
Concepts	in	C++17	
Andrew	Sutton	asutton@uakron.edu	
Feb	12,	2012	
Document:	P0248	
	

I	 propose	 to	merge	 the	 Concepts	 TS	 into	 the	 International	 Standard	 for	 C++17.	 There	 are	 a	
number	of	compelling	reasons	to	do	this.	

The	design	of	the	Concepts	TS	is	mature.	The	syntax	and	semantics	of	the	TS	are	rooted	in	the	
concepts	design	from	2003	and	2005	[1,	2,	3,	4],	inspired	by	the	work	of	Alex	Stepanov	[EoP],	and	
with	 the	 active	 help	 of	 Alex	 Stepanov	 redefined	 through	 a	 complete	 specification	 of	 the	 STL	
algorithms	 (The	Palo	Alto	 report	 [5]).	Note	 that	only	a	 single	design	 issue	against	 the	TS	was	
accepted	during	the	2015	Kona	meeting.		

An	implementation	of	concepts	is	currently	in	GCC’s	trunk	and	has	been	used	experimentally	(as	
a	branch)	since	2013.	It	is	a	feature-complete	implementation	(modulo	possible	bugs,	of	course).	
These	features	will	ship	in	GCC	6.0.	I	understand	that	initial	work	has	also	begun	in	Clang.	

There	is	significant	user	experience.	There	have	been	early	adopters	and	experimenters	as	long	
as	there	has	been	an	implementation.	Some	users	have	shipped	real	products.	Feedback	from	
these	 users	 has	 been	 invaluable,	 but	 has	 not	 significantly	 affected	 the	 overall	 design	 of	 the	
language	features	in	the	TS.	There	are	a	number	of	libraries	actively	experimenting	with	concepts.	
Examples	include	my	own	Origin	library,	Casey	Carter’s	implementation	of	the	Ranges	TS,	Roland	
Bock’s	port	of	his	sqlpp	library,	and	Tom	Honermann’s	Unicode	text_view	library.	

Concepts	have	been	used	in	educational	settings	demonstrating	that	they	are	easily	taught,	used,	
and	 liked	 by	 students	 that	 are	 not	 C++	 experts	 for	 significant	 projects	 after	 just	 a	 couple	 of	
lectures	of	initial	exposure.	

Non-compiler	issues	reported	thus	far	tend	to	fall	into	two	categories:	“I	want	to	write	template	
metaprograms	with	concepts”	and	“I	want	Haskell	type	classes”.	In	the	first	case,	concepts	is	not	
meant	 to	 eliminate	 all	 current	 metaprogramming	 techniques.	 We	 aim	 to	 make	 template	
programming	 and	 use	 easier	 by	 simplifying	 interface	 specification,	 not	 by	 offering	 a	 concept	
alternative	 to	 every	 metaprogramming	 implementation	 technique.	 In	 the	 second	 case,	 we	
already	 tried	 that.	 The	 current	 approach	 very	 purposefully	 goes	 in	 a	 fundamentally	 different	
direction,	 and	 does	 so	 without	 changing	 lookup	 rules	 or	 limiting	 what	 can	 be	 written	 in	 a	
template.	We	have	done	experiment	to	show	that	we	could	constrain	template	implementations	
as	a	compatible	extension	if	we	so	desired.	However,	engineering	the	details	would	take	time	
and	what	is	currently	available	gives	the	users	what	they	most	ask	for	(better	error	messages,	
better/simpler	notation,	overloading,	and	better	documentation).	

My	sense	is	that	most	people	are	comfortable,	with	the	overall	design.	The	issues	above	are	not	
flaws	in	the	design	of	concepts.	Those	are	requests	for	different	features.		

Ideally,	we	would	like	to	ship	a	concept-based	standard	library	in	C++17,	but	a	TS	(such	as	Ranges)	
might	do.	Users	will	not	use	concepts	seriously	until	they	can	do	so	on	their	favorite	platform.	It	



is	unlikely	that	all	major	compiler	implementers	will	ship	concepts	in	2016,	but	in	2017	they	will	
be	 well	 on	 their	 way.	 We	 already	 know	 that	 concepts	 are	 useful	 for	 library	 design	 and	
implementation—even	without	a	concept-enabled	standard	library.	We	have	concept-enabled	
approximations	of	the	standard	library	in	active	use.	The	current	users	of	concepts	would	like	
better	support,	which	is	likely	to	appear	soon	with	concept’s	inclusion	into	C++17.	This	pressure	
is	likely	to	increase	significantly	after	GCC	6.0	ships.	

Without	 concepts	 supported	 in	C++17,	we	 risk	a	bifurcation	of	 the	C++	user	 community	with	
many	new	libraries	designed	and/or	implemented	around	concepts	and	others	designed	based	
on	 increasingly	 complicated	 uses	 of	 template	 metaprogramming	 to	 compensate	 for	
unconstrained	templates.	Separating	the	C++	library	design	community	into	a	concepts	school	
(relying	on	constrained	templates	offering	precisely	specified	interfaces)	and	an	unconstrained	
school	(relying	on	compiler-time	duck	typing)	would	cause	confusion.	Some	users	will	see	that	as	
yet	another	reason	to	abandon	templates	and	generic	programming	in	favor	of	other	approaches,	
disrupting	the	progress	towards	safer,	more	general,	and	more	efficient	techniques.	The	best	way	
to	avoid	this	is	to	have	concepts	in	the	standard	itself.	

In	conclusion,	we	must	adopt	concepts	for	C++17.	

Bibliography	
	

[1]		B.	 Stroustrup,	 "Concept	 checking	 –	A	more	 abstract	 complement	 to	 type	 checking,"	Oct,	
2003.	

[2]		B.	Stroustrup	and	G.	Dos	Reis,	"Concepts	–	Design	choices	for	template	argument	checking,"	
Oct,	2003.	

[3]		B.	Stroustrup	and	G.	Dos	Reis,	"Concepts	–	syntax	and	composition,"	Oct,	2003.	

[4]		G.	D.	Reis	and	B.	Stroustrup,	"Specifying	C++	concepts,"	Apr,	2005.	

[5]		B.	Stroustrup	and	A.	Sutton,	"A	Concept	Design	for	the	STL,"	Jan,	2012.	

[6]		G.	 Dos	 Reis	 and	 B.	 Stroustrup,	 "Specifying	 C++	 Concepts,"	 in	 Principles	 of	 Programming	
Languages	(POPL'06),	2006.		

[7]		B.	Stroustrup,	"Concept	checking	–	A	more	abstract	complement	to	type	checking,"	2003.	

[8]		G.	D.	Reis,	B.	Stroustrup	and	A.	Merideth,	"Axioms:	Semantics	Aspects	of	C++	Concepts,"	Jun,	
2009.	

	

	

	


