
1

Document number: P0227R0

Date: 2016-02-09

Audience: Library Evolution Working Group

Title: Weakening the iterator categories of some standard algorithms

Reply-to: Thibaut Le Jehan 〈 lejehan.thibaut@gmail.com 〉

Table of Contents

1 Introduction . 2
2 Motivation and Scope . 2
3 Discussion . 3

3.1 Complexity of std::sort 3
3.2 Complexity of std::stable sort 3
3.3 Benefits of sort member functions 4
3.4 Parallel sorting algorithms 5
3.5 Range algorithms . 5

4 Proposed wording . 5
5 Conclusion . 7
6 Acknowledgments . 7

Appendix: Benchmarks . 8

Bibliography 12

1 Introduction

This paper proposes to weaken the iterator categories of several standard
library generic algorithms to reflect the advances in made in the realm of
algorithms. Such changes were already proposed in the Palo Alto report
[1] but were later dropped in the Ranges TS [2], stating that such changes
would be best done in a separate proposal (clause B.2.6). Most of the changes
are based on the algorithmic research done since the standardization of the
standard algorithms, and notably on the advances reported in Stepanov and
McJones’ Elements of Programming [3].

This proposal includes the wording for the new versions of the algorithms,
as well as updated complexities. It also includes some further comments and
benchmarks to demonstrate that weakening the iterator categories of these
algorithms is worth it. We propose to make the following algorithms work
with forward iterators:

• std::inplace merge

• std::sort

• std::stable sort

2 Motivation and Scope

Currently, the functions std::sort and std::stable sort only work with
random-access iterators, making it possible to sort classes such as
std::vector, std::deque and std::string, but not the standard library
containers std::list and std::forward list, which respectively provide
bidirectional and forward iterators. However, both of them have a member
function sort to perform the job, even though sorting through a member
function is hardly a generic approach. Even the recent C++ Core Guidelines
[4] agree on that:

It is probably a dumb idea to define a sort as a member
function of a container, but it is not unheard of and it makes a
good example of what not to do.

That said, std::list::sort and std::forward list::sort have a rea-
son to exist: these algorithms can make more assumptions knowing that they
work on list data structures, allowing for a O(log n) space complexity instead
of a O(n) one for a classic mergesort. Moreover, these functions don’t invali-
date the iterators and even work when the stored elements are not moveable.
These improvements are due to the ability that lists have to relink nodes in-
stead of moving values around. However, this approach is hardly generic: it
only allows to sort full lists instead of arbitrary pairs of iterators, and it forces
to add a corresponding member function sort to custom classes wrapping a

3

list and offering an iterator interface. Weakening the iterator categories of
the generic sorting algorithms would solve both of these problems.

To add to the confusion, the standard mandates that the member func-
tions std::list::sort and std::forward list::sort are stable even though
the name does not reflect the guarantee (while std::stable sort makes it
clear that the algorithm is stable).

Basically, we would like to be able to sort pairs of forward, bidirectional
and random-access iterators through a common algorithm interface. The al-
gorithm std::inplace merge is often a building block of std::stable sort

and clearly influences its complexity guarantees; therefore it makes sense to
weaken its iterator category to forward iterators too (algorithms exist).

3 Discussion

3.1 Complexity of std::sort

Some versions of quicksort work reasonably well with forward iterators with
an average O(n log n) complexity but have a O(n2) worst case complexity.
A simple mergesort may always have a O(n log n) complexity, but it requires
O(n) auxiliary memory. The most efficient sorting algorithms such as in-
trosort [5] and pattern-defeating quicksort [6] only work with random-access
iterators because they need to fall back to a heapsort in order to avoid the
quadratic behavior of quicksort.

