

https://msdn.microsoft.com/en-us/library/ms182032.aspx.

[10] [Online]. Available: https://doclazy.wordpress.com/2011/07/14/coverity-suppressing-false-

positives-with-cod/][http://stackoverflow.com/questions/3557639/silencing-false-positives-in-

coverity-prevent.

[11] J. Lakos, N. Myers, A. Zakharov and A. Beels, "Language Support for Contract Assertions (Revision

10)," ISO/IEC JTC1/SC22/WG21, 2014.

[12] J. D. Garcia, "C++ Language Support for Contract Programming," ISO/IEC JTC1/SC22/WG21, 2014.

