
Validation of Memory-Allocation Benchmarks Page 1 of 67

Doc No: P0213R0
Date: 2016-01-24

Author: Graham Bleaney (graham@bleaney.ca)

Validation of Memory-Allocation Benchmarks

Abstract

Memory allocation is a fundamental operation that can have a large impact on the

run time of a program. This paper performed a series of benchmarks to measure the
performance of a selection of custom allocators in different memory usage scenarios.
This paper was built on the results reported in P0089R0 “On Quantifying Memory-

Allocation Strategies (Revision 1),” but independently recreated the benchmark code
to verify the data, provided additional conclusions for each benchmark, and added an

additional benchmark.

In each benchmark performed, it was found that at least one of the custom memory

allocation strategies provided performance benefits over the default

std::allocator<> or new/delete operations. It is recommended that the

benchmarks in this report be used as a guide to identify subsystems where custom
memory allocation strategies could be used to improve run-time performance.

All of the benchmarking code written for this paper is publically available at
<https://github.com/gbleaney/Allocator-Benchmarks>

mailto:graham@bleaney.ca
https://github.com/gbleaney/Allocator-Benchmarks

Validation of Memory-Allocation Benchmarks Page 2 of 67

Contents

Validation of Memory-Allocation Benchmarks ... 1

1 Introduction .. 4

2 Disclosure ... 4

3 Navigating this Paper Quickly ... 4

4 Glossary.. 5

5 Allocators Used: Monotonic and Multipool .. 6

6 Allocation Strategies ... 7

7 Benchmarking Strategies .. 9

8 Platform .. 9

9 Benchmark I: Creating/Destroying Isolated Basic Data Structures 9

Benchmark Overview ... 9

Benchmark Presentation .. 12

DS1, vector<int> .. 12

DS2, vector<string>.. 14

Further Benchmarks .. 15

Analysis ... 15

Conclusions ... 16

10 Benchmark II: Variation in Locality (Long Running) .. 16

Benchmark Overview ... 16

Examining the Effect of Diffusion on the Global Allocator..................................... 18

Examining the Effect of Diffusion on a Local Multipool Allocator 20

Comparing the Performance of the Global vs Local Allocator 21

Conclusions ... 22

11 Benchmark III: Variation in Utilization ... 23

Benchmark Overview ... 23

Benchmark Presentation .. 23

Total Allocated Memory T = 230 ... 24

Total Allocated Memory T = 231 through 235 .. 26

Conclusions ... 26

12 Benchmark IV: Variation in Contention .. 27

Benchmark Overview ... 27

Validation of Memory-Allocation Benchmarks Page 3 of 67

Benchmark Presentation .. 28

Number of Iterations N = 100*215, Size of Allocation S = 26 28

Further Tests ... 31

Conclusions ... 31

13 Benchmark V: Creating and Destroying Data Structures with Varied Locality
and Fragmentability .. 32

Benchmark Overview ... 32

Benchmark Presentation .. 33

DS1, vector<int> .. 33

DS2, vector<string>.. 35

Further Benchmarks .. 36

Analysis ... 36

Conclusions ... 36

14 Conclusion ... 37

Appendix 1: Corrected Benchmark I Results from P0089 39

Appendix 2: Elided results from Benchmark I .. 44

Appendix 3: Absolute Run Times for Benchmark II .. 49

Appendix 4: Absolute run times for Benchmark III .. 53

Appendix 5: Elided results for Benchmark III .. 57

Appendix 6: Absolute Run Times for Benchmark IV ... 60

Appendix 7: Absolute Run Times for Benchmark IV, with static buffer removed .. 64

Validation of Memory-Allocation Benchmarks Page 4 of 67

1 Introduction

This paper looks at a series of allocator performance benchmarks and attempts to

provide guidance about the appropriate allocator for different memory usage
scenarios. This paper is built on the results reported in “On Quantifying Memory-

Allocation Strategies (Revision 1)” (doc number P0089R0), but independently
recreates the benchmark code to verify the data, and provides additional conclusions

for each benchmark. P0089R1, a revision of P0089R0, will be published at the same
time as this paper. Unless the revision number is relevant, “P0089” will be used to

refer generally P0089R0 and its future revisions, with the reader encouraged to find
and read the most recent one. Allocators from Bloomberg’s open-source distribution
of the BDE library at <https://github.com/bloomberg/bde> were used for the

benchmarks.

The benchmarks in P0089 had some unexpected and hard to explain results. To

validate or refute these results, the algorithms described in P0089 were re-
implemented and the results were compared. It is important to note that while the

original benchmarking code is available at <https://github.com/bloomberg/bde-
allocator-benchmarks>, the benchmarking code in this paper was recreated from
scratch. This was done to address the possibility of bugs in the original code being

responsible for the unexpected results. The code used to generate the benchmarks in
this paper can be found at <https://github.com/gbleaney/Allocator-Benchmarks>.

2 Disclosure

I, Graham Bleaney, am a former intern of the BDE (“Basic Development

Environment”) team at Bloomberg L.P., and was hired as a contractor for the BDE
team to produce this paper and the benchmarks presented within. The authors of
P0089 are current members of the BDE team.

This paper, the benchmarks in this paper, and the code used to generate the
benchmarks, are entirely my own work, with the exception of some of the explanatory

boilerplate carried over from P0089R0 to this paper.

3 Navigating this Paper Quickly

This paper analyzes a series of benchmarks, each intended to investigate the
behavior of different allocator implementations under particular conditions. Each

benchmark section is broken down into the following subsections:

 Benchmark Overview: Summary of the benchmark’s purpose and algorithm

 Data & Analysis: In depth data and explanations

 Conclusions: Final results and recommendations

Readers bypassing the raw data and analysis may need to use the Glossary (Chapter

4) to help make sense of the language used in the conclusions.

The following is a quick summary of each benchmark:

https://github.com/bloomberg/bde
https://github.com/bloomberg/bde-allocator-benchmarks/tree/master/benchmarks/allocators
https://github.com/bloomberg/bde-allocator-benchmarks/tree/master/benchmarks/allocators
https://github.com/gbleaney/Allocator-Benchmarks

Validation of Memory-Allocation Benchmarks Page 5 of 67

 Benchmark I: Designed to investigate the effects of different allocation
strategies on the run time of creating and destroying basic data structures.

 Benchmark II: Designed to show the effects of local allocators on long running
programs, where fragmentability (F) is high and locality (L) is minimal.

 Benchmark III: Designed to examine the effects of memory utilization (U) on a
system.

 Benchmark IV: Designed to examine the effects of contention (C) a
multithreaded environment on memory allocation performance.

 Benchmark V: Designed to investigate the run time of different allocation

strategies in a more realistic version of Benchmark I, where the fragmentability
(F) is greater than zero.

4 Glossary

This section provides the user with some useful terminology that will help in
understanding the benchmarks in this paper.

Allocation Density (D) - A measure of the relative number of allocation instructions
(allocate and deallocate) to the total number of instructions executed.

Churn – A measure of the number of allocation and deallocations that together result
in no net change to the amount of memory allocated by the system (i.e., deleting four

elements from a list then adding four more results in no net change in the total
amount of allocated memory, but creates churn).

Diffusion – The distribution of a subsystem’s memory throughout the processes

memory. Data structures that use only one chunk contiguous memory, such as a

std::vector<int>, cannot experience diffusion.

Fragmentability (F) – A measure of the potential of a subsystem’s allocated memory
to become diffused throughout physical memory, as a result of the interference of

other subsystems’ memory allocation. If a subsystem is fragmentable (i.e., other
subsystems are present in the process and the subsystem allocates more than one

chunk of memory), (F) is greater than zero.

Global Allocator – Used to generically refer to the system’s default allocator,

accessed via new/delete or std::allocator. These two methods of allocation are

defined as AS1 and AS2 respectively in Chapter 6: “Allocation Strategies”

Local Allocator – An allocator that is scoped to provide memory to a proper subset of
objects (one or more), rather than the entire process. The monotonic and multipool
allocators, outlined in Chapter 5: “Allocators Used: Monotonic and Multipool,” are

examples of local allocators.

Locality (L) – A measure of how physically and temporally close a subsystem’s

memory is to the current execution state (i.e., when the memory was last accessed
and where it is relative to the memory currently being accessed). Approximated as 𝐿 =

𝐼

𝑀∗𝑇
 with the terms defined as:

Validation of Memory-Allocation Benchmarks Page 6 of 67

 I – The number of instructions executed in the subsystem over the duration of
interest

 M – The size of the memory footprint of the subsystem accessed for the
duration of interest

 T – The number of context transitions out of the subsystem during the
duration of interest

Utilization (U) - The maximum amount of memory that was actively in use by the
system, divided by ‘total’ amount of memory that has ever been allocated in a system.

Variation (V) – The extent to which the size of memory allocated in a system varies

over time. An example of the lowest possible variation would be when chunks of only
one given size were allocated throughout an entire subsystem’s execution.

Winking Out – The process of destroying objects in a data structure en masse by
releasing the memory they occupy, along with all the memory they manage, via their

allocator’s release method. This is defined behavior according to the standard (see

section 3.8 Object lifetime [basic.life]).

5 Allocators Used: Monotonic and Multipool

The allocators used in this paper are the same as those used in P0089: the

“monotonic” and “multipool” allocators. An edited version of the explanation from
P0089R0 is included here for the reader’s convenience.

A monotonic allocator supplies memory from a contiguous block, sequentially, until

the block is exhausted, and then dynamically allocates new blocks of geometrically
increasing size, typically from the global allocator. Returning memory to a monotonic

allocator is a no-op: Any returned memory remains unavailable until the monotonic-
allocator object itself is destroyed. Bloomberg’s

bdlma::BufferedSequentialAllocator was the implementation that was used for

the benchmarks in this paper.

A multipool allocator consists of an array of (adaptive) pools, one for each
geometrically increasing request size in a range up to some specified maximum. Each

time memory is requested, the memory is provided from the most appropriately sized
pool. Freed memory is returned to the pool it came from. When the pool has no free
memory, the allocator delivers memory from increasingly larger blocks obtained from

the backing allocator (by default, the global allocator). This growth may be capped at
some (empirically determined) limit, after which allocated blocks are all of the

maximum size. Requests that exceed the maximum pool size pass directly through to

the backing allocator. Bloomberg’s bdlma::MultipoolAllocator was the

implementation that was used for the benchmarks in this paper.

The combination of a multipool allocator backed by a monotonic allocator forms the

third allocator candidate that we consider in this paper.

Both monotonic and multipool allocators are “managed”. A managed allocator is an

allocator that, in addition to its allocate and deallocate methods, has a release

Validation of Memory-Allocation Benchmarks Page 7 of 67

method that can be used to summarily return all of the memory it manages to its

backing allocator. The release method is called implicitly upon destruction of a

managed allocator.

For objects placed in memory obtained from a managed-allocator object, and

managing no non-memory resources themselves, we can avoid running the objects’
destructors. Instead, they can be “winked out” en masse by releasing the memory

they occupy, along with all the memory they manage, via their allocator’s release

method.

The runtime benefits of bypassing individual destruction of each element in a
container can be significant, as deallocating memory can sometimes be costlier than

allocating it. Note that this “winking out” technique requires new-ing the container

object itself into the managed allocator it is to use, so that (1) its destructor is not

called, and (2) its footprint is also released when the allocator goes out of scope. Also
note that this behavior is fully defined in the current standard, so long as no

“winked-out” object is subsequently accessed (see section 3.8 Object lifetime
[basic.life]).

6 Allocation Strategies

The allocation strategies used in this paper are the same as those used in P0089. An
edited version of the explanation from P0089R0 is included here for the reader’s

convenience.

In this paper, up to 14 different allocation strategies are considered for each of the

benchmarks to be presented. The first of these strategies will be the default global

allocator (std::allocator, bound at compile time) which will form the baseline for

each successive comparison. The same object code will be produced, regardless
whether the default allocator is explicitly or implicitly specified, so these are treated

as the same case and used interchangeably in the benchmarks.

The second allocation strategy is the new delete allocator supplied via an abstract
base class. This allocator will demonstrate the additional overhead on compilers that

do not elide runtime dispatch. Bloomberg’s bslma::NewDeleteAllocator is the

implementation used for the benchmarks in this paper.

The remaining 12 allocation strategies are comprised of all possible combinations of
the following three categories:

Monotonic

Multipool

Monotonic (Multipool)

Type Parameter

Abstract Base

Normal Destruction

(Magically) “Winked Out”
 X X

Validation of Memory-Allocation Benchmarks Page 8 of 67

The first column represents the allocators themselves. The first entry is a monotonic
allocator, the second is a multipool allocator, and the third is a multipool allocator

backed by a monotonic allocator. The second column indicates whether the allocator
is invasively bound into the type of the container or is (non-invasively) passed via an

abstract base class. The third column indicates whether the container was destroyed
naturally or, instead, “winked out” by virtue of letting the supplied managed allocator

go out of scope.

Label Allocator type Allocator binding Destruction of allocated
objects

AS1 Default Global

Allocator

Type Parameter Normal Destruction

AS2 New/Delete Allocator Abstract Base Normal Destruction

AS3 Monotonic, Type Parameter Normal Destruction

AS4 Monotonic Type Parameter “Winked Out”

AS5 Monotonic Abstract Base Normal Destruction

AS6 Monotonic Abstract Base “Winked Out”

AS7 Multipool Type Parameter Normal Destruction

AS8 Multipool Type Parameter “Winked Out”

AS9 Multipool Abstract Base Normal Destruction

AS10 Multipool Abstract Base “Winked Out”

AS11 Monotonic(Multipool) Type Parameter Normal Destruction

AS12 Monotonic(Multipool) Type Parameter “Winked Out”

AS13 Monotonic(Multipool) Abstract Base Normal Destruction

AS14 Monotonic(Multipool) Abstract Base “Winked Out”

Table 1: Allocation Strategies

Validation of Memory-Allocation Benchmarks Page 9 of 67

7 Benchmarking Strategies

Benchmarking very quick operations, such as allocating memory for a single data

structure, requires the operation to be repeated many times in order to provide a
reasonably consistent and noise-free sample. This technique creates a problem

because allocating and then immediately deallocating memory for a data structure
has no explicitly programmed effect beyond the scope of the loop running the

allocation. A good optimizer may be able to spot this “no op” and elide the entire

benchmark. The benchmarks described in this paper use the escape and clobber

functions described by Chandler Carruth in his CppCon 2015 talk titled "Tuning
C++: Benchmarks, and CPUs, and Compilers! Oh My!" These functions essentially

trick the compiler into thinking that the allocated memory is used, by passing a
pointer to the data into a piece of empty assembly code that has been labeled as

volatile. These escape and clobber methods are used in lieu of various strategies

such as writing to elements “using memset via a pointer-to-volatile,” which were

used in P0089R0.

Benchmarks are also sensitive to other processes running on the machine. Wall time
measures the span of time between when a program starts and when it finishes,

which would include the time that the CPU spent running other processes. CPU time
measures the amount of time that a program actually spends executing on the CPU.

In order to more accurately determine the amount of time the benchmark code alone

spends executing, CPU time was used*. CPU time was determined using std::clock.