We think that the right approach to this problem is to only guarantee an
O(n log n) average complexity for forward and bidirectional iterators, and ei-
ther no worst case complexity or a O(n2) worst case complexity. In C++03,
std::sort has no worst case complexity guarantee, before efficient algo-
rithms with an O(n log n) worst case complexity were discovered. A simple
mergesort has a O(n log n) worst case complexity for forward and bidirec-
tional iterators, but it requires additional memory and std::sort has an
history of not using much additional memory to sort a collection.

3.2 Complexity of std::stable sort

The current complexity mandated for std::stable sort is described as fol-
lows:

It does at most N log 2(N) (where N == last - first) com-
parisons; if enough extra memory is available, it is N log (N).

This description more or less corresponds to a trivial mergesort imple-
mentation using std::inplace merge to perform the merge operation. Since
std::inplace merge accepts bidirectional iterators, it is easy to make

4

std::stable sort work with bidirectional iterators as well, with the exact
same complexity guarantees as with random-access iterators.

In-place merge algorithms also exist for forward iterators, with or with-
out using a temporary buffer, even though the standard library function
std::inplace merge is only guaranteed to work with bidirectional iterators.
In Elements of Programming [3], there is an implementation of an in-place
merge algorithm working with forward iterators which adapts to the available
memory. That algorithm runs in O(n) time hen enough memory is available
and in O(n log n) if no additional memory is available, which means that
a mergesort for forward iterators can run in O(n log n) or O(n log 2n) time
depending on the available memory, which corresponds to the current com-
plexity of std::stable sort for random-access iterators.

3.3 Benefits of sort member functions

std::list::sort and std::forward list::sort can be more efficient than
general-purpose stable sorting algorithms for forward and bidirectional iter-
ators; this is due to the fact that they can relink the list’s nodes instead of
moving or swapping the values. One could say that having general-purpose
sorting algorithms for bidirectional and forward iterators might encourage to
use them on these data structures while they might be less efficient than the
member functions.

While having std::sort call std::list::sort when given list iterators
would be an interesting idea, the standard generic algorithms are not allowed
to alter the containers, and relinking nodes clearly counts as altering the
list; therefore, relinking nodes when using generic algorithms is not a legal
optimization.

To make sure that using a generic version of std::sort on lists wouldn’t
incur a big performance loss, we implemented some basic sorting algorithms
for bidirectional and forward iterators and did some benchmarks. While our
implementations are not as refined as the ones typically found in standard
library implementations, the benchmarks show that some generic sorting
algorithms are not orders of magnitude slower than std::list::sort and
perform rather well (see the appendix). Our sorting algorithms for forward
iterators are not that good compared to std::forward list::sort but we
believe that good implementations might perform better than ours. Also,
note that the benchmarks have been performed with lists of integers and that
node relinking might always outperform our sorting algorithms for objects
that are expensive to move around.

5

3.4 Parallel sorting algorithms

This proposal focuses on the sequential algorithms from the standard library
header <algorithm>, but we believe that the parallel algorithms from the
Parallelism TS [7] could be other targets for such a change. This paper does
not propose to weaken the iterator categories of the corresponding algorithms
in the Parallelism Ts, but we encourage people to check whether it can be
done and to analyze the resulting algorithmic complexities.

3.5 Range algorithms

The Ranges TS [2] is yet another obvious target for such a change. It cur-
rently redefines std::sort and std::stable sort so that they can work
with an [iterator, sentinel) pair or a full iterable.

No change was made to the required iterator category by the Ranges TS;
random-access iterators are still required for every algorithm we propose to
change. Our proposal and the ranges one might be considered at the same
time, in which case we also propose to make the new overloads of std::sort,
std::stable sort and std::inplace merge use the ForwardIterator con-
cept instead of the RandomAccessIterator one, and the ForwardIterable

concept instead of the RandomAccessIterable one.

