
Stroustrup, Dos Reis Operator Dot P0252R0

1

WG21-P0252R0

2016-02-13

Operator Dot Wording

Bjarne Stroustrup (bs@ms.com)

Gabriel Dos Reis (gdr@microsoft.com)

Abstract
This is the proposed wording for allowing a user-defined operator dot (operator.()) for specifying “smart

references” similar to the way we provide “smart pointers.” The gist of the proposal is that if an

operator.() is defined for a class Ref then by default every operation on a Ref object is forwarded to the

result of operator.(). However, an operation explicitly declared as a member of Ref is applied to the Ref

object without forwarding.

This wording is the result of EWG discussions based on

 Bjarne Stroustrup and Gabriel Dos Reis: Operator Dot. N4173

 Bjarne Stroustrup and Gabriel Dos Reis: Operator Dot (R2). N4477

Wording
Add to paragraph 3.9/8:

A reference surrogate type is a class type with at least one declaration of dot access function.

Add a new bullet just before bullet (5.2) in paragraph 8.5.3/5:

If T2 is a reference surrogate type (3.9), then the best dot access function is selected through the

overload resolution process as described in 13.5.6 with cv1 T1 as the target type.

Add new paragraph 9.3/10 to section 9.3:

A class may declare a member function operator. called a dot access function. Similarly, a class

may declare a member function operator-> called an arrow access function. The dot access

function and the arrow access function are collectively called member access functions. A member

access function shall be a non-static member function and shall not be a template. A member

access function shall take no parameter. The return type of a dot access function shall be a cv-

qualified class type or a cv-qualified reference type.

mailto:gdr@microsoft.com

Stroustrup, Dos Reis Operator Dot P0252R0

2

Append to paragraph 10.2/2 the following:

If B is an unambiguous base class of D, the notation B-in-D designates the access path from D to

the base class subobject of type B in D. If the class D declares a member access function mf with

return type T, then the notation T-via-D-by-mf denotes the access path from D to the object or

reference of type T specified by mf. Applying the access path T-via-D-by-mf to an entity obj of type

D means invoking the member function mf on obj.

Modify the introductory sentence of paragraph 10.2/3 as follows:

The lookup set for f in C, called S(f,C), consists of two component sets: the declaration set, a set

of members f; and the subobject set, a set of subobjects access paths to the class scopes where

declarations of these members (possibly including using-declarations) were found.

Modify the introductory sentence of paragraph 10.2/5 as follows:

Otherwise, if f is being looked up in the context of a postfix-expression of the form

expr.templateopt f (resp. expr->templateopt f) where expr is an expression of type “cv C” or an

rvalue reference of type C, let mfi denote each of the associated member access functions in C

(replacing using-declarations with the member access functions they designate) with return type

Ti. For each mfi, compute the lookup set S(f,Ti) in the context of the expression expri.f (resp. expri-

>f) where expri represents the invocation of the member function mfi on the expression expr. If

at least one lookup set S(,Ti) has a non-empty declaration set, the calculation of S(f,C) is complete

and specified as follows:

 If the declaration set of any S(f,Ti) is invalid, then the declaration set of S(f,C) is invalid,

and the subobject set of S(f,C) is the union of all S(f,Tk) with each access path

precomposed with Tk-via-C-by-mfk.

 Perform overload resolution on the subset of the access member functions mfk (given the

implicit object designated by expr) with lookup sets S(f,Tk) that have non-empty

declaration sets. If overload resolution succeeds, with best candidate mfj as a result, then

S(f,C) is S(f,Tj) where every access path is replaced by precomposition by Tj-via-C-by-mfj.

 Otherwise, the declaration set is invalid, and the subobject set is the union of the

subobject sets of S(f,Tk) with all the access paths precomposed by Tk-via-C-by-mfk.

[Example:

struct A { int x; };

struct B { int x; int y; };

struct C {

 A& operator.();

 B& operator.();

};

void f(C& c) {

 c.y = 42; // OK. S(y,C) = { { B::y }, { B-via-C-by-operator.-returning-B& }

Stroustrup, Dos Reis Operator Dot P0252R0

3

 c.x = 7; // ERROR: ambiguity. S(x,C) = { invalid, { A-via-C-operator.-returnin-A&, B-via-C-by-

operator.-returning-B&} }

}

--end example]

Otherwise (i.e. C does not contain a declaration of f, an access member function leading to f, or

the resulting declaration set is empty), S(f, C) is initialy empty. If C has base classes, calculate the

lookup set of f in each direct base subobject B_i, and merge each such lookup set S(f, B_i) in turn

into S(f,C). If the subobject set of any S(f,Bi) has an access path that contains T-via-B-by-mfi then

all other lookup sets must have empty declaration sets, and S(f,C) is S(f,Bi); otherwise the

declaration set of S(f,C) is invalid and the subobject set of S(f,C) is the union of all the subobject

sets of the S(f,Bi).

[Example:

struct A { int x { }; };

struct B { int x { }; int y { }; };

struct C {

 B& operator.();

 };

struct D : A, C { };

int main() {

 D d { };

 d.y = 42; // OK

 d.x = 17; // ERROR.

}

--end example]

Modify bullet (2.1) of paragraph 13.1/2 as follows:

Function declarations, other than member access function declarations, that differ only in the

return type, the exception specification (15.4), or both cannot be overloaded.