Another important aspect of benchmarking is ensuring that each benchmark is run
in a consistent environment. In order to keep the environment as consistent as

possible, each entry of each table in this paper was run in its own process. All of the

initial boiler plate was set up in the parent process. For each table entry, fork() was

called, duplicating the environment and creating a child process. The benchmark was
run on the child process, the result was outputted, the child process was exited, and
then the parent kicked off another child process to produce the next table entry.

8 Platform

The benchmarks in this paper were compiled using Clang 3.6 and run on Amazon

Web Services (AWS) r3.2xlarge virtual servers, with High Frequency Intel Xeon E5-
2670 v2 (Ivy Bridge) Processors, 8 vCPUs, and 61 GiB of memory.

9 Benchmark I: Creating/Destroying Isolated Basic Data Structures

Benchmark Overview

This benchmark was designed to investigate the effects of different allocation

strategies on the run time of creating and destroying basic data structures.

In this experiment, a variety of isolated composite data structures were created, filled
with data, and then destroyed. The set of data structures specified by P0089 is used

* CPU time could not be used in Benchmark IV, for reasons expanded upon in Section 12

Validation of Memory-Allocation Benchmarks Page 10 of 67

here. This set consists of twelve representative standard-library data structures – the

fifth through twelfth (Table 3) being, respectively, std::vectors and

std::unordered_sets of elements containing each of the first four data structure

types (Table 2). The full list is shown in the combined Table 2 and Table 3:

DS1 vector<int>

DS2 vector<string>

DS3 unordered_set<int>

DS4 unordered_set<string>

Table 2: The four basic data structures used by Benchmark I

DS5 vector<vector<int>>

DS6 vector<vector<string>>

DS7 vector<unordered_set<int>>

DS8 vector<unordered_set<string>>

DS9 unordered_set<vector<int>>

DS10 unordered_set<vector<string>>

DS11 unordered_set<unordered_set<int>>

DS12 unordered_set<unordered_set<string>

Table 3: The 8 composite data structures used in Benchmark I

 The algorithm used in this benchmark can be illustrated as:

1) Allocate: Allocate the outer data structure for DS## (where DS## could be

DS1-DS12).

2) Reserve: Reserve space for E elements in the data structure.

3) Populate: Fill the allocated data structure with E elements, allocated using the

same allocator.

4) Deallocate: Deallocate the data structure normally or via the “wink out”
technique.

Validation of Memory-Allocation Benchmarks Page 11 of 67

5) Repeat: Perform steps 1 through 4, a total of 2,560 times.

The values presented in the tables in this chapter are the run time of all five steps.

In the case of DS1 through DS4, the E elements that were inserted into the data

structure were ints or strings. For DS5-DS12, these E elements were data

structures of types DS1-DS4, containing exactly 27 = 128 leaf nodes (ints or

strings).

This process of creating and destroying each data structure was repeated many times

to allow for meaningful measurements. In order to allow for comparisons across data
structures of different sizes, the product of the data structure’s size (in terms of leaf

elements) and the number of creation and destruction iterations was held constant at

an arbitrarily chosen value of 227. That is, the data structure associated with row 28
of any of the first four data structures (DS1-DS4) will be created and destroyed

227−8 = 219 times during the benchmark. Note that for data structures DS5-DS12,
where the number of leaf elements being constructed per immediate element is

increased by a constant factor (e.g., 27), a corresponding drop in iterations occurs,
thereby keeping the benchmarks roughly comparable in terms of total number of leaf
elements created (see below).

The “Reserve” step of the algorithm explicitly pre-sizes the data structure to have the
capacity required to store all the elements to be inserted. This pre-sized capacity

means that no additional memory allocation will occur to resize the instances of

std::vector or rehash all the elements of the instances of std::unordered_set

into new buckets.

Each string’s length was chosen randomly over a uniform distribution between 33

and 1000†, which is deliberately outside the range where the short-string
optimization pertains. The container implementations are the native ones for the

platform. For container elements that required an allocator, such as string, the root

container’s allocator was explicitly passed to them to prevent the default allocator

from being used. The monotonic allocators used in AS3 to AS6 and AS11 to AS14
were supplied with a statically allocated buffer of 230 bytes, just as was done in
P0089.

Benchmarks were run on every combination of the 12 data structures above,
employing each of the 14 allocation strategies discussed in Chapter 6, for data sizes

ranging from 26 to 216 nodes in the outer data structure (recall that for DS5-DS12,
each “node” is actually a data structure containing 27 elements). Results that differed

from the results in P0089, and those that display interesting behavior are included in
the body of this report. During the development of these benchmarks, it was
discovered that some of the columns of data in the Benchmark I section of P0089R0

were transposed. The comparisons in this paper will be made against the corrected
data, which is available in “Appendix 1: Corrected Benchmark I Results from P0089”.

† Note that P0089R0 mistakenly specified 33-100 here; however, the benchmarks actually used 33-
1000

Validation of Memory-Allocation Benchmarks Page 12 of 67

Benchmark Presentation

As with P0089, all tables for this benchmark are presented as heat maps in terms of
run times in seconds. The first column, 26 through 216, indicates the size of the data

structure constructed – e.g., for data size 28, the outermost data structure is built up
to have 28 = 256 elements before being destroyed.

Note that, in each of the tables below, green indicates substantially shorter run times
whereas yellow, orange, and especially red indicate longer run times. Dark red is

anchored at the maximum value in the table, and dark green is anchored at the
minimum value in the table. When reading the results, be aware that heat maps can
be misleading when comparing between data sets with differing spread sizes or with

outliers.

DS1, vector<int>

This section presents the results of Benchmark I run using a vector<int> (DS1).

Table 4 shows the DS1 results from this paper and Table 5 shows the corrected
results from P0089. Some aspects of these results are similar, such as the decrease

in run time corresponding to the increase in data size (i.e. moving from top to bottom
in the tables). This observation makes sense when considering that all the memory

for a vector of ints can be allocated in one contiguous chunk. As data size

increases, the amount of memory being allocated remains the same, but the

allocations are being done in larger chunks, resulting in fewer total operations and
thus lower run times. Note that this inverse relationship between runtime and data
size is an exception rather than the rule; further benchmarks in this chapter show

run time increasing or staying the same as the data size increases.

There are two major differences between the results presented in this paper and

those in P0089. First, the results presented in P0089 show around 3x worse
performance for the global allocator when compared to the results generated for this

paper. Secondly, the results presented in P0089 show the non-wink and non-virtual
columns (AS3, AS7, and AS11) performing much better relative to the other columns
for each local allocator. This observation is in stark contrast to the results presented

in this paper, where all four variations for each local allocator perform fairly
comparably.

The differences between the results presented in these two papers can likely be
attributed to the different platforms used. When the code written for P0089 was run

on the platform outlined in Chapter 8 of this paper, the results matched the ones
generated here (Table 4).

The main result from this section is that all of the allocation strategies performed

comparably, with the exception of the multipool allocator. At lower data sizes, the
multipool allocator represented a clear pessimization compared to the others. On the

other hand, the monotonic allocation strategies had a slight edge over the others.

Quantitatively, the results in this paper showed that the monotonic allocator, across

its various configurations (AS3-6), ran in 81%-100% (average 96%) of the time taken

Validation of Memory-Allocation Benchmarks Page 13 of 67

by the global allocator (AS1). Running in less than 100% of the time of AS1 indicates
that the monotonic allocator was an optimization relative to the global allocator. The

multipool allocation strategies (AS7-10) ran in 100%-275% (average 130%) of the time
taken by the global allocator (a sizable pessimization). Finally, the multipool +

monotonic allocation strategies (AS11-14) ran in 100%-175% (average 114%) of the
time taken by the global allocator (another pessimization). On average, monotonic

allocator offered performance improvements over the default global allocator in this
test. The other two allocators resulted in an average decrease in performance.

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 0.42 0.44 0.35 0.34 0.34 0.35 0.91 1.13 0.90 1.15 0.68 0.73 0.69 0.73

27 0.35 0.36 0.31 0.31 0.31 0.32 0.59 0.71 0.59 0.72 0.48 0.51 0.48 0.50

28 0.32 0.32 0.30 0.29 0.30 0.30 0.44 0.50 0.44 0.49 0.38 0.39 0.38 0.39

29 0.30 0.30 0.29 0.29 0.29 0.29 0.36 0.39 0.36 0.39 0.33 0.34 0.33 0.34

210 0.29 0.29 0.28 0.28 0.28 0.28 0.32 0.33 0.32 0.34 0.30 0.31 0.31 0.31

211 0.28 0.29 0.28 0.28 0.28 0.28 0.30 0.30 0.30 0.31 0.29 0.29 0.29 0.29

212 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29

213 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.29 0.28 0.29 0.28 0.28 0.28 0.28

214 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

215 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

216 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28

Table 4: DS1, vector<int>, from the benchmarks written for this paper

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 1.18 1.86 0.27 0.37 0.42 0.44 0.80 1.01 0.90 1.06 0.62 0.69 0.77 0.67

27 0.92 1.59 0.25 0.39 0.41 0.41 0.51 0.70 0.64 0.70 0.45 0.51 0.60 0.52

28 0.81 1.00 0.25 0.38 0.38 0.35 0.35 0.59 0.51 0.61 0.31 0.46 0.51 0.47

29 0.75 0.95 0.22 0.36 0.39 0.35 0.31 0.46 0.45 0.46 0.26 0.43 0.42 0.40

210 0.74 0.94 0.21 0.34 0.38 0.36 0.24 0.43 0.43 0.42 0.25 0.38 0.40 0.38

211 0.75 0.94 0.21 0.33 0.36 0.32 0.22 0.39 0.40 0.41 0.24 0.38 0.37 0.38

212 0.74 0.94 0.21 0.34 0.38 0.36 0.22 0.37 0.39 0.40 0.22 0.37 0.37 0.37

213 0.76 0.93 0.20 0.32 0.36 0.40 0.21 0.38 0.39 0.37 0.24 0.36 0.37 0.37

214 0.77 0.93 0.20 0.33 0.39 0.39 0.21 0.38 0.36 0.38 0.20 0.36 0.39 0.37

215 0.77 0.94 0.20 0.32 0.37 0.37 0.21 0.39 0.36 0.39 0.21 0.36 0.38 0.36

216 0.78 0.94 0.21 0.36 0.36 0.37 0.21 0.36 0.36 0.39 0.20 0.36 0.37 0.36

Table 5: DS1, vector<int>, from P0089

Validation of Memory-Allocation Benchmarks Page 14 of 67

DS2, vector<string>

This section presents the results of Benchmark I run using a vector<string> (DS2).

These results can be found in Table 6.

Qualitatively, the results presented in this section appear to show similar patterns to
the corrected results from P0089 (found in Appendix 1: Corrected Benchmark I

Results from P0089); the monotonic allocator performed the best, with the multipool
+ monotonic allocator coming in as a close second. Both the monotonic and multipool

+ monotonic allocators were an optimization over the global allocator. In both tests,
all of the allocators experienced performance degradations as the data size increased.

The one place where the benchmarks differ is the global allocator. The global
allocator performed significantly worse, relative to the other allocators, in P0089 than
in this paper. This worse performance makes the difference between the multipool

being an optimization over the global allocator in P0089 and a pessimization over the
global allocator in this paper. Irrespective of the multipool’s performance relative to

the global allocator, it is consistently the worst performing of the three local allocator
combinations tested in this benchmark.

Quantitatively, the results in this paper showed that the monotonic allocator, across
its various configurations (AS3-6), ran in 28%-67% (average 48%) of the time taken
by the global allocator (an optimization). The multipool allocator (AS7-10) ran in 84%-

255% (average 155%) of the time taken by the global allocator. Finally, the multipool
+ monotonic allocator (AS11-14) ran in 32%-77% (average 59%) of the time taken by

the global allocator.

← global → ← Monotonic → ← multipool → ← multi + mono →

virtual

 ← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 10.77 11.28 6.75 6.39 6.74 6.37 9.53 9.44 9.55 9.46 8.06 7.75 8.07 7.76

27 10.63 11.43 6.30 5.95 6.30 5.88 9.44 9.09 9.32 8.98 7.76 7.35 7.75 7.38

28 13.55 14.00 9.12 8.72 9.12 8.69 28.95 28.00 28.86 28.32 10.65 10.53 10.69 10.60

29 14.76 15.30 9.76 9.41 9.73 9.39 34.16 33.67 34.25 33.60 11.12 10.74 11.16 10.75

210 14.99 15.55 9.63 9.28 9.64 9.27 36.84 36.00 36.98 36.17 11.18 10.63 11.21 10.67

211 15.30 32.13 9.70 9.35 9.70 9.34 38.93 37.93 39.01 37.97 11.23 10.60 11.25 10.63

212 32.62 33.06 9.75 9.38 9.75 9.39 40.39 39.02 40.43 39.13 11.29 10.65 11.31 10.67

213 33.13 33.70 9.76 9.40 9.76 9.41 38.22 36.66 38.36 36.84 11.31 10.66 11.34 10.68

214 33.49 34.05 9.76 9.41 9.77 9.41 36.55 34.99 36.95 35.23 11.32 10.65 11.34 10.68

215 36.01 36.60 10.51 10.02 10.57 10.11 47.38 45.44 48.04 45.92 16.60 16.54 16.59 16.85

216 46.45 47.33 20.16 19.92 20.04 20.12 55.82 53.98 56.61 54.78 26.36 26.94 26.61 27.67

Table 6: DS2, vector<string>, from the benchmarks written for this paper

Validation of Memory-Allocation Benchmarks Page 15 of 67

← global → ← Monotonic → ← multipool → ← multi + mono →

virtual

 ← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 68.90 67.30 12.90 12.80 13.30 12.90 18.10 17.80 18.20 17.70 15.50 14.80 15.60 14.80

27 68.80 68.20 12.80 12.90 13.20 12.90 20.60 20.20 20.60 20.40 15.10 14.30 15.00 14.40

28 70.80 68.90 13.20 12.80 13.60 12.90 30.80 30.40 30.70 30.30 15.30 14.60 15.40 14.70

29 73.10 71.20 13.50 13.50 13.90 13.50 38.20 37.60 38.00 37.30 15.90 15.10 15.90 15.10

210 75.40 74.30 13.60 13.50 14.00 13.70 41.10 40.30 41.60 40.90 16.00 15.10 15.90 15.00

211 76.90 74.50 13.60 13.50 14.10 13.60 43.90 43.20 43.70 42.60 16.00 15.00 16.00 15.10

212 76.10 74.80 13.70 13.50 14.00 13.60 41.20 38.80 40.60 39.40 15.90 14.90 15.80 15.00

213 76.10 74.80 13.60 13.60 14.00 13.60 41.40 39.20 41.30 39.90 15.90 15.00 15.80 14.90

214 78.30 76.50 13.60 13.60 14.00 13.60 45.80 42.30 44.80 44.00 16.10 15.20 16.20 15.40

215 90.40 91.00 20.20 20.10 20.50 20.10 62.20 58.70 62.20 58.20 26.00 25.00 26.00 24.90

216 103.00 103.00 21.50 21.30 21.80 21.30 66.50 59.20 65.10 59.90 27.00 25.30 27.10 25.20

Table 7: DS2, vector<string>, from P0089

Further Benchmarks

The rest of the benchmarks reproduced for this chapter show similar performance to

the corrected results from P0089, with the exception of the degraded performance of
the global allocator.