4 Proposed wording

25.4.1.1 sort [sort]

template<class RandomAccessIteratorForwardIterator>

void sort(RandomAccessIteratorForwardIterator first,

RandomAccessIteratorForwardIterator last);

template<class RandomAccessIteratorForwardIterator,

class Compare>

void sort(RandomAccessIteratorForwardIterator first,

RandomAccessIteratorForwardIterator last,

Compare comp);

1 Effects: Sorts the elements in the range [first, last).

2 Requires: RandomAccessIteratorForwardIterator shall satisfy the
requirements of ValueSwappable (17.6.3.2). The type of *first shall
satisfy the requirements of MoveConstructible (Table 20) and of
MoveAssignable (Table 22).

3 Complexity: O(N logN) (where N == last - first) comparisons
on average. At most O(N logN) comparisons if ForwardIterator

additionally satisfies the requirements of RandomAccessIterator

(Table 110).

6

25.4.1.2 stable sort [stable.sort]

template<class RandomAccessIteratorForwardIterator>

void stable_sort(RandomAccessIteratorForwardIterator first,

RandomAccessIteratorForwardIterator last);

template<class RandomAccessIteratorForwardIterator,

class Compare>

void stable_sort(RandomAccessIteratorForwardIterator first,

RandomAccessIteratorForwardIterator last,

Compare comp);

4 Effects: Sorts the elements in the range [first, last).

5 Requires: RandomAccessIteratorForwardIterator shall satisfy the
requirements of ValueSwappable (17.6.3.2). The type of *first shall
satisfy the requirements of MoveConstructible (Table 20) and of
MoveAssignable (Table 22).

6 Complexity: It does at most N log 2(N) (where N == last - first)
comparisons; if enough extra memory is available, it is N log (N).

7 Remarks: Stable (17.6.5.7).

25.4.4 Merge

template<class BidirectionalIteratorForwardIterator>

void inplace_merge(BidirectionalIteratorForwardIterator first,

BidirectionalIteratorForwardIterator middle,

BidirectionalIteratorForwardIterator last);

template<class BidirectionalIteratorForwardIterator,

class Compare>

void inplace_merge(BidirectionalIteratorForwardIterator first,

BidirectionalIteratorForwardIterator middle,

BidirectionalIteratorForwardIterator last,

Compare comp);

8 Effects: Merges two sorted consecutive ranges [first, middle) and
[middle, last), putting the result of the merge into the range [first,
last). The resulting range will be in non-decreasing order; that is, for
every iterator i in [first, last) other than first, the condition
*i < *(i - 1) or, respectively, comp(*i, *(i - 1)) will be false.

9 Requires: The ranges [first, middle) and [middle, last) shall be
sorted with respect to operator< or comp. BidirectionalIterator

ForwardIterator shall satisfy the requirements of ValueSwappable

(17.6.3.2). The type of *first shall satisfy the requirements of
MoveConstructible (Table 20) and of MoveAssignable (Table 22).

7

10 Complexity: When enough additional memory is available, (last -

first) - 1 comparisons. If no additional memory is available, an algo-
rithm with complexity N log (N) (where N is equal to last - first)
may be used.

11 Remarks: Stable (17.6.5.7).

5 Conclusion

The standard library should make state-of-the-art algorithms available when
those ones are easy enough to implement and strive to weaken the iterator
categories of these algorithms when doing so occurs no obvious drawback.
Sorting algorithms and related algorithms have been studied in depth over
the course of the years, and the algorithms discovered since the birth of
the standard library allow to efficiently implement some standard algorithms
with weakened iterator categories, which is what we propose to standardize
with this paper.

6 Acknowledgments

Thanks to Walter E. Brown for the thorough review of this proposal and for
offering to present it.

8

Appendix: Benchmarks

In order to check whether std::sort and std::stable sort overloads for
forward and bidirectional iterators would be fast enough for production uses,
or abysmally slower than std::list::sort and std::forward list::sort,
we implemented a median-of-9 quicksort, and a mergesort relying on the
std::inplace merge overload for forward iterators based on the algorithms
described in Elements of Programming [3]. The code of the algorithms and
of the benchmarks can be found in the library cpp-sort [8]. The bench-
marks were generated on Windows with MinGW g++ 5.3 and the options
-std=c++14 -O3 -march=native, and thus use the list sorting functions
from libstdc++.