Add a new bullet to paragraph 13.3/2 and modify the opening statement as follows:

Overload resolution selects the function to call in seven several distinct contexts in the

language:

 Invocation of dot access function for access from an object of reference surrogate type

Modify paragraph 13.3.1/1 as follows:

The subclauses of 13.3.1 describe the set of candidate functions and the argument list submitted

to overload resolution in each of the seven contexts in which overload resolution is used. […]

Modify the note in paragraph 13.3.1.2 as follows:

If not operand of an operator in an expression has a type that is a class or an enumeration, the

operator is assumed to be a built-in operator and interpreted according to Clause 5. [Note:

Stroustrup, Dos Reis Operator Dot P0252R0

4

Because ., .* and :: cannot be overloaded, these operators are always built-in operators

interpreted according to Clause 5….]

Add the following row to the table 10 in paragraph 13.3.1.2/2 as follows

13.5.6 a. (a).operator.()

Modify the third bullet of paragraph 13.3.1.2/3 as follows:

For the operator ,, the unary operator &, the operator ., or the operator ->, the built-in candidate

set is empty. …

Modify paragraph 13.3.1.2/8 as follows:

The second operand of operator . (resp. ->) is ignored in selecting an operator-> the corresponding

operator function, and is not an argument when the operator-> operator function is called. When

operator-> the operator function returns, the operator . (resp. ->) is applied to the value returned,

with the original second operand.

Modify paragraph 13.3.1.2/9 as follows:

If the operator is the operator ,, the unary operator &, operator ., or the operator ->, and there

are no viable functions, then the operator is assumed to be the built-in operator and interpreted

according to Clause 5.

Add a new section 13.3.1.8 titled Initialization by surrogate reference [over.match.dot]

1. Under the conditions specified in 8.5.3, a reference can be bound directly to a glvalue that is the

result of applying a sequence of member access functions to an initializer expression. Overload

resolution is used to select the member access functions to be invoked. Assuming that “cv1 T” is

the underlying type of the reference being initialized, and “cv S” is the type of the initializer

expression, with S a surrogate reference type, the candidate functions are selected as follows:

 The access member function operator. is looked up in the class scope S (10.2). Those

access member functions with return type “cv2 T2” (when initializing an lvalue reference)

or “cv2 T2” or “rvalue reference to cv2 T2” (when initializing an rvalue reference), where

“cv1 T” is reference-compatible (8.5.3) with “cv2 T2”, are candidate functions.

2. The argument list has one argument, which is the initializer expression.

Append . to the grammar production of operator in paragrtaph 13.5/1 and modify the note as follows:

The last two three operators are function call (5.2.2), subscripting (5.2.1), and dot access. …

Remove . from the list in paragraph 13.5/3.

Stroustrup, Dos Reis Operator Dot P0252R0

5

Add to the end of section 13.5.6 Class member access [over.ref]:

operator. shall be a non-static member function taking no parameters. It implements the class
member access that is not through a pointer, whether the syntax explicitly uses . or not.

postfix-expression . templateopt id-expression
Unless m is explicitly declared to be a public member of x’s class or the destructor, the expression
x.m is interpreted as (x.operator.()).m for a class object x of type T if T::operator.() exists and if
the operator is selected as the best match function by the overload resolution mechanism (13.3).
[Note: If p is a pointer, p->m is interpreted as (*p).m (5.2.5) as ever, and not as (*p).operator.().m
– end note]. [Note: It is “public” rather than “accessible” to prevent x.m to have different
meanings in different contexts for the same x. – end note]
[Example:

 template<typename T>
 class Ref {
 public:
 T& operator.() { return *p; }
 void bind(S*);
 // …
 };

 struct S {
 int m;
 void f();
 Enum E { e1 };
 };

 Void use(Ref<S> r)
 {
 r.bind(new S); // call r.bind(), not r.operator().bind()
 r.m = 1; // r.operator.().m = 1
 r.f(); // r.operator.().f();
 r.E x; // error: a type name cannot appear after dot
 S* p = &r; // p = &r.operator.()
 Ref<S>* p = &r; // error: cannot assign an S* to a Ref<S>*
 p->m = 2; // error: Ref has no member m
 } -- End example]

Multiple operator.()s can be defined for a class. If operator.() is selected to be called and there is more
than one operator.() declared, selection among the operator.()s is done by looking at the specified
member and the return types of the operator.()s. An expression x.m is valid if there is a unique
operator.() with a return type T (or optionally cv qualified reference to T) for which T has a member
public member m. [Example:

struct T1 {
 void f1()
 void f(int);
 void g();

Stroustrup, Dos Reis Operator Dot P0252R0

6

 int m1;
 int m;
 };

struct T2 {
 void f2()
 void f(const string&);
 void g();
 int m2;
 int m;
 };

struct S3 {
 T1& operator.() { return p; } // use if the name after . is a member of T1
 T2& operator.() { return q; } // use if the name after . is a member of T2
 // …
private:
 T1& p;
 T2& q;
};

void (S3& a)
{
 a.g(); // error: ambiguous
 a.f1(); // calls a.p.f1()
 a.f2(); // call a.q.f2()
 a.f(0); // calls a.p.f(0)
 a.f(“asdf”); // call a.q.f string(“asdf”)

 auto x0 = a.m; // error: ambiguous
 auto x1 = a.m1; // a.p.m1
 auto x2 = a.m2; // a.q.m2
} -- end example]

Unary and binary operators are interpreted as calls of their appropriate operator functions (13.5) so that
the previous rule apply [Note: for example, x=y is interpreted as x.operator=(y) which is interpreted as
x.operator.().operator=(y) and ++x is interpreted as x.operator++() – end note]. Implicit or explicit
destructor invocations do not invoke operator.().