Throughout the remaining benchmarks, the monotonic (AS3-AS6) and multipool +

monotonic (AS11-AS14) allocation strategies consistently offered performance
improvements over the global allocator. The monotonic allocation strategies took

between 24%-92% of the time taken by the global allocator, with an average of 48.7%.
The multipool + monotonic allocation strategies took between 31%-93% of the time

taken by the global allocator, with an average of 59.7%. The multipool allocation
strategies (AS7-AS10) were sometimes better and sometimes worse than the global
allocator, but were on average worse. The multipool allocation strategies took

between 43%-292% of the time taken by the global allocator, with an average of
118%.

For those interested, the results of the tests for DS3-DS12 have been included in
“Appendix 2: Elided results from Benchmark I”.

Analysis

This benchmark produced a lot of data, which can be overwhelming when examined
in its entirety. This section covers some aggregate numbers extracted from the
benchmark results.

The first feature of the data examined was the cost of virtual function calls. Over all
the combinations of allocators, data structures, and data sizes, the average overhead

of accessing an allocator via a virtual function call was 0.78%.

Validation of Memory-Allocation Benchmarks Page 16 of 67

The next feature examined was the “winking out” technique. Over all the
combinations of allocators, data structures, and data sizes, “winking out” resulted in

an 8.4% reduction in run time.

Finally, the run time of the tests used each allocation strategy was calculated as a

percentage of the run time of AS1 for a given row (i.e. if AS1 took 10s and AS2 took
11s, the percentage for AS2 would be 110%). These ratios were then averaged across

every data structure and are presented in Table 8. Clearly, the monotonic (AS3-AS6)
and monotonic + multipool (AS11-AS14) allocation strategies caused an overall
performance improvement relative to the global allocator. The multipool (AS7-AS10)

allocation strategies caused an overall performance degradation.

global ← Monotonic → ← multipool → ← multi + mono →

virtual

 ← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

105.06 54.86 50.23 54.90 50.52 125.73 118.97 125.69 118.97 66.69 61.72 66.60 61.66

Table 8: Average run times of allocation strategies as a percentage of AS1

Conclusions

Overall, the monotonic allocator provided the largest performance improvement in
this benchmark, when given a static buffer. Given the demonstrated and theoretical

properties of the monotonic allocator, it would be advisable to use a monotonic
allocator in situations similar to this benchmark, where large amounts of memory are

being allocated, used, and then deallocated. Note that this recommendation does not
hold in situations dissimilar from this benchmark, such as in Benchmark IV where

there is high churn.

A second conclusion that can be drawn is that the “winking out” technique provides a
sizable runtime benefit (8.4% reduction in run time) and should be considered when

possible. Finally, accessing an allocator through a virtual function call has a small,
but measurable, runtime performance overhead (0.78% increase in run time in this

benchmark). This slight overhead can likely be mitigated some optimizers. Whether
or not the convenience is worth the overhead of a virtual function call will vary from

use case to use case, and platform to platform.

10 Benchmark II: Variation in Locality (Long Running)

Benchmark Overview

This benchmark was designed to show the effects of local allocators on long running

programs, where subsystems have a high potential for fragmentation (F) and
temporal or physical locality (L) is low.

This benchmark emulates a long running system through three major steps:

1) Creation: A collection of subsystems, represented as

std::vector<std::list<int>>, is created and populated

Validation of Memory-Allocation Benchmarks Page 17 of 67

2) Shuffling: The contents of the subsystems are swapped around to emulate the
diffusion of each subsystems memory in a long running program

3) Usage: The values in the subsystems are accessed and modified. This step is
timed to measure the effect of the shuffling step

During the creation step, an std::vector is instantiated and filled with k entries of

std::list<int>. Each list is filled with S ints, of increasing values. The total

system size is characterized by G = k * S. The vector of lists is illustrated in

Figure 1.

Figure 1: Diagram of Benchmark II system configuration

During the shuffle step, the data in the k lists is shuffled by visiting each list in turn,

popping from the front, and pushing onto the back of a randomly chosen list. This

process is repeated S times, so that every element has been popped and pushed at

least once. This entire shuffling process of popping and pushing k * S elements is

then repeated 5 times. Note that during the additional shuffles, some lists may be
encountered that have no elements left in them. In these cases, the empty list is
skipped.

During the usage step, each of the lists is then accessed, according to an access

factor, af, and a repeat factor, rf. The access factor (af) determines how many times

each list is traversed before moving on to the next one. For example, with an af of 2,

the first list would be traversed from beginning to end twice, and then the process

would move on to the next list. Every time an element is touched during iteration, its
value is incremented (in part ensure that the access is not elided during the

optimization phase).

The repeat factor (rf) determines how many times the entire vector of lists is

traversed. For example, with a rf of 2, the test would travel through the vector,

accessing each list the number of times specified by the af, and then it would travel

through the vector a second time and access each list again. The product of af and

 G:

S S S S S S S . . . S

Physical System Size |G| = k * |S|

k

Validation of Memory-Allocation Benchmarks Page 18 of 67

rf is held constant at 2560, meaning a multiplicative increase in af is matched by a

corresponding decrease in rf.

To measure the effect the shuffling step had on the usage step, two tests were run for
each table presented in this section. The first test omitted the shuffling step and was

timed, to get a baseline for how long the usage step took, without any induced
diffusion in the subsystems. Note that some diffusion may have occurred naturally

due to the way the system allocated memory. The second test executed the shuffling
step as specified above, and the usage step was then timed. Table 9 and Table 10 in

this chapter depict the ratio of the shuffled usage to unshuffled usage. The absolute
run times for each table, with and without the shuffling step, have been included in

Appendix 3: “Absolute Run Times for Benchmark II”.

Examining the Effect of Diffusion on the Global Allocator

Table 9 depicts the ratio of the time the usage step took when the shuffling step had
been executed, to the time the usage step took when the shuffling step had not been

executed. The lists in this table all used the global allocator (AS1). The higher (and
redder) a number is, the worse the system performance was post-shuffle.

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)

221 1.01 1.00 0.99 1.00 1.01 0.99 1.01 1.01 1.00 20

N
u

m
b

er o
f Lists (k

)

220 8.29 8.56 8.33 8.26 8.38 8.44 8.18 8.33 8.39 21

219 19.52 20.73 19.92 19.19 21.86 19.04 20.04 18.36 17.28 22

218 10.75 10.63 11.58 11.63 12.35 13.56 15.35 17.11 17.77 23

217 8.74 8.55 8.94 9.69 10.29 11.76 12.85 15.89 18.09 24

216 6.39 6.58 6.74 6.96 7.66 8.80 10.95 14.23 18.18 25

215 6.61 6.65 6.76 6.91 7.55 8.36 10.31 13.52 17.95 26

214 6.65 6.68 6.78 6.90 7.52 8.61 10.15 13.38 18.13 27

213 7.87 7.95 7.90 8.09 8.87 9.73 11.37 14.22 18.14 28

212 6.48 6.64 6.72 6.87 7.73 8.38 10.84 13.68 18.22 29

211 4.06 4.14 4.82 5.11 5.58 6.76 9.20 13.22 18.15 210

210 4.54 4.84 4.99 5.27 6.31 7.66 10.31 13.77 18.29 211

29 3.34 3.85 3.94 4.38 5.27 6.83 9.75 13.48 18.54 212

28 2.07 2.58 2.44 3.05 3.81 5.81 8.99 13.45 18.24 213

27 1.86 1.98 2.15 2.88 3.79 5.50 8.66 13.41 18.02 214

26 1.47 1.67 1.98 2.50 3.47 5.45 8.60 13.10 18.01 215

25 1.42 1.59 1.93 2.75 4.21 6.51 10.76 15.76 16.32 216

24 1.35 1.61 2.11 3.01 4.50 7.60 12.09 16.60 17.96 217

23 1.40 1.73 2.26 3.35 5.39 8.38 13.62 16.44 17.87 218

22 1.33 1.74 2.19 3.35 5.35 9.16 14.33 16.59 16.02 219

21 1.40 1.69 2.25 3.24 4.86 8.75 12.31 13.16 10.66 220

20 1.26 1.51 1.98 2.86 4.22 6.45 8.41 8.17 6.87 221

Table 9: Problem size G = 221 with global allocator, ratio of test with shuffle to test without

Validation of Memory-Allocation Benchmarks Page 19 of 67

Qualitatively, the results produced in Table 9 of this report show similar patterns to
the equivalent results in Table 16 of P0089R0. The one major exception to this is that

the data presented in POO89 showed an increase in relative run time in the af=23

through af=21 entries of the final row. Conversely, in this benchmark, these cells

show a decrease in relative run time, when looking through the table top to bottom.

The first row of Table 9 is essentially all ones, which means that shuffling the lists

had no effect on the run time. This observation makes sense – especially when one
considers that the first row corresponds to a test where there is only one list. The
“shuffling” in first row of the table consists of elements being taken off the front of the

list, and pushed directly on to the back of the list. Thus, the “shuffled” list consists of
a series of nodes that were allocated sequentially, which is essentially the same as an

unshuffled list.

Moving down Table 9, the second and third rows show worsening post-shuffling

performance, relative to the performance of the test without shuffling. This
degradation makes sense because the system has been broken up into a few lists,
each of which are still quite long. The hypothesis is that, as the test iterates over

these lists, the memory being accessed is likely diffused throughout the process’s
memory, thus requiring more time to retrieve and increment.

Beyond the third row and moving down Table 9, the performance of tests with higher

af (left side of the table) improves relative to the baseline, however, the performance

of the lower af tests (right side of the table) do not. Recall that a lower af means that

tests further left in the table iterate over each list more times before moving on to the

next list in the vector. This observation may explain the improved performance on the
left side of the table: Once lists are small enough, more of the list would be able to fit

into various system caches, allowing subsequent iterations over the list to benefit
from the caching. On the right side of the table, even if the whole list could fit into the

cache, each list is accessed fewer times before moving on, resulting in less of a
benefit. In the most extreme case, each list in the tests for the right-most column of
the table is accessed exactly once before moving on.

On the right side of Table 9, in the rows corresponding to list lengths 25 through 22,
performance once again degrades relative to the unshuffled baseline. It may be that

the benefits of caching are felt less when the lists are short, however, this is a
tenuous explanation.

The final row of Table 9 shows the best relative performance for each column, with
the exception of the first row. The effect of caching appears to still play a part, since
the tests with higher access factors (left side) performed better than the tests with

lower access factors (right side). The gap between the lower af and higher af

columns appears to have narrowed in the final row. Recall that in this final row, each

list contains (on average) only one element, which means the test is not hopping
around the process’s memory to retrieve multiple elements in the list. The relative

performance gain from not having to jump around the process’s memory retrieving
shuffled elements would apply across the board. It was suspected that the

Validation of Memory-Allocation Benchmarks Page 20 of 67

performance gain, relative to entries higher in the columns, would be more obvious
on the right side of the table where it is assumed caching would be playing a smaller

part. This hypothesis is consistent with the results seen in the final row of the table.

Examining the Effect of Diffusion on a Local Multipool Allocator

Table 10 shows the results of a test identical to the one shown in Table 9, with the

exception that a local allocator is used for each list, rather than the global allocator
(shared by all the lists). The local allocator used was a multipool allocator. The

monotonic allocator was not used in any form, because it never gives up any
memory. The behavior of not giving up any memory is particularly ill suited to this
benchmark, because the shuffle process would result in a large amount of allocated

memory that would then be no longer in use.

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)

221 1.00 1.01 1.00 1.00 1.00 1.00 1.00 0.99 1.01 20

N
u

m
b

er o
f Lists (k

)

220 1.59 1.59 1.57 1.57 1.58 1.58 1.59 1.58 1.60 21

219 1.52 1.61 1.73 1.71 1.61 1.72 1.77 1.68 1.78 22

218 1.57 1.58 1.59 1.59 1.61 1.62 1.72 1.79 1.86 23

217 1.48 1.48 1.49 1.50 1.52 1.56 1.62 1.75 1.92 24

216 1.48 1.49 1.49 1.50 1.53 1.56 1.65 1.78 1.97 25

215 1.49 1.50 1.50 1.51 1.54 1.59 1.66 1.81 2.04 26

214 1.49 1.50 1.50 1.51 1.54 1.59 1.69 1.84 2.10 27

213 1.50 1.50 1.51 1.53 1.56 1.62 1.73 1.92 2.18 28

212 1.65 1.66 1.67 1.70 1.73 1.82 1.96 2.15 2.37 29

211 1.63 1.64 1.66 1.69 1.76 1.88 2.09 2.38 2.73 210

210 1.57 1.58 1.61 1.66 1.75 1.89 2.18 2.52 2.92 211

29 1.07 1.09 1.15 1.25 1.46 1.75 2.21 2.69 3.15 212

28 1.02 1.06 1.12 1.24 1.43 1.79 2.28 2.80 3.21 213

27 1.04 1.08 1.15 1.28 1.52 1.85 2.28 2.77 3.12 214

26 1.03 1.08 1.14 1.30 1.49 1.81 2.18 2.55 2.80 215

25 1.18 1.23 1.31 1.47 1.68 1.98 2.19 2.44 2.33 216

24 1.14 1.18 1.30 1.41 1.59 1.88 1.96 1.90 2.01 217

23 1.19 1.25 1.36 1.52 1.67 1.95 2.15 2.12 2.28 218

22 1.20 1.30 1.49 1.80 2.10 2.21 2.09 2.60 1.91 219

21 1.25 1.36 1.52 1.81 1.98 2.02 2.08 2.14 1.23 220

20 1.16 1.28 1.43 1.67 1.91 1.85 1.73 1.64 1.06 221

Table 10: Problem size G = 221 with multipool, ratio of test with shuffle to test without shuffle

Table 10 shows behavior similar to that seen in Table 9, with similar likely

explanations. One particular aspect of this table that does stand out is the bottom

right corner. This improvement of the corner, relative to entries to the left (higher af)

exists in Table 9 as well, the heat map just highlights it less due to a wider range of
values. This corner case was unexpected at first, and was investigated further. Figure

Validation of Memory-Allocation Benchmarks Page 21 of 67

2 shows the raw run times that were used to produce the ratio shown in the
rightmost column of Table 10. As can be seen in the figure, the run time of the test

that included the shuffling plateaued around the S=2^2 point, while the run time for

the unshuffled test continued to increase. The unexpected performance increase in

the bottom right corner of Table 10 becomes a lot more believable once it is clear that
this is a relative performance increase, rather than a drop in absolute run times.