The benchmarks sort collections of one million elements with the given
sorting algorithms and compare the running times. Several patterns are
benchmarked to display how the different sorting algorithms adapt to the pat-
terns present in the collections to sort. It is also worth noting that mergesort
has different implementations for forward and bidirectional iterators: the
one used for forward iterators builds upon a the in-place merge algorithm
from Elements of Programming and uses a few tricks to allocate less mem-
ory, hence the good performance on almost sorted data. The one used for
bidirectional iterators builds upon the std::inplace merge implementation
from libc++ but its implementation is rather trivial, we didn’t make efforts
to optimize it as much as the forward iterators one (the implementation of

9

the bidirectional version almost corresponds to the textbook implementation
of a mergesort).

For the sake of simplicity, we only benchmarked collections of int and
long double values. Be it for forward or bidirectional iterators, there is no
clear winner: the sort method of the lists seem to always be the slowest when
the values are ”truly” random, but it seems to adapt more smoothly to pat-
terns than the other algorithms – except Alternating (16 values). Mergesort
is pretty good for std::forward list when the collection is almost sorted,
but its bidirectional version is almost always the slowest one; it probably has
to do with the fact that the implementation is not as optimized as the for-
ward iterator one, as mentioned in the previous paragraph. Quicksort isn’t
good with patterns, but it is by far the fastest algorithm when the collection
to sort only contains a handful of different values. Also, note that quicksort
can degrade to O(n log 2n) even though none of the benchmarked patterns
trigger this behavior.

10

To sum up: the major difference between the algorithms used to sort for-
ward and bidirectional iterators is the performance difference of mergesort
for some patterns, which is mostly due to the different implementations of
the algorithm. The difference between sorting int and long double values
isn’t obvious, but the sort method of std::list and std::forward list

is comparatively better, especially for std::list. Due to the way lists sort
themselves, we expect that the sort methods become better and better com-
pared to the other algorithms when the size of the objects and the cost of a
move or swap operation grows.

11

Bibliography

[1] B. Stroustrup and A. Sutton. A concept design for the stl.
[Online]. Available: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3351.pdf

[2] E. Niebler. Working draft, c++ extensions for range. [Online]. Available:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf

[3] A. Stepanov and P. McJones, Elements of Programming, 1st ed. Addison-
Wesley Professional, 2009.

[4] B. Stroustrup and H. Sutter. C++ core guidelines. [Online].
Available: https://github.com/isocpp/CppCoreGuidelines/blob/master/
CppCoreGuidelines.md

[5] Wikipedia, “Introsort — wikipedia, the free encyclopedia,” 2015. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Introsort&
oldid=680161322

[6] O. Peters. Pattern-defeating quicksort. [Online]. Available: https:
//github.com/orlp/pdqsort

[7] J. Hoberock. Programming languages technical specification for c++
extensions for parallelism. [Online]. Available: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf

[8] Morwenn. cpp-sort library. [Online]. Available: https://github.com/
Morwenn/cpp-sort

12

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3351.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4560.pdf
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://en.wikipedia.org/w/index.php?title=Introsort&oldid=680161322
https://en.wikipedia.org/w/index.php?title=Introsort&oldid=680161322
https://github.com/orlp/pdqsort
https://github.com/orlp/pdqsort
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4507.pdf
https://github.com/Morwenn/cpp-sort
https://github.com/Morwenn/cpp-sort

	Introduction
	Motivation and Scope
	Discussion
	Complexity of std::sort
	Complexity of std::stable_sort
	Benefits of sort member functions
	Parallel sorting algorithms
	Range algorithms

	Proposed wording
	Conclusion
	Acknowledgments
	Appendix: Benchmarks
	Bibliography

