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Abstract

This paper proposes to lift restrictions, currently imposed by the Concepts-Lite Working Draft
[N4553], on the contexts in which a requires-expression is allowed to appear. The proposal
directly addresses Concepts Issue #3, “Allow requires-expressions in more contexts” [Issue03],
which was opened pursuant to a National Body comment, and may also address Issue #29,
“Allow concepts to be evaluated in any context” [Issue29].

1 Introduction

I want freedom for the full expression of my personality.
— MAHATMA GANDHI

The Concepts-Lite Working Draft, [N4553], provides wording for several new C++ language
features. In our opinion, chief in importance among them are the requires-clause and requires-
expression, each introduced by the new requires keyword. This paper seeks to lift certain
restrictions imposed by the current wording on the use of a requires-expression.

Our proposal is similar to one made in our earlier paper [N4434]. Among other “tweaks” to the
then-current draft of Concepts-Lite, we had proposed “to allow a concept name plus appropriate
arguments . . . in any context where a bool value may reasonably appear.” In the time since, we
have continued to conduct very extensive experimentation with all the Concept-Lite features as
implemented for the recently-released gcc 6.1 and the future gcc 7. Based on our application
of these language features, we now believe it appropriate (and possibly even more important) to
allow the analogous relaxation for a requires-expression.

2 Proposal

According to [N4553], “A requires-expression provides a concise way to express requirements on
template arguments” [expr.prim.req]/1. We agree, but also believe there is even greater utility to
such an expression, which is currently limited (by [expr.prim.req]/4) as to the contexts in which it
is allowed to appear:
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A requires-expression shall appear only within a concept definition (7.1.7), or within the
requires-clause of a template-declaration (Clause 14) or function declaration (8.3.5).

We propose to lift this restriction and thereby to allow such a construct to appear in any
context that permits a bool-valued expression.

In particular, easing the above-cited limitations will avoid such boilerplate circumlocutions
as:1

1 template< class T, class U >
2 constexpr bool
3 is_assignable_v = false;

5 template< class T, class U >
6 requires requires( T&& t, U&& u )
7 { std::forward<T>(t) = std::forward<U>(u); }
8 constexpr bool
9 is_assignable_v<T, U> = true;

in favor of the far more straightforward:

1 template< class T, class U >
2 constexpr bool
3 is_assignable_v = requires( T&& t, U&& u )
4 { std::forward<T>(t) = std::forward<U>(u); };

While similar Concepts-Lite code could be written today, it would need to be phrased as a (variable-
or function-style) concept to do so. We believe that’s not good enough, for a concept can’t (yet)
be evaluated outside a requires-clause or equivalent environment. We urge the adoption of this
proposal to obtain the maximum possible utility from a requires-expression.

3 Open issues addressed

Two open Concepts Issues would be addressed by adoption of this proposal.

Issue #3, “Allow requires-expressions in more contexts,” asks to “Eliminate the [above-cited]
requirement, thereby permitting other uses for this new kind of expression of type bool. (For
example, requires-expressions might replace many or all of the Boolean type traits.)” [Issue03].
Adoption of the present proposal would resolve this issue, which was opened via a National Body
comment.

Issue #29, “Allow concepts to be evaluated in any context,” is also addressed by the present
proposal, effectively rendering the issue moot. The issue cites the following currently-invalid
example [Issue29]:

static_assert( C<X>(), "" ); // for some concrete X and concept C

Adoption of the present proposal would make the following equivalent code well-formed:

static_assert( requires C<X>(), "" ); // for some concrete X and concept C

1The apparent reduplication of the requires keyword in the example code is not an error: the first occurrence
introduces a requires-clause, while the second introduces a requires-expression. The present proposal seems likely to
reduce the need for such stuttering.
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Such a minor rewrite of the desired example would accomplish the Issue’s objective: by broadening
the contexts in which a requires-expression may be evaluated, we implicitly broaden the contexts
in which a concept may be evaluated.

4 Proposed wording2

Modify subclause 5.1.4 [expr.prim.req] as indicated below. Note that the proposed excision in ¶4
reflects the principal purpose of this paper; the changes proposed for ¶3 and ¶7 constitute other
adjustments requested by LWG during its review (in Jacksonville) of this paper’s R0.

3 A requires-expression has type bool and is an unevaluated expression (5). Note: A requires-ex-
pression is transformed into a constraint in order to determine if it is satisfied (14.10.2). – end
note] A requires-expression is a prvalue of type bool whose value is true when its corresponding
constraint is satisfied (14.10.2) and whose value is false otherwise. [ Note: A requires-expression
is transformed into a constraint in order to determine whether it is satisfied. — end note ]
Expressions appearing within a requirement-body are unevaluated operands (5).

4 A requires-expression shall appear only within a concept definition (7.1.7), or within the re-
quires-clause of a template-declaration (Clause 14) or function declaration (8.3.5).

[ Example: . . . — end example ]

[ Note: . . . — end note ]

7 The substitution of template arguments into a requires-expression may result in the formation
of invalid types or expressions in its requirements. In such cases, the constraints corresponding
to those requirements are not satisfied; it does not cause the program to be ill-formed. If the
substitution of template arguments into a requirement would always result in a substitution
failure, the program is ill-formed; no diagnostic required. Invalid types or expressions may appear
among the requirements of a requires-expression. Such requirements do not cause the program
to be ill-formed. Rather, the constraints corresponding to such requirements are not satisfied.

[ Example:

template<typename T> concept bool C =
requires {
new int[-(int)sizeof(T)]; // ill-formed, no diagnostic required

// invalid expression formed via template argument substitution;
// corresponding constraint will be not satisfied

};

— end example ]
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