Figure 2: Comparison of run times with and without shuffle for the right column of Table 10

Comparing the Performance of the Global vs Local Allocator

A quick comparison between Table 9 and Table 10 clearly shows that systems using

the multipool allocator experience a significantly smaller performance degradation
when shuffling has occurred, which suggests that the allocator has helped reduce

diffusion within the fragmentable (F) lists. One thing that Table 9 and Table 10 do
not take into account is that there may be a performance overhead for using a local

allocator in the first place. To examine this possibility, Table 11 shows the ratio of the
absolute run times of the test with allocators to the test without allocators (Table 46
/ Table 44, from Appendix 3: Absolute Run Times for Benchmark II), after each

respective system has undergone the shuffling step.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

S=
2

^2
1

S=
2

^2
0

S=
2

^1
9

S=
2

^1
8

S=
2

^1
7

S=
2

^1
6

S=
2

^1
5

S=
2

^1
4

S=
2

^1
3

S=
2

^1
2

S=
2

^1
1

S=
2

^1
0

S=
2

^9

S=
2

^8

S=
2

^7

S=
2

^6

S=
2

^5

S=
2

^4

S=
2

^3

S=
2

^2

S=
2

^1

S=
2

^0 R
at

io
 o

f
ru

n
ti

m
e

w
it

h
 s

h
u

ff
le

 t
o

 r
u

n
ti

m
e

w
it

h
o

u
t

C
P

U
 T

im
e

in
 s

ec
o

n
d

s

System Size (S)

Benchmark II Run Times when af = 1 using multipool allocator

Without Shuffle

With Shuffle

Ratio

Validation of Memory-Allocation Benchmarks Page 22 of 67

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)
221 1.52 1.53 1.53 1.53 1.52 1.53 1.51 1.52 1.53 20

N
u

m
b

er o
f Lists (k

)

220 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 21

219 0.14 0.14 0.15 0.14 0.14 0.14 0.15 0.15 0.15 22

218 0.22 0.21 0.20 0.20 0.20 0.18 0.16 0.16 0.16 23

217 0.24 0.25 0.24 0.22 0.21 0.19 0.18 0.16 0.16 24

216 0.34 0.33 0.32 0.31 0.29 0.26 0.22 0.18 0.16 25

215 0.32 0.32 0.32 0.31 0.29 0.27 0.23 0.20 0.17 26

214 0.32 0.32 0.32 0.31 0.29 0.26 0.24 0.20 0.17 27

213 0.32 0.32 0.32 0.31 0.29 0.27 0.24 0.21 0.18 28

212 0.32 0.31 0.31 0.31 0.28 0.28 0.24 0.22 0.20 29

211 0.50 0.50 0.43 0.42 0.40 0.36 0.31 0.26 0.23 210

210 0.53 0.50 0.49 0.48 0.42 0.38 0.32 0.28 0.25 211

29 0.32 0.29 0.30 0.30 0.30 0.30 0.29 0.29 0.28 212

28 0.51 0.43 0.48 0.44 0.42 0.37 0.34 0.32 0.31 213

27 0.57 0.56 0.56 0.48 0.46 0.43 0.39 0.37 0.36 214

26 0.72 0.67 0.62 0.58 0.52 0.47 0.43 0.43 0.41 215

25 0.85 0.81 0.74 0.63 0.56 0.52 0.49 0.48 0.48 216

24 0.88 0.80 0.72 0.62 0.60 0.56 0.53 0.52 0.54 217

23 0.89 0.81 0.76 0.68 0.63 0.65 0.64 0.64 0.68 218

22 0.93 0.84 0.86 0.82 0.80 0.82 0.82 0.85 0.90 219

21 0.97 0.98 0.96 0.98 1.03 1.02 1.04 1.07 1.18 220

20 1.05 1.09 1.16 1.22 1.31 1.29 1.21 1.21 1.34 221

Table 11: Problem size G = 221, ratio of multipool to global allocator runtimes after shuffle

As can be seen in Table 11, a local multipool allocator provides a performance benefit

over the global memory allocator, with two exceptions. The first exception occurs
when the system consists of only one large data structure. In this case, the system is
not fragmentable (F) because no other subsystems exist to allow the subsystem’s

memory to diffuse. Without being able to help improve fragmentability (F), it appears
that having a multipool for every subsystem adds an extra overhead without any

chance to provide a benefit. The other exception is in systems consisting of data
structures containing only one element. In this case, the fragmentability (F) is

minimal, since each subsystem (list) allocates only one element. Thus, each local

multipool allocator has no chance to help prevent diffusion. Again, this likely means

that the multipool is adding an overhead, but without any countervailing benefit.

Conclusions

In this chapter, the local multipool allocator offered a large performance benefit over
the global allocator, which suggests that local allocators can help improve

performance in subsystems with higher fragmentability (F). One important caveat is
that the multipool allocator does appear to incur a performance overhead that can

result in a pessimization when diffusion is not occurring. For this reason, one should

Validation of Memory-Allocation Benchmarks Page 23 of 67

consider whether diffusion is actually affecting the performance of a system, before
employing a local multipool allocator.

The benchmarks also showed that more rapid context switches between subsystems
caused worse performance (right sides of Table 9 and Table 10, which suggests that

the loss of temporal locality (L) does indeed degrade the performance of a system.

11 Benchmark III: Variation in Utilization

Benchmark Overview

This benchmark was designed to examine the effects of memory utilization on a
system. P0089R0 defines a term, “Utilization” (U) as “the maximum fraction of the
‘total’ amount of allocated memory ‘actively’ in use at any one time.”

The benchmark has three parameters: chunk size, S, amount of active memory, A,

and the total amount of memory allocated, T, all of which are measured in bytes. The

algorithm was as follows:

1) Initial Allocation: Chunks of size S are allocated until the desired amount of

active memory, A, has been achieved

2) Churn: A chunk is deallocated, and then a new one is immediately reallocated

3) Repeat: The Churn step is repeated until the total amount of memory allocated

by the system reaches T

All three steps were timed for this benchmark. Note that the first byte of each

allocated chunk was incremented to deliberately access it.

Allocation strategies AS4, AS6, AS8, AS10, AS12, and AS14 were not considered
because the “winking out” technique circumvents the destruction of the active

memory at only the end of the test. In all the tests performed in this benchmark, the

total amount of memory deallocated before the data structure could be winked out, T

– A, is orders of magnitudes larger than the amount of memory that would be winked

out. Hence, even if the entire run time of the benchmark were a result of the

deallocation operations, saving the overhead of A deallocations out of a total of T

would be barely noticeable, if that.

Benchmark Presentation

The results presented for allocation strategies AS2, AS3, AS5, AS7, AS9, AS11, and
AS13 in this chapter are displayed as percentages of the run time for AS1. For

example, if AS2 took 13s to run and AS1 took 10s to run, the entry for AS2 would be
presented as 130%. The absolute run times can be found in “Appendix 4: Absolute

run times for Benchmark III”. All of the tables are colored as heat maps, with the
midpoint (yellow) fixed at 100%. Thus, if a result is green it represents an

improvement over AS1, if it is red, it represents a longer run time than AS1, and if it
is yellow it took about the same time to run as AS1.

Validation of Memory-Allocation Benchmarks Page 24 of 67

Total Allocated Memory T = 230

This section shows the relative run times of AS2, AS3, AS5, AS7, AS9, AS11, and

AS13 to AS1 for a system having a total of T=230 bytes allocated. The other

parameters A and S were varied as show in Table 12.

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

230 215 210 0.0521s 105 434 435 44 46 46 46

230 216 210 0.0520s 106 435 435 46 46 46 46

230 217 210 0.0515s 105 438 439 46 46 46 47

230 218 210 0.0515s 105 439 439 47 47 46 47

230 219 210 0.0516s 105 438 439 47 47 47 47

230 220 210 0.0519s 105 435 436 47 47 47 47

230 220 211 0.0264s 104 822 824 47 47 47 47

230 220 212 0.0129s 104 1657 1656 54 53 49 49

230 220 213 0.0065s 103 3245 3247 118 118 3281 3279

230 220 214 0.0034s 103 6113 6115 117 117 6143 6143

230 220 215 0.0018s 104 11901 11901 114 116 11910 11912

Table 12: Total Allocated Memory T = 230

First, it can be observed that increasing the amount of active memory, A, had no

effect on any of the allocators (for both relative and absolute run times). This makes

sense, given that A started at 215 bytes (32KB) maxed out at 220 bytes (1MB). The

system had more than enough memory to support this 32KB – 1MB range of active
memory.

The next observation is that the monotonic allocator (AS3 and AS5) performed
incredibly poorly (4x-119x slower than AS1). This poor performance is to be expected,

since the monotonic allocator can never reclaim any of the memory it has handed
out. Hence, the tests using a monotonic allocator would have had a full 230 bytes
(1GB) in use by the end of the test.

A third observation is that, until the last few rows, the multipool allocator performs
incredibly well, irrespective of its backing (AS7, AS9, AS11, and AS13). This

observation also makes sense, given that this test has a certain affinity with the

multipool allocator. Once the multipool allocates the initial A bytes from whichever

backing allocator, the subsequent series of deallocation and reallocations will simply
be popping one chunk of memory at a time on to and then off of the multipool’s free

list. This popping on and off of the free list should be expected to be fast. Note that,
depending on the implementation, the remainder of the current chunk of pooled

Validation of Memory-Allocation Benchmarks Page 25 of 67

nodes may be consumed before the free list is examined. After the remaining chunk
has been consumed, however, the allocator would still reach the steady-state

behavior described above.

One final observation is that the multipool allocator appears to take on the

characteristics of its backing allocator after the 212 chunk size. This behavior is
consistent with the statement made by P0089 indicating that the backing pool is set

up to handle chunks up to only 212 bytes; any request exceeding this threshold size
would be passed on to the backing allocator, giving the behavior seen in this test.

Qualitatively, the results presented in P0089 (copied in Table 13) look similar to the

results presented in Table 12 and the other table in this chapter. There were,
however, counter-intuitive results presented in P0089. All of the tables presented in

Chapter 9, “Benchmark III: Variation in Utilization,” of P0089R0 had some data
points where the global allocator performed better when accessed through a virtual

function call than when accessed directly. These results bear further investigation
and should probably not be taken at face value. While some optimizers may see
through the virtual function call and elide it, there does not seem to be a scenario

where this should be an improvement over a direct call. Additionally, if the
improvement was a few percent, this could be attributed to noise. In some cases,

however, the virtual function call ran in as little as 54% of the time the direct call did.
These counter-intuitive results did not manifest in the benchmarks run for this

paper. Instead, a consistent 3-5% overhead was seen for the virtual function call to
the global allocator (AS2).

Another counter-intuitive result in Table 13 is that, in the final row of the multipool
column (AS7), the performance gets significantly better (110% of AS1 to 60% of AS1)
relative to the row above. In the column representing the multipool accessed through

a virtual function (AS9), the exact opposite happens (58% of AS1 in the row above
compared to 111% of AS1 in the row below). The only difference between the AS7 and

AS9 columns should be the virtual function call, so this sudden change in the
relative performance of AS7 vs AS9 does not make sense. This may be an issue with

transposed values, or perhaps a deeper issue with the Benchmark III in P0089.
Regardless, this unexpected change does not occur in the results presented in this
paper.

Validation of Memory-Allocation Benchmarks Page 26 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

231 215 210 0.063s 103 440 435 46 43 46 47

231 216 210 0.069s 102 401 395 42 42 41 45

231 217 210 0.064s 110 435 428 46 44 47 46

231 218 210 0.063s 102 440 434 46 39 54 47

231 219 210 0.063s 104 439 434 51 46 47 47

231 220 210 0.064s 110 433 430 46 42 46 52

231 220 211 0.035s 125 758 747 54 37 49 37

231 220 212 0.022s 101 1216 1206 51 31 52 32

231 220 213 0.013s 60 1985 1961 110 67 1996 1979

231 220 214 0.008s 77 3356 3304 110 58 3276 3314

231 220 215 0.004s 74 5985 6288 60 111 6016 6057

Table 13: Total Allocated Memory T = 230, as shown in P0089

Total Allocated Memory T = 231 through 235

Subsequent tests with larger total memory usages (T=231 through 235) resulted in

patterns similar to those seen in Table 12. The tables displaying the results for T=231

through 235 have been elided from the body of the report because they do not convey

any new information. For those interested, the tables can be found in “Appendix 5:

Elided results for Benchmark III”.

There was one notable difference between the benchmarks omitted from this section

and the equivalent ones in P0089: The machine used to run these benchmarks had
sufficient memory, so the latter benchmarks did not fail due to the monotonic

allocator’s exhausting all available memory.

Conclusions

The results in Table 12 (as well as those in the elided tables in Appendix 5: Elided
results for Benchmark III) clearly show that the multipool allocator ran in less than

50% of the time of the global allocator (AS1). This result is (at least in part) because
the multipool allocator handled churn incredibly well. For the case when a system

has a high level of churn (and objects that are within the multipool’s size limits) the
multipool allocator offers a potential performance improvement. What’s more, the

version of the multipool allocator used in this experiment was unsynchronized –
another advantage that local allocators have over global ones. Even for modern
global allocators that create separate thread-specific pools, having a dedicated

unsynchronized local allocator eliminates needleless “bookkeeping” overhead in this
single-threaded scenario.

Validation of Memory-Allocation Benchmarks Page 27 of 67

12 Benchmark IV: Variation in Contention

Benchmark Overview

This benchmark was designed to examine the effects of contention (C) with respect to

memory allocation and deallocation in a multithreaded environment.

The algorithm was as follows:

1) Thread Creation: Spawn W threads

2) Allocation: On each thread, allocate a chunk of size S bytes and increment the

value of the first byte (to access that chunk)

3) Deallocation: Deallocate the previously allocated chunk

4) Repeat: Repeat the “Allocation” and “Deallocation” steps N times for each

thread

5) Wait: Wait for all W threads to complete

Steps 1-5 were timed together for this benchmark. Note that for this benchmark wall

time (std::chrono::system_clock::now()) was used because the benchmark

needed to track the time required for all threads to finish. It was simpler to measure

the wall time on the main thread from the first thread start to the last thread exit,

rather than individually tracking and summing the CPU time of each thread. The
“wink out” allocator strategies were omitted in this test, for the same reasons
presented in Chapter 11: “Benchmark III: Variation in Utilization”.

One change that was made from the benchmark described in Chapter 10:
“Benchmark IV: Variation in Contention” from P0089R0, was that the number of

iterations, N, was increased by a factor of 100 for each test. This change was

introduced to decrease the noise relative to the productive work being measured.

Note that for each of the 100 repetitions of the original N iterations, a new allocator

was created and used. For example, in the test with N=100*215 iterations, the old

allocator was destroyed and a new allocator was created and used after every 215
allocations. Creating this new allocator object meant that each allocator allocated the

same amount of memory as in the original test. Keeping the memory per allocator
object constant prevented allocators such as the monotonic allocator from being
unfairly penalized by the increased memory usage that would have otherwise

resulted.

It is important to note that, in this test, a separate allocator was created on each

thread. In the case of AS1 and AS2, the global allocator must handle concurrent
access. Allocators AS3, AS5, AS7, AS9, AS11, and AS13 are local allocators that are

not designed for concurrent access, and then don’t suffer any performance penalties
to support it. The one twist is that these local allocators will still have to pay the
overhead of concurrency support when they (comparatively rarely) employ the

backing global allocator to get additional chunks of memory.

Validation of Memory-Allocation Benchmarks Page 28 of 67

Benchmark Presentation

The results in this section are presented in a similar fashion to those in Chapter 11:
“Benchmark III: Variation in Utilization”. The results presented for allocation

strategies AS2, AS3, AS5, AS7, AS9, AS11, and AS13 in this chapter are displayed as
percentages of the run time for AS1. The absolute run times can be found in

“Appendix 6: Absolute Run Times for Benchmark IV”. All of the tables are colored as
heat maps, with the midpoint (yellow) fixed at 100%. Thus, if a result is green it

represents an improvement over AS1, if it is red, it represents a longer run time than
AS1, and if it is yellow it took about the same time to run as AS1.

Number of Iterations N = 100*215, Size of Allocation S = 26

This section shows the relative run times of AS2, AS3, AS5, AS7, AS9, AS11, and

AS13 to AS1 for a system with a total of N=100*215 allocations and deallocations of

chunks of S=26 size. The number of threads was varied as shown in Table 14.

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 26 1 0.103 102 25 25 47 48 48 47

100*215 26 2 0.103 102 50 25 48 48 48 47

100*215 26 3 0.103 102 25 25 47 48 48 47

100*215 26 4 0.103 102 25 25 76 48 48 47

100*215 26 5 0.181 105 28 29 44 45 43 45

100*215 26 6 0.181 105 28 28 44 44 45 44

100*215 26 7 0.186 103 32 29 44 44 43 43

100*215 26 8 0.192 100 30 28 43 50 47 44

Table 14: Number of Iterations N = 100*215, Size of Allocation S = 26

The first observation is that all of the local allocators consistently offer a performance
improvement over the default global allocator. The monotonic allocator typically ran

in 25%-32% of the time of the global allocator (with one outlier at 50%), the multipool
allocator typically ran in 44%-50% of the time of the global allocator (with one outlier
at 76%), and the multipool + monotonic allocator ran in 43%-48% of the time. These

observations make sense, given that none of the local allocators have to be
instrumented for (nor handle) concurrent usage.

The second observation is that it does not seem to make a difference in this test
whether the multipool allocator was backed by a monotonic allocator or the global

allocator. This result also makes sense, since the multipool allocator needs to make
only one request to its backing allocator, for enough memory to hold a single chunk

Validation of Memory-Allocation Benchmarks Page 29 of 67

of size S (or perhaps some typically small multiple of S, depending on the growth

strategy). After this initial allocation from the backing allocator, the multipool will
(soon) simply be popping one chunk on to and off of its free list as the test deallocates
and reallocates one chunk at a time.

A third observation is that there was a minimal overhead of 0%-5% of AS1’s run time,
when accessing the global allocator through a virtual function call (AS2).

One strange result, which is more visible in the raw numbers (see “Appendix 6:
Absolute Run Times for Benchmark IV”), is that performance consistently degraded

when the number of threads, W, was 5 or more. This phenomenon is not noticeable in

the relative numbers presented in Table 14 because all of the allocation strategies

experience the same performance degradation. This phenomenon was also not
observed in the numbers presented in P0089, nor in smaller tests run on a local
machine, so it is likely that this degradation is a quirk of how Amazon Web Services

(AWS) allocates compute resources to virtual servers. This suspected quirk was
further confirmed when the code written for P0089 was run on an AWS server, and

the jump in runtime at W=5 was seen.

The equivalent results from P0089 are presented below in Table 15. Note that, while

the chunk size, S, and number of threads, W, are exactly the same between Table 14

and Table 15, the number of iterations, N, in Table 14 are 100x higher. The rationale

for this deviation from R0089 was discussed in the previous section. Despite the
difference in the number of iterations, the relative run times should still be

comparable. Additionally, note that Table 15 was recolored according to the coloring
strategy outlined in the first section of this chapter. This coloring strategy means that

the midpoint of the coloring, yellow, was fixed at 100% of AS1, rather than halfway
between the minimum and maximum of the values in the colored range. Because of

this recoloring, any cells that are green indicate better performance relative to AS1,
and any that are red similarly indicate worse performance.

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

215 26 1 0.041s 91 40 39 26 26 24 24

215 26 2 0.037s 100 42 43 27 26 26 29

215 26 3 0.038s 105 41 43 15 16 17 16

215 26 4 0.032s 93 56 58 31 32 25 24

215 26 5 0.032s 91 46 52 26 23 22 24

215 26 6 0.030s 95 51 53 24 27 26 27

215 26 7 0.033s 96 47 49 23 28 21 26

215 26 8 0.029s 96 71 63 33 30 31 25

Table 15: Number of Iterations N = 215, Size of Allocation S = 26, from P0089

Validation of Memory-Allocation Benchmarks Page 30 of 67

The results from P0089 are somewhat noisy, so comparing the results on a point-by-
point basis would be futile. Utilizing the heat map colorization, however, macro scale

patterns for the whole benchmark can be observed. The main pattern seen in the
P0089 numbers is that all of the local allocators performed better than the global

allocator. The allocation strategies using a multipool (AS7, AS9, AS11, and AS13)
performed the best. The monotonic allocator ran in 39%-71% of the time taken by

AS1, the multipool allocator ran in 15%-32% of the time taken by AS1, and the
multipool + monotonic allocator ran in 16%-31% of the time taken by AS1. This
improvement of the local allocators over AS1 was also seen in the results from P0089.

One counter-intuitive result from P0089 is that the global allocator more often than
not performed better when accessed through a virtual function call (AS2) than when

accessed directly (AS1). It is possible that the virtual function call could be elided,
resulting in no performance overhead, but there does not seem to be a clear

explanation for why performance would improve when accessed through a virtual
function call. This strange result was not seen in the tests run for this paper.

Where the results from P0089 and the results in this paper diverge the most is in the
performance of the monotonic allocator (AS3 and AS5). Investigation into the
benchmarking code for this paper and P0089 revealed the difference: P0089 relied in

a monotonic allocator that had no initial buffer, and grew geometrically. The
monotonic allocator used in this paper was given a statically allocated buffer of 230

bytes, from which to distribute memory (which matches what was done in
Benchmark I for both this paper and P0089). The benchmarking code for this paper

was re-run without the static buffer and the results are presented in Table 16. All of
the absolute run times for Benchmark IV, re-run without the static buffer, can be
found in “Appendix 7: Absolute Run Times for Benchmark IV, with static buffer

removed”.

The performance of the monotonic allocator (AS3 and AS5) degraded significantly

when the static buffer was removed. This degradation was most likely because the
allocator had to go to the backing global allocator multiple times, to feed its geometric

growth. Because the monotonic allocator never gives up memory, the tests in
columns AS3 and AS5 would have had to maintain much more globally allocated
memory from the global allocator than the tests in AS1 and AS2. As the number of

iterations, N, or chunk size, S, increases in further tests, the amount of globally

allocated memory held by the monotonic allocator will increase. This increase would

likely result in further performance degradations.

Validation of Memory-Allocation Benchmarks Page 31 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

215 26 1 0.103 102 73 73 47 48 47 47

215 26 2 0.104 101 76 76 47 48 47 47

215 26 3 0.103 102 78 77 47 48 47 47

215 26 4 0.104 102 78 78 47 48 47 47

215 26 5 0.180 106 67 68 43 44 44 40

215 26 6 0.192 100 64 65 41 41 42 42

215 26 7 0.182 105 70 73 45 45 44 45

215 26 8 0.188 104 74 72 49 49 44 46

Table 16: Number of Iterations N = 215, Size of Allocation S = 26, without static buffer

Ultimately, the results presented in Table 14 (results from this paper, with static
buffer), Table 15 (results from P0089, without static buffer), and Table 16 (results

from this paper, without static buffer) do not quite agree, however, the following
broad conclusions can be drawn:

 All of the local allocation strategies performed significantly better than the
global allocator (AS1)

 The monotonic allocator (AS3 and AS5) performed the best, when given a pre-
allocated static buffer

 The multipool based allocation strategies (AS7, AS9, AS11, and AS13)
performed the best when the monotonic allocator (AS3 and AS5) did not benefit
from a static buffer

Further Tests

Further tests were performed on variations of the number of iterations, N, and size of

allocations, S, to match those done in P0089. The results when the monotonic

allocator was supplied a static buffer did not change from those presented in Table

14. Thus, those results were elided for the sake of brevity.

The results when the monotonic allocator was not supplied a static buffer did show a

degradation in performance as the number of iterations, N, and the size of the

allocated chunks, S, were increased. This result is as expected and predicted in the

previous section. This degradation in performance matches the degradation seen in
the equivalent results in P0089.

Conclusions

In this multithreaded benchmark, thread-local allocators improved performance by

up to 6x over the global allocator. If allocated memory does not need to be accessed

Validation of Memory-Allocation Benchmarks Page 32 of 67

from other threads, a multipool allocator offers significant and consistent
performance benefits over the global allocator. If there is enough memory to supply a

local monotonic allocator with a sufficiently large static buffer, it can offer the most
significant performance improvements. The monotonic allocator, however, should be

used with caution because it can consume much more memory than the object it is
backing requires.

13 Benchmark V: Creating and Destroying Data Structures with Varied
Locality and Fragmentability

Benchmark Overview

This 5th benchmark was created in an attempt to more closely mimic real world
programs. All of these benchmarks have been done in isolation, which ignores the
reality of most software, where many different subsystems are using the (same) global

allocator. In a real program, before a subsystem of interest runs, it is likely that
memory has already been allocated and deallocated. Additionally, it is likely that

some of this memory is currently held by other subsystems.

This benchmark is essentially a combination of Benchmark I and II. The algorithm

can be described as:

1) Global Allocator Usage: The global allocator is used to simulate a real world
system

a. Allocate: Allocate 216 randomly sized chunks of memory

b. Deallocate: Randomly deallocate D of the N chunks

2) Testing: The allocation under test is performed

a. Allocate: Allocate the outer data structure for DS## (where DS## could

be DS1-DS12)

b. Reserve: Reserve space for E elements in the data structure

c. Populate: Fill the allocated data structure with E elements, allocated

using the same allocator

d. Deallocate: Deallocate the data structure normally or via the “wink out”
technique

e. Repeat: Perform the Allocate through Deallocate steps 2,560 times

The testing was performed on DS1 through DS12, just like in Benchmark I. The
number of randomly sized chunks, 216, was chosen arbitrarily. The random sizes for

the chunks of memory were taken from a uniform distribution on the range [1, 1024].

Four tables were produced for each data structure, corresponding to D=N, D=N/2,

D=N/4, and D=N/8. To further explain: all, one half, one quarter, and one eight of the

memory was respectively deallocated, while the rest remained allocated as the
“Testing” step proceeded.

Validation of Memory-Allocation Benchmarks Page 33 of 67

Using the language of P0089, this test will have the same density (D) and variation
(V) as originally characterized for DS1 through DS12. Where this test differs from

Benchmark I is in diffusion potential, a.k.a., fragmentability (F). The “Global Allocator
Usage” step of the algorithm introduces another subsystem to the process, opening

up the potential for diffusion to occur during the “Testing” step. Note that data

structures that exist in one contiguous chunk of memory (DS1: vector<int>, and

DS5: vector<vector<int>>), do not allocate multiple chunks of memory that can

diffuse – i.e., the fragmentability (F) is zero.

Benchmark Presentation

The hypothesis is that local allocators will reduce the data structure elements’
diffusion throughout memory. Thus, changes in the performance of the local

allocators relative to the global allocator are of interest. This change in performance
can be expressed mathematically as a ratio of ratios:

𝑅 =
(

𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐴𝑆## 𝑖𝑛 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑉
𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐴𝑆1 𝑖𝑛 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝑉

)

(
𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐴𝑆## 𝑖𝑛 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐼
𝑅𝑢𝑛 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐴𝑆1 𝑖𝑛 𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐼

)

If the ratio R is less than one, it indicates that the run time of the allocation strategy

under examination has been less affected by the diffusion of system memory than the

global allocator. This improved ratio indicates an opportunity to preserve runtime
performance over the status quo.

The tables in this section present the ratio R for each data point. All of the tables are

colored as heat maps, with the midpoint (yellow) fixed at 1. Thus, if a result is green
it represents an improvement relative to the global allocator (AS1) when system

memory is diffused. If a value is red, it represents worse performance relative to the
global allocator. If the value is yellow, there was no significant change. Note that,

because this ratio incorporates four different data points, it also incorporates 4x the
noise, resulting in less smooth looking results than desired. Also note that the AS1

column has been omitted because, mathematically, it will always be unity.

DS1, vector<int>

Table 17 presents the ratio of Benchmark V to Benchmark I for DS1 (vector<int>),

when D=N. Recall that D=N means that 216 randomly sized chunks of memory were

allocated and then deallocated before the timed portion of the benchmark was run.

Provided that the system reclaims the deallocated memory completely and efficiently,
it would be as if there was no other subsystem in the test, meaning that there was no
diffusion potential during the “Testing” step. Thus, there should be no difference

between the results from Benchmark V and Benchmark I, resulting in all the ratios
in Table 17 being unity. Inspecting Table 17, this is indeed the case. Note that the

heat map is misleading, because the “extreme” values it highlights in red and green
are within 2% of the neutral (yellow) value of 1.

Validation of Memory-Allocation Benchmarks Page 34 of 67

global ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.98 0.99 1.00 0.99

27 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.99

28 1.00 1.00 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 0.99

29 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00

210 1.01 1.00 1.00 0.99 0.99 1.00 1.00 1.00 0.99 1.00 0.99 0.98 0.99

211 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.00

212 1.00 1.00 0.99 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.01 1.01

213 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

214 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.01 1.00

215 1.01 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.00

216 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 17: Ratio of Benchmark V to Benchmark I for DS1 (vector<int>), when D=N

Table 18 presents the ratio of Benchmark V to Benchmark I for DS1 (vector<int>),

when D=N/2. Recall that D=N/2 means that 216 randomly sized chunks of memory

were allocated and then 215 (half) were deallocated before benchmark was run (the

other half remained allocated for the duration of the test).

For a vector of ints, all of the data resides in one contiguous chunk of memory.

Thus, regardless of the allocation strategy, the diffusion potential is minimal. There is
no opportunity for a local allocator to prevent diffusion, so it would be expected that
allocation strategy performance relative to the global allocator would not change,

resulting in a table of all 1s. This is indeed the result seen in Table 18, with the
exception of some outliers in the first two rows, which defy explanation.

global ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 1.00 0.99 1.13 1.14 1.13 1.13 1.24 1.07 1.24 1.04 1.12 1.13 1.13

27 1.00 0.99 1.07 1.07 1.07 1.07 1.24 1.09 1.25 1.08 1.08 1.07 1.07

28 1.00 1.00 1.03 1.03 1.03 1.02 1.09 1.05 1.10 1.06 1.03 1.03 1.03

29 1.00 1.00 1.02 1.02 1.03 1.01 1.04 1.03 1.04 1.03 1.02 1.02 1.02

210 1.00 1.00 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.02 1.02 1.00

211 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99

212 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00

213 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.01 1.00 1.00 1.00

214 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01

215 1.00 1.01 1.01 1.00 1.00 1.00 1.01 1.02 1.03 1.02 1.01 1.01 1.00

216 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.02 1.00 1.00 1.00

Table 18: Ratio of Benchmark V to Benchmark I for DS1 (vector<int>), when D=N/2

Validation of Memory-Allocation Benchmarks Page 35 of 67

The remaining measurements for DS1 (D=N/4 and D=N/8) are omitted because they

are nearly identical to Table 18.

As expected, there is no change between the results in Benchmark I and Benchmark
V for DS1, most likely because DS1 does not allocate chunks of memory cable of

diffusing, and thus the test has minimal fragmentability (F). This was also seen to be

the case for DS5 (vector<vector<int>>), which also has minimal fragmentability

(F).

DS2, vector<string>

Unlike DS1, DS2 (vector<string>) has a high potential to diffuse because the data

for each contained string can be allocated in a different chunk of memory. Table 19

presents the ratio of Benchmark V to Benchmark I for DS2, when D=N/2. Recall that

D=N/2 means that 216 randomly sized chunks of memory were allocated and then 215

(half) were deallocated before the benchmark was run (the other half remained
allocated for the duration of the test).

global ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 1.00 0.94 0.42 0.42 0.42 0.42 0.53 0.54 0.51 0.55 0.43 0.43 0.42

27 1.00 0.94 0.51 0.52 0.51 0.52 0.65 0.66 0.64 0.62 0.51 0.51 0.51

28 1.00 1.17 0.36 0.36 0.36 0.36 0.34 0.32 0.33 0.33 0.36 0.36 0.36

29 1.00 1.01 0.56 0.56 0.55 0.55 0.55 0.56 0.54 0.54 0.56 0.56 0.56

210 1.00 0.95 0.55 0.55 0.56 0.56 0.57 0.56 0.54 0.54 0.55 0.55 0.55

211 1.00 0.38 0.35 0.35 0.35 0.35 0.42 0.38 0.40 0.45 0.35 0.35 0.35

212 1.00 0.73 0.85 0.85 0.85 0.85 0.78 0.83 0.81 0.99 0.85 0.85 0.85

213 1.00 0.62 0.81 0.82 0.82 0.82 0.96 0.97 0.77 1.15 0.81 0.81 0.82

214 1.00 0.92 0.80 0.80 0.84 0.77 0.75 0.69 0.52 0.70 0.80 0.79 0.70

215 1.00 1.55 0.90 0.67 0.97 1.03 0.88 0.97 0.95 0.93 0.52 0.76 0.66

216 1.00 1.08 0.89 0.89 0.89 0.88 0.92 0.89 0.86 0.89 0.87 0.89 0.88

Table 19: Ratio of Benchmark V to Benchmark I for DS2 (vector<int>), when D=N/2

Table 19 shows the performance of every one of the local memory allocation strategies
improving relative to the global allocator (AS1), when subsystem memory has the

potential to defuse – i.e., the subsystem has non-zero fragmentability (F). This
observation seems to validate the hypothesis that local allocators help to prevent

diffusion of a data structures memory, thus improving performance relative to the
global allocator (AS1).

The remaining tables for this DS2 test (D=N, D=N/4 and D=N/8) have been omitted.

The D=N table for DS2 looks incredibly similar to the D=N table for DS1 (Table 17), as

do all of the D=N tables for the remaining tests, DS3-DS12. The explanation remains

the same: Allocating and then deallocating a bunch of memory is likely not too

different from starting the benchmark in a fresh process, and so the subsystem

Validation of Memory-Allocation Benchmarks Page 36 of 67

under test is not fragmentable (F). No change was seen from Benchmark I to

Benchmark V when D=N. The other tables for DS2, where D=N/4 and D=N/8, are

omitted because they are nearly identical to Table 18.

This benchmark seems to show that local allocator performance (further) improves

relative to the global allocator (AS1) when the data structure under test has the
potential for its memory to diffuse – i.e., fragmentability (F) is greater than zero.

Further Benchmarks

Further results are omitted because they show similar behavior, with likely similar

explanations, to DS2 (vector<string>). The one exception is DS5

(vector<vector<int>>), which was also allocated in one contiguous chunk,

providing no opportunity for its memory to be diffuse, which means fragmentability

(F) for both DS1 and DS5 is minimal. Consequently, DS5 behaved similarly to DS1.
DS5 also stood out from all the other tests in one way: The performance of the global

allocator (AS1 and AS2) inexplicably improved when the “Global Allocator Usage” step
(step 1 of the algorithm) was introduced to allow fragmentability (F) to manifest.

The omitted tables are too numerous, even for the appendices. All raw data, as well
as the code to generate it, can be found in this GitHub repository:
https://github.com/gbleaney/Allocator-

Benchmarks/tree/master/benchmarks/allocators

Analysis

Table 20 shows the average results for Benchmark V across all of the tests for DS1-

DS12 where the system had some amount of fragmentability (F) – i.e. the tests with

D=N/2, D=N/4, and D=N/8. Recall that D is the number of randomly sized chunks of

memory that were deallocated (from a total of N allocated) before the benchmark was

run. The table shows that the execution time of the local allocation strategies (AS3

through AS14) relative to that of the global allocator improved by an average of ~20%.

global ← Monotonic → ← multipool → ← multi + mono →

virtual

 ← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

0.96 0.80 0.81 0.79 0.80 0.78 0.79 0.80 0.80 0.81 0.80 0.80 0.80

Table 20: The average results for Benchmark V across all of the tests with diffuse system

memory (D=N/2, D=N/4, D=N/8)

Conclusions

Benchmark I previously demonstrated that local allocators, monotonic (AS3 through
AS6) and multipool + monotonic (AS11 through AS14) in particular, can improve
upon the runtime of the default global allocator when large amounts of memory are

allocated and deallocated with very little churn. This benchmark (Benchmark V)

https://github.com/gbleaney/Allocator-Benchmarks/tree/master/benchmarks/allocators
https://github.com/gbleaney/Allocator-Benchmarks/tree/master/benchmarks/allocators

Validation of Memory-Allocation Benchmarks Page 37 of 67

shows that the performance gap can widen even further (an additional 20%) when the
overall system allows the memory of subsystems having non-zero fragmentability (F)

to defuse. The results of this benchmark reinforce the hypothesis that local memory
allocators can improve system performance by preventing the diffusion of data

structure contents throughout global memory.

14 Conclusion

This paper was created to investigate the results presented in P0089R0. Some results
in that paper were found to be erroneous and will be updated in P0089R1 and all

future revisions.

Benchmarks I through V were designed to examine the effects of various memory
allocation strategies on runtime performance. Benchmarks I through IV were

implemented from the descriptions provided in P0089, and Benchmark V was created
as a hybrid of Benchmark I and Benchmark II. Each benchmark demonstrated

situations where one or more allocation strategies using a local allocator (AS3-AS14)
improved runtime performance compared to that of the global allocator (AS1).

Benchmark I determined that the monotonic allocator, when given a static buffer,
provided the largest performance improvement. It was advised to use the monotonic
allocator (or multipool + monotonic allocator) in situations where large amounts of

memory are being allocated, used, and then deallocated, without high churn.

Benchmark I also concluded that the “winking out” technique provides a sizable

runtime benefit (8.4% reduction in run time) and should be considered when
possible. Finally, accessing an allocator through a virtual function call had a small,

but measurable, runtime performance overhead (0.78% increase in run time).
Whether or not the convenience is worth the overhead will vary from use case to use
case and platform to platform. There is every reason to believe that this overhead can

be elided as indicated in P0089.

Benchmark II concluded that a local multipool allocator offered a large performance

benefit over the global allocator. It was recommended to use a local multipool
allocator in situations where the potential for diffusion across subsystems exists, and

fragmentability (F) is high. Evidence was also presented to confirm that a lack of
locality (L) has a negative effect on performance.

Benchmark III saw the multipool allocator run in less than 50% of the time of the
global allocator. For the case when a system has a high level of churn (and objects
that are within the multipool’s size limits) the multipool allocator was recommended

to improve performance, especially in a single-threaded context.

Benchmark IV demonstrated that thread-local allocators offer performance savings of

up to 6x over the global allocator. The multipool allocator was recommended in
multithreaded situations where allocated memory does not need to be accessed from

other threads. The monotonic allocator was also recommended, provided there is
enough memory to supply the monotonic allocator with a sufficiently large initial
buffer.

Validation of Memory-Allocation Benchmarks Page 38 of 67

Finally, Benchmark V concluded that the benefits offered by the local allocators
improve by average of 20% when the process provides the potential to diffuse memory

and the fragmentability (F) of the subsystem in question is non-zero. It is in precisely
these cases where local allocators prove most useful compared to the global one —

irrespective of how efficient that general-purpose, global allocator might be.

Validation of Memory-Allocation Benchmarks Page 39 of 67

Appendix 1: Corrected Benchmark I Results from P0089

This section contains the corrected results for Benchmark I. The incorrect results

were originally presented in P0089R0 with data in columns [AS3 – AS7] and [AS8-
AS11] transposed. The corrected results should appear in P0089R1.

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 1.18 1.86 0.27 0.37 0.42 0.44 0.80 1.01 0.90 1.06 0.62 0.69 0.77 0.67

27 0.92 1.59 0.25 0.39 0.41 0.41 0.51 0.70 0.64 0.70 0.45 0.51 0.60 0.52

28 0.81 1.00 0.25 0.38 0.38 0.35 0.35 0.59 0.51 0.61 0.31 0.46 0.51 0.47

29 0.75 0.95 0.22 0.36 0.39 0.35 0.31 0.46 0.45 0.46 0.26 0.43 0.42 0.40

210 0.74 0.94 0.21 0.34 0.38 0.36 0.24 0.43 0.43 0.42 0.25 0.38 0.40 0.38

211 0.75 0.94 0.21 0.33 0.36 0.32 0.22 0.39 0.40 0.41 0.24 0.38 0.37 0.38

212 0.74 0.94 0.21 0.34 0.38 0.36 0.22 0.37 0.39 0.40 0.22 0.37 0.37 0.37

213 0.76 0.93 0.20 0.32 0.36 0.40 0.21 0.38 0.39 0.37 0.24 0.36 0.37 0.37

214 0.77 0.93 0.20 0.33 0.39 0.39 0.21 0.38 0.36 0.38 0.20 0.36 0.39 0.37

215 0.77 0.94 0.20 0.32 0.37 0.37 0.21 0.39 0.36 0.39 0.21 0.36 0.38 0.36

216 0.78 0.94 0.21 0.36 0.36 0.37 0.21 0.36 0.36 0.39 0.20 0.36 0.37 0.36

Table 21: DS1, vector<int>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 68.90 67.30 12.90 12.80 13.30 12.90 18.10 17.80 18.20 17.70 15.50 14.80 15.60 14.80

27 68.80 68.20 12.80 12.90 13.20 12.90 20.60 20.20 20.60 20.40 15.10 14.30 15.00 14.40

28 70.80 68.90 13.20 12.80 13.60 12.90 30.80 30.40 30.70 30.30 15.30 14.60 15.40 14.70

29 73.10 71.20 13.50 13.50 13.90 13.50 38.20 37.60 38.00 37.30 15.90 15.10 15.90 15.10

210 75.40 74.30 13.60 13.50 14.00 13.70 41.10 40.30 41.60 40.90 16.00 15.10 15.90 15.00

211 76.90 74.50 13.60 13.50 14.10 13.60 43.90 43.20 43.70 42.60 16.00 15.00 16.00 15.10

212 76.10 74.80 13.70 13.50 14.00 13.60 41.20 38.80 40.60 39.40 15.90 14.90 15.80 15.00

213 76.10 74.80 13.60 13.60 14.00 13.60 41.40 39.20 41.30 39.90 15.90 15.00 15.80 14.90

214 78.30 76.50 13.60 13.60 14.00 13.60 45.80 42.30 44.80 44.00 16.10 15.20 16.20 15.40

215 90.40 91.00 20.20 20.10 20.50 20.10 62.20 58.70 62.20 58.20 26.00 25.00 26.00 24.90

216 103.00 103.00 21.50 21.30 21.80 21.30 66.50 59.20 65.10 59.90 27.00 25.30 27.10 25.20

Table 22: DS2, vector<string>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

Validation of Memory-Allocation Benchmarks Page 40 of 67

26 10.20 11.00 5.08 4.88 5.62 5.34 7.16 7.12 7.50 7.20 6.19 5.73 6.40 5.81

27 12.50 13.30 5.04 4.81 5.68 5.24 6.37 6.22 6.71 6.31 5.80 5.46 6.08 5.50

28 15.80 16.40 4.99 4.79 5.54 5.22 5.95 5.81 6.21 5.92 5.65 5.32 5.82 5.40

29 18.30 19.00 5.01 4.80 5.53 5.18 5.78 5.56 6.01 5.70 5.56 5.20 5.76 5.21

210 21.40 22.30 4.99 4.83 5.55 5.20 5.72 5.46 5.95 5.55 5.52 5.27 5.68 5.24

211 25.50 26.10 4.98 4.81 5.56 5.16 5.67 5.44 5.86 5.65 5.53 5.23 5.69 5.26

212 27.10 28.00 5.02 4.81 5.55 5.20 6.42 6.10 6.57 6.25 5.51 5.12 5.68 5.27

213 27.90 28.80 5.03 4.81 5.59 5.21 7.34 6.91 7.46 7.03 5.61 5.16 5.71 5.24

214 28.50 29.00 5.03 4.80 5.58 5.26 7.03 6.59 7.18 6.68 5.64 5.19 5.80 5.34

215 28.30 29.20 5.03 4.78 5.56 5.28 7.11 6.65 7.20 6.83 5.68 5.17 5.78 5.24

216 31.60 31.80 5.02 4.76 5.60 5.22 6.79 6.37 6.93 6.46 5.68 5.17 5.79 5.24

Table 23: DS3, unordered_set<int>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 103.00 120.00 52.20 51.90 52.40 51.20 58.40 57.60 59.70 58.90 55.10 54.10 56.90 55.30

27 103.00 122.00 52.50 52.10 52.90 51.80 63.30 61.90 64.40 63.80 55.30 54.00 56.80 55.70

28 109.00 128.00 53.60 53.00 53.70 52.60 76.30 74.70 77.40 75.90 56.50 54.90 57.90 56.70

29 113.00 134.00 54.50 53.40 54.90 53.00 83.10 81.70 82.80 81.40 57.30 56.70 58.00 56.40

210 119.00 143.00 56.60 54.90 56.90 54.60 87.60 85.90 88.10 86.50 58.80 56.90 59.20 57.30

211 122.00 144.00 57.00 55.30 57.70 54.90 90.70 89.20 90.70 88.40 59.40 57.60 60.00 57.80

212 122.00 146.00 57.90 55.90 58.40 55.70 93.20 90.70 93.20 90.70 60.50 58.30 60.70 58.40

213 124.00 148.00 58.20 56.30 58.50 55.90 95.10 91.50 94.30 92.00 60.50 58.20 60.70 58.70

214 139.00 166.00 59.10 57.30 59.60 56.80 98.50 94.10 97.80 95.80 61.80 59.60 62.20 60.00

215 176.00 211.00 66.00 62.70 66.20 62.40 121.00 115.00 122.00 115.00 76.50 73.30 76.80 74.00

216 196.00 232.00 78.50 72.00 79.10 71.00 137.00 127.00 136.00 127.00 87.10 82.40 87.80 82.90

Table 24: DS4, unordered_set<string>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 0.97 1.00 0.19 0.13 0.20 0.17 0.24 0.20 0.20 0.21 0.21 0.19 0.20 0.21

27 0.96 0.96 0.22 0.16 0.18 0.14 0.21 0.20 0.19 0.20 0.16 0.20 0.21 0.19

28 0.99 1.00 0.19 0.13 0.18 0.17 0.27 0.30 0.27 0.29 0.19 0.19 0.20 0.21

29 0.99 1.02 0.19 0.13 0.18 0.14 0.36 0.33 0.33 0.36 0.19 0.15 0.20 0.20

210 1.01 1.04 0.19 0.18 0.19 0.14 0.37 0.36 0.36 0.38 0.22 0.19 0.20 0.22

211 1.02 1.05 0.19 0.13 0.19 0.14 0.36 0.35 0.36 0.36 0.20 0.15 0.20 0.22

212 1.03 1.05 0.19 0.19 0.22 0.18 0.33 0.36 0.32 0.32 0.20 0.21 0.20 0.19

213 1.02 1.05 0.19 0.13 0.22 0.19 0.35 0.35 0.34 0.33 0.20 0.21 0.22 0.19

214 1.05 1.10 0.19 0.17 0.19 0.16 0.38 0.36 0.38 0.37 0.17 0.19 0.20 0.19

215 1.13 1.18 0.22 0.19 0.19 0.16 0.50 0.45 0.47 0.45 0.21 0.21 0.17 0.18

Validation of Memory-Allocation Benchmarks Page 41 of 67

216 1.29 1.32 0.22 0.19 0.20 0.17 0.54 0.47 0.52 0.50 0.22 0.21 0.22 0.21

Table 25: DS5, vector<vector<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 72.60 72.70 9.06 9.06 9.36 8.98 41.70 40.00 41.20 39.20 11.20 10.30 11.20 10.30

27 74.90 76.00 8.92 8.98 9.29 8.89 46.50 44.80 46.00 43.00 11.40 11.00 12.70 10.30

28 85.50 85.20 17.10 17.40 17.30 16.90 62.90 58.40 61.30 58.40 22.80 22.50 23.30 22.00

29 96.40 96.30 18.40 18.70 19.00 18.40 66.20 59.00 64.70 59.30 24.20 22.70 24.50 22.30

210 102.00 102.00 18.70 18.60 19.10 18.60 67.00 59.60 65.90 59.00 24.80 22.50 24.80 22.50

211 102.00 101.00 18.40 18.70 19.20 18.20 62.40 55.00 61.30 54.20 24.80 22.60 25.10 22.30

212 104.00 103.00 18.50 18.70 19.40 18.30 61.60 54.20 60.50 53.40 24.90 22.70 25.10 22.30

213 103.00 104.00 18.80 18.40 19.00 18.60 61.80 53.40 59.90 53.50 25.30 22.60 25.10 22.60

214 97.10 96.30 19.20 19.60 20.10 19.20 60.60 53.70 60.20 52.90 29.00 26.70 29.20 26.30

215 88.10 88.70 23.40 23.20 23.70 23.40 62.60 54.40 60.90 53.90 33.40 30.60 33.20 30.70

216 76.70 76.70 25.00 25.30 25.80 25.00 63.40 54.80 62.90 54.30 35.00 32.80 35.50 32.40

Table 26: DS6, vector<vector<string>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 28.80 28.70 2.97 2.69 3.43 2.98 4.89 4.37 5.33 4.73 3.21 2.65 3.64 3.05

27 28.30 28.50 2.97 2.66 3.36 2.95 4.99 4.44 5.43 4.91 3.20 2.62 3.61 2.97

28 28.20 28.10 2.94 2.62 3.33 2.92 5.02 4.53 5.53 4.97 3.23 2.60 3.60 3.01

29 31.80 31.70 2.92 2.61 3.33 2.93 5.08 4.54 5.52 4.92 3.16 2.58 3.58 2.96

210 46.60 47.20 2.92 2.61 3.33 2.89 5.07 4.49 5.48 4.93 3.15 2.58 3.57 2.98

211 54.30 54.10 2.92 2.61 3.33 2.89 5.63 4.75 5.88 5.37 3.16 2.60 3.61 2.98

212 54.70 54.80 2.96 2.66 3.34 2.91 6.90 5.79 7.28 6.23 4.15 3.05 4.58 3.40

213 55.10 56.00 3.51 2.95 3.77 3.21 7.01 6.03 7.47 6.35 4.27 3.08 4.65 3.48

214 51.00 50.90 3.53 2.99 3.81 3.25 7.08 6.00 7.47 6.46 4.29 3.14 4.71 3.47

215 44.80 45.40 3.58 3.01 3.83 3.26 7.07 6.04 7.55 6.52 4.35 3.14 4.75 3.53

216 38.20 38.20 3.58 3.06 3.86 3.30 7.14 6.11 7.58 6.47 4.37 3.18 4.80 3.54

Table 27: DS7, vector<unordered_set<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

Validation of Memory-Allocation Benchmarks Page 42 of 67

26 114.00 116.00 26.00 23.80 26.30 24.00 56.20 54.70 56.90 54.60 27.50 25.80 27.90 26.00

27 123.00 130.00 26.50 24.40 25.70 23.50 62.70 60.10 62.70 60.50 27.50 26.30 28.20 26.10

28 162.00 171.00 31.70 27.30 32.20 27.80 78.00 74.20 79.20 73.90 35.00 32.00 35.50 32.50

29 175.00 181.00 36.80 28.00 38.10 28.00 81.70 74.10 81.20 74.90 36.30 32.10 37.20 32.10

210 176.00 183.00 40.00 28.90 37.40 28.20 82.10 74.50 82.10 74.70 36.90 32.00 37.40 32.20

211 176.00 183.00 39.30 28.00 37.30 28.00 81.40 74.40 82.00 74.30 36.90 32.10 37.80 32.10

212 179.00 185.00 39.40 28.00 37.10 28.00 81.80 74.10 81.60 74.40 37.00 32.00 37.80 32.20

213 173.00 178.00 39.60 27.90 36.90 28.20 81.80 73.60 81.50 74.30 37.20 32.00 37.80 32.40

214 157.00 160.00 41.00 29.90 38.80 29.90 81.50 74.10 82.20 74.00 44.00 39.30 45.10 39.20

215 122.00 131.00 47.60 35.80 44.80 36.20 85.20 75.50 83.70 76.10 50.50 45.20 51.00 45.50

216 95.40 106.00 51.40 40.50 48.10 38.90 84.80 76.20 88.70 75.90 53.10 48.50 54.80 48.20

Table 28: DS8, vector<unordered_set<string>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 0.97 0.94 0.23 0.19 0.24 0.21 0.26 0.27 0.30 0.26 0.25 0.26 0.25 0.24

27 1.40 1.43 0.22 0.21 0.22 0.19 0.24 0.26 0.25 0.27 0.24 0.26 0.24 0.24

28 1.35 1.39 0.25 0.22 0.24 0.23 0.30 0.35 0.34 0.33 0.24 0.23 0.25 0.24

29 1.29 1.32 0.22 0.18 0.22 0.17 0.37 0.38 0.37 0.36 0.23 0.22 0.19 0.22

210 1.32 1.38 0.24 0.22 0.22 0.19 0.41 0.39 0.42 0.39 0.23 0.24 0.23 0.22

211 1.34 1.36 0.23 0.21 0.22 0.17 0.44 0.42 0.43 0.41 0.23 0.23 0.25 0.22

212 1.34 1.41 0.22 0.20 0.22 0.16 0.46 0.42 0.45 0.43 0.23 0.17 0.27 0.22

213 1.46 1.54 0.22 0.18 0.22 0.16 0.48 0.49 0.49 0.48 0.23 0.21 0.25 0.21

214 1.53 1.61 0.22 0.17 0.22 0.18 0.43 0.42 0.45 0.41 0.24 0.22 0.24 0.22

215 1.61 1.76 0.25 0.21 0.24 0.19 0.50 0.49 0.50 0.49 0.24 0.18 0.23 0.21

216 1.79 1.92 0.28 0.25 0.29 0.24 0.55 0.51 0.56 0.55 0.30 0.23 0.32 0.24

Table 29: DS9, unordered_set<vector<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 73.00 73.20 9.41 9.39 9.34 8.97 41.70 39.70 41.10 39.30 11.20 10.40 11.20 10.30

27 74.70 75.30 9.32 9.34 9.24 8.87 46.20 43.70 45.30 44.20 12.70 10.60 11.40 10.80

28 83.10 85.40 18.00 17.30 16.90 17.20 62.20 58.90 61.90 57.60 23.20 22.30 23.10 22.40

29 91.40 94.90 19.00 19.00 18.80 18.60 65.00 59.90 64.40 58.90 24.30 22.60 24.10 22.60

210 98.20 101.00 19.20 18.90 19.10 18.60 66.50 59.70 65.40 59.10 24.80 22.60 24.60 22.70

211 99.50 101.00 19.00 19.10 19.30 18.40 66.90 59.50 66.10 58.70 24.90 22.70 25.10 22.50

212 102.00 105.00 19.40 19.00 19.20 18.80 67.00 58.90 65.80 59.40 25.30 22.60 25.10 22.70

213 103.00 104.00 19.00 19.20 19.40 18.40 66.70 59.20 66.20 58.20 25.30 22.90 25.50 22.60

214 95.80 97.20 19.80 20.00 20.30 19.30 62.80 55.60 61.90 54.30 29.20 26.80 29.60 26.50

215 87.10 89.80 24.00 23.70 24.00 23.50 64.30 55.00 61.90 54.90 33.60 30.80 33.50 31.00

Validation of Memory-Allocation Benchmarks Page 43 of 67

216 77.10 78.20 25.60 25.70 26.00 25.10 63.90 55.50 63.30 54.50 35.30 33.00 35.70 32.60

Table 30: DS10, unordered_set<vector<string>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 28.70 29.10 3.06 2.75 3.55 3.14 4.96 4.40 5.41 4.84 3.24 2.73 3.73 3.15

27 29.10 29.00 3.02 2.71 3.47 3.06 5.03 4.52 5.49 4.89 3.23 2.66 3.68 3.08

28 28.80 29.10 3.00 2.68 3.45 3.04 5.18 4.55 5.57 4.98 3.24 2.66 3.65 3.06

29 31.80 32.30 2.99 2.64 3.43 2.98 5.12 4.54 5.55 4.95 3.22 2.60 3.65 2.99

210 46.50 47.10 2.95 2.65 3.40 2.99 5.13 4.57 5.62 4.96 3.21 2.58 3.62 2.97

211 53.30 53.50 2.94 2.64 3.43 2.96 5.58 4.84 5.75 5.39 3.20 2.63 3.67 3.01

212 54.60 55.00 3.02 2.66 3.43 2.98 6.47 5.94 6.99 6.28 3.83 3.00 4.21 3.38

213 56.50 56.50 3.38 2.98 3.72 3.26 7.04 6.04 7.48 6.45 4.15 3.03 4.58 3.39

214 52.10 52.20 3.50 2.99 3.88 3.25 7.35 6.07 7.83 6.59 4.33 3.05 4.76 3.38

215 45.70 46.20 3.62 2.99 3.95 3.27 7.70 6.39 8.11 6.83 4.43 3.06 4.81 3.44

216 39.30 39.30 3.72 3.05 4.03 3.31 7.57 6.30 8.09 6.61 4.52 3.10 4.92 3.45

Table 31: DS11, unordered_set<unordered_set<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 121.00 125.00 25.90 23.70 26.10 23.90 56.30 54.50 56.70 54.70 27.40 25.80 27.80 26.00

27 141.00 145.00 26.40 24.30 25.60 23.40 62.10 59.60 62.50 60.00 27.90 25.80 28.30 25.80

28 165.00 173.00 31.50 27.30 32.20 27.70 77.40 73.70 77.80 74.20 34.80 31.90 35.60 32.20

29 171.00 178.00 35.90 27.60 34.40 27.80 80.00 73.70 79.70 74.60 35.70 32.00 36.50 31.90

210 177.00 182.00 38.70 28.60 35.60 27.90 81.10 74.30 81.30 74.30 36.70 31.80 37.10 32.00

211 177.00 183.00 38.20 27.60 36.20 27.70 81.30 74.30 82.20 74.10 37.00 32.00 37.80 31.90

212 179.00 186.00 39.10 27.70 36.50 28.00 81.60 73.50 81.50 74.10 37.30 31.80 37.90 32.10

213 165.00 169.00 39.00 27.80 36.70 27.80 81.30 73.90 82.80 73.50 37.30 32.10 38.30 32.10

214 153.00 156.00 40.90 29.60 38.70 29.60 81.50 74.10 82.40 73.70 44.40 39.20 45.40 39.10

215 122.00 131.00 47.60 35.70 44.80 36.10 85.70 75.20 83.90 75.40 51.00 45.10 51.40 45.50

216 100.00 111.00 51.40 40.40 48.00 38.80 85.10 75.50 86.20 75.60 53.60 48.40 54.60 48.20

Table 32: DS12, unordered_set<unordered_set<string>>

Validation of Memory-Allocation Benchmarks Page 44 of 67

Appendix 2: Elided results from Benchmark I

This section contains the full results of Benchmark I, generated for this paper. These

results were elided from the body of the paper for space constraints, and are included
here for completeness.

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

 ← virtual →

← virtual →

 ← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 5.91 6.67 3.05 2.71 3.12 2.83 5.16 4.77 5.23 4.70 4.17 3.82 4.24 3.83

27 7.55 8.36 3.05 2.64 3.05 2.76 4.65 4.12 4.41 4.05 3.87 3.51 3.82 3.49

28 7.63 8.45 2.93 2.60 3.02 2.74 4.06 3.70 4.00 3.64 3.70 3.32 3.64 3.36

29 7.65 8.53 2.94 2.58 3.00 2.71 3.85 3.48 3.78 3.43 3.62 3.25 3.60 3.20

210 7.66 8.47 2.90 2.58 2.99 2.71 3.79 3.39 3.76 3.33 3.62 3.21 3.59 3.16

211 7.54 8.44 2.93 2.57 2.99 2.70 3.79 3.35 3.74 3.27 3.64 3.18 3.59 3.13

212 7.55 8.45 2.95 2.57 3.00 2.70 5.26 4.74 5.21 4.63 3.66 3.19 3.62 3.13

213 8.56 9.41 2.97 2.57 3.01 2.71 6.55 5.48 6.47 5.38 3.72 3.20 3.66 3.15

214 8.85 9.67 3.01 2.57 3.05 2.71 6.90 5.94 6.85 5.89 3.82 3.21 3.77 3.19

215 9.00 9.83 2.99 2.57 3.03 2.71 5.98 4.67 5.92 4.61 3.83 3.21 3.78 3.19

216 8.97 9.88 2.99 2.57 3.03 2.71 5.64 4.90 5.57 4.82 3.84 3.21 3.79 3.18

Table 33: DS3, unordered_set<int>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 19.87 20.48 9.53 9.05 9.52 9.07 14.30 13.59 14.55 13.69 12.44 11.78 12.46 11.69

27 19.08 19.91 9.48 8.90 9.47 8.97 21.83 21.21 21.67 21.18 11.93 11.23 11.92 11.11

28 21.37 22.46 12.54 12.02 12.50 12.02 36.06 35.17 36.56 35.38 15.41 14.74 15.42 14.69

29 22.39 23.33 13.65 12.78 13.61 12.78 42.36 40.83 42.22 41.16 16.06 14.94 16.06 14.97

210 22.83 23.77 14.04 12.72 14.04 12.72 45.20 43.53 44.73 43.27 16.14 14.76 16.09 14.70

211 23.43 24.40 14.28 12.71 14.28 12.71 47.10 45.04 46.81 45.07 16.13 14.62 16.07 14.63

212 23.89 24.86 14.47 12.75 14.49 12.76 48.13 46.32 48.08 46.39 16.20 14.64 16.17 14.63

213 43.03 44.81 14.55 12.75 14.54 12.77 48.64 46.61 48.46 46.65 16.26 14.61 16.25 14.62

214 43.48 45.12 14.55 12.74 14.55 12.76 49.20 47.00 49.01 47.01 16.27 14.61 16.27 14.61

215 46.82 49.27 15.58 14.19 15.31 13.98 58.15 55.79 58.29 56.33 23.52 22.80 23.89 23.37

216 62.16 65.78 26.41 24.36 26.17 24.44 66.54 62.56 66.43 63.12 33.62 31.90 33.89 32.28

Table 34: DS4, unordered_set<string>

Validation of Memory-Allocation Benchmarks Page 45 of 67

 ← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 0.34 0.35 0.32 0.31 0.29 0.29 0.33 0.32 0.33 0.33 0.32 0.32 0.32 0.32

27 0.34 0.34 0.31 0.31 0.30 0.30 0.32 0.32 0.32 0.32 0.32 0.31 0.32 0.32

28 0.44 0.45 0.31 0.31 0.30 0.30 0.37 0.36 0.37 0.37 0.32 0.31 0.32 0.31

29 0.52 0.53 0.31 0.31 0.30 0.30 0.44 0.43 0.44 0.44 0.32 0.32 0.32 0.32

210 0.56 0.57 0.31 0.31 0.30 0.30 0.48 0.47 0.48 0.47 0.32 0.32 0.32 0.31

211 0.58 0.59 0.31 0.31 0.30 0.30 0.50 0.49 0.50 0.49 0.32 0.32 0.32 0.32

212 0.59 0.50 0.31 0.31 0.30 0.30 0.51 0.50 0.51 0.50 0.32 0.32 0.32 0.32

213 0.48 0.50 0.31 0.31 0.30 0.30 0.48 0.47 0.48 0.47 0.32 0.32 0.32 0.32

214 0.48 0.49 0.31 0.31 0.30 0.30 0.47 0.46 0.47 0.46 0.32 0.32 0.32 0.32

215 0.50 0.51 0.31 0.31 0.30 0.30 0.50 0.49 0.52 0.49 0.33 0.32 0.32 0.32

216 0.56 0.59 0.33 0.33 0.32 0.32 0.57 0.55 0.57 0.55 0.35 0.34 0.34 0.34

Table 35: DS5, vector<vector<int>>

 ← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 14.87 15.04 8.93 8.60 8.94 8.59 37.65 36.19 37.71 36.09 10.84 10.19 10.84 10.19

27 15.02 15.26 8.96 8.59 8.96 8.60 37.91 36.21 37.82 36.32 10.85 10.19 10.85 10.20

28 16.51 16.21 9.13 8.69 9.12 8.70 46.52 44.69 46.80 44.80 15.02 14.71 15.00 15.13

29 26.21 26.58 17.91 17.82 17.90 17.86 55.60 52.70 55.81 52.49 24.33 24.50 24.42 24.46

210 30.83 31.19 18.77 18.27 18.92 18.21 56.97 52.43 56.88 52.58 25.65 24.72 25.60 24.76

211 49.57 49.88 18.79 18.30 18.83 18.25 57.43 52.22 57.44 52.17 26.18 24.75 26.05 25.04

212 50.00 50.40 18.64 18.16 18.71 18.13 57.51 51.96 57.46 51.90 26.53 24.72 26.53 24.60

213 50.07 50.61 18.73 18.30 18.78 18.22 57.62 51.93 57.59 51.91 26.78 24.80 26.84 24.87

214 50.30 50.59 19.23 18.75 19.34 18.73 57.50 51.75 57.45 51.73 28.86 26.84 28.85 26.88

215 50.46 51.01 21.73 21.13 21.75 21.16 57.58 51.81 57.55 51.88 30.82 28.73 30.82 28.79

216 50.44 50.67 22.90 22.35 22.92 22.37 57.92 52.12 57.97 52.03 31.84 29.77 31.85 29.79

Table 36: DS6, vector<vector<string>>

Validation of Memory-Allocation Benchmarks Page 46 of 67

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 7.62 8.36 3.03 2.67 3.11 2.76 5.92 5.17 5.87 5.13 3.88 3.31 3.84 3.27

27 7.64 8.38 3.10 2.68 3.18 2.76 6.23 5.48 6.16 5.42 3.96 3.30 3.92 3.26

28 7.65 8.39 3.16 2.68 3.24 2.76 6.30 5.54 6.22 5.47 3.99 3.31 3.94 3.25

29 7.65 8.40 3.19 2.67 3.27 2.75 6.41 5.66 6.34 5.59 4.00 3.30 3.97 3.26

210 7.63 8.40 3.19 2.67 3.27 2.76 6.44 5.67 6.38 5.60 4.01 3.30 3.97 3.26

211 9.06 9.88 3.20 2.67 3.28 2.75 6.54 5.73 6.40 5.74 4.02 3.30 3.98 3.26

212 9.37 10.54 3.21 2.67 3.29 2.76 7.39 6.58 7.35 6.50 4.22 3.41 4.20 3.36

213 10.81 11.68 3.56 2.72 3.66 2.82 8.18 6.89 8.07 6.82 4.87 3.50 4.84 3.46

214 11.25 12.19 3.87 2.73 3.95 2.83 8.63 6.94 8.54 6.84 5.15 3.55 5.13 3.50

215 11.42 12.39 4.03 2.74 4.12 2.84 8.80 6.93 8.71 6.85 5.35 3.59 5.29 3.54

216 11.50 12.44 4.12 2.76 4.21 2.87 8.80 6.90 8.73 6.81 5.47 3.65 5.42 3.60

Table 37: DS7, vector<unordered_set<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 22.78 23.68 13.18 11.38 13.15 11.36 48.54 46.87 48.80 46.64 15.66 13.99 15.67 13.98

27 22.99 23.85 13.15 11.34 13.14 11.31 49.17 47.01 49.23 47.17 15.70 13.98 15.71 13.99

28 24.82 25.77 13.28 11.65 13.27 11.43 60.34 58.27 60.66 58.26 20.69 19.48 21.11 19.86

29 36.80 39.14 23.19 21.10 23.18 21.01 69.03 65.18 69.12 65.10 31.17 29.14 31.10 29.17

210 42.60 44.97 26.08 21.33 26.19 21.33 70.60 64.98 70.71 65.05 33.47 29.40 33.42 29.50

211 64.39 66.34 27.72 21.30 27.72 21.56 71.18 64.60 71.06 64.60 34.38 29.48 34.35 29.52

212 65.17 67.16 29.06 21.72 28.94 21.38 67.73 60.94 67.83 61.18 35.24 29.65 35.41 30.20

213 66.32 68.88 29.64 21.44 28.82 21.45 67.85 60.58 67.64 60.84 35.63 29.61 35.41 29.73

214 65.35 67.37 30.21 22.47 30.60 22.60 67.97 60.60 67.78 60.76 38.58 32.19 38.52 32.60

215 66.37 67.60 32.72 24.68 32.56 24.58 68.11 60.97 68.18 61.01 40.72 34.57 40.50 34.41

216 66.25 67.50 33.77 25.84 34.24 25.87 67.86 60.71 68.22 60.87 41.60 35.61 41.88 35.50

Table 38: DS8, vector<unordered_set<string>>

Validation of Memory-Allocation Benchmarks Page 47 of 67

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 0.38 0.39 0.32 0.31 0.32 0.32 0.35 0.34 0.35 0.34 0.34 0.33 0.34 0.33

27 0.40 0.40 0.32 0.31 0.32 0.32 0.34 0.33 0.34 0.33 0.33 0.33 0.33 0.33

28 0.40 0.40 0.32 0.31 0.32 0.32 0.41 0.40 0.41 0.40 0.33 0.33 0.33 0.33

29 0.40 0.41 0.32 0.31 0.32 0.32 0.48 0.47 0.48 0.47 0.33 0.33 0.33 0.33

210 0.40 0.41 0.33 0.31 0.33 0.32 0.52 0.50 0.52 0.51 0.34 0.33 0.34 0.33

211 0.41 0.41 0.33 0.31 0.33 0.32 0.54 0.53 0.54 0.53 0.34 0.33 0.34 0.33

212 0.41 0.41 0.33 0.31 0.33 0.32 0.55 0.53 0.55 0.54 0.34 0.33 0.34 0.33

213 0.57 0.58 0.33 0.31 0.34 0.32 0.55 0.54 0.55 0.54 0.34 0.33 0.34 0.33

214 0.57 0.58 0.33 0.31 0.34 0.32 0.56 0.54 0.56 0.54 0.34 0.33 0.34 0.33

215 0.59 0.60 0.33 0.31 0.34 0.32 0.54 0.53 0.55 0.53 0.34 0.33 0.34 0.33

216 0.70 0.72 0.37 0.34 0.37 0.34 0.63 0.60 0.63 0.60 0.37 0.35 0.37 0.35

Table 39: DS9, unordered_set<vector<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

 virtual ← virtual → ← virtual → ← virtual →

 (wink) (wink) (wink) (wink) (wink) (wink)
data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 15.14 15.40 8.96 8.60 8.95 8.58 37.85 36.20 37.85 36.10 10.85 10.19 10.86 10.19

27 14.98 15.28 8.96 8.59 8.97 8.60 38.01 36.24 38.15 36.31 10.84 10.19 10.84 10.18

28 16.07 16.56 9.08 8.64 9.07 8.66 46.27 44.97 47.00 44.66 14.72 14.54 14.71 14.91

29 27.03 27.65 18.10 17.97 18.24 18.14 56.21 52.79 56.22 52.89 24.96 25.22 24.85 25.11

210 32.76 32.96 18.90 18.56 19.13 18.76 57.58 52.83 57.80 52.92 26.14 25.13 26.53 25.21

211 34.48 34.59 18.81 18.08 18.72 18.22 57.67 52.36 57.72 52.50 26.99 25.24 26.74 25.22

212 36.11 36.29 19.25 18.60 19.22 18.53 57.83 52.32 57.90 52.14 26.97 25.19 27.14 25.24

213 50.77 51.10 18.82 18.20 18.86 18.38 57.93 52.06 58.12 52.19 27.56 25.61 27.44 25.22

214 50.62 51.48 19.64 19.06 19.60 19.04 58.03 52.15 57.99 52.09 29.30 27.07 29.19 27.24

215 51.42 51.47 21.83 21.24 21.93 21.31 57.89 52.04 58.08 52.17 31.20 28.85 31.15 28.91

216 51.05 51.19 23.19 22.57 23.09 22.40 58.26 52.24 58.17 52.35 32.09 29.92 32.16 29.95

Table 40: DS10, unordered_set<vector<string>>

Validation of Memory-Allocation Benchmarks Page 48 of 67

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 7.48 8.43 3.11 2.72 3.16 2.78 6.06 5.27 5.97 5.20 3.94 3.30 3.89 3.24

27 7.59 8.49 3.26 2.72 3.32 2.78 6.25 5.57 6.17 5.42 4.00 3.29 3.94 3.23

28 7.57 8.50 3.27 2.72 3.33 2.78 6.37 5.61 6.31 5.54 4.00 3.29 3.94 3.23

29 7.60 8.50 3.27 2.72 3.33 2.78 6.44 5.64 6.39 5.57 4.01 3.29 3.96 3.23

210 7.62 8.51 3.27 2.72 3.33 2.78 6.47 5.68 6.38 5.62 4.01 3.29 3.96 3.23

211 7.62 8.54 3.28 2.72 3.34 2.79 6.52 5.75 6.44 5.65 4.02 3.29 3.96 3.23

212 7.79 8.78 3.28 2.72 3.34 2.79 7.68 6.70 7.61 6.60 4.25 3.40 4.25 3.34

213 10.87 11.97 3.79 2.77 3.89 2.84 8.66 7.04 8.62 6.98 5.14 3.51 5.04 3.44

214 11.30 12.41 4.27 2.82 4.35 2.90 8.96 7.10 8.86 7.01 5.33 3.56 5.27 3.49

215 11.38 12.48 4.37 2.85 4.45 2.92 9.04 7.06 8.99 6.99 5.48 3.61 5.41 3.55

216 11.44 12.52 4.43 2.89 4.51 2.97 9.04 7.05 8.97 6.99 5.56 3.68 5.49 3.62

Table 41: DS11, unordered_set<unordered_set<int>>

← global → ← monotonic → ← multipool → ← multi + mono →

virtual

← virtual →

← virtual →

← virtual →

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

26 22.6 23.6 13.1 11.3 13.2 11.4 48.9 46.7 48.8 46.8 15.8 14.1 15.8 14.1

27 23.1 23.8 13.2 11.3 13.2 11.4 49.2 47.2 49.2 47.4 15.8 14.0 15.8 14.1

28 24.8 26.3 13.3 11.3 13.2 11.7 60.1 58.1 60.2 58.7 20.4 19.6 21.2 19.5

29 38.0 39.7 24.1 21.1 23.6 21.4 70.0 65.2 70.0 65.2 32.3 29.9 32.4 29.3

210 44.0 45.9 27.7 21.8 27.8 21.7 71.3 65.2 71.7 65.4 34.3 29.9 34.6 30.0

211 46.5 49.1 29.7 22.1 29.4 22.0 71.8 64.9 71.9 64.9 36.1 30.2 36.0 30.3

212 46.9 48.5 28.9 21.7 29.3 21.6 71.7 64.5 71.9 64.6 36.6 30.3 36.4 30.1

213 66.2 68.3 29.6 21.6 29.9 21.9 72.1 65.1 73.1 65.3 36.7 30.3 36.7 30.7

214 66.9 68.0 30.5 22.6 30.5 22.5 72.5 65.1 72.8 65.1 39.0 32.4 39.6 32.7

215 67.0 68.5 32.6 24.7 32.8 24.8 68.9 61.6 69.3 61.7 41.2 34.7 41.5 34.7

216 66.1 67.8 34.0 26.0 34.1 26.0 68.9 61.3 69.0 61.4 42.1 35.7 42.4 35.7

Table 42: DS12, unordered_set<unordered_set<string>>

Validation of Memory-Allocation Benchmarks Page 49 of 67

Appendix 3: Absolute Run Times for Benchmark II

This section contains the absolute run times for Benchmark II, generated for this

paper. The analysis of these results is included in the body of the paper in Chapter
10: “Benchmark II: Variation in Locality (Long Running).” These raw numbers are

included here for completeness.

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)

221 21.02 21.24 21.29 21.15 21.03 21.28 21.10 21.05 21.14 20

N
u

m
b

er o
f Lists (k

)

220 21.08 20.58 21.09 21.21 20.95 20.79 21.36 21.08 20.92 21

219 17.74 16.79 17.45 18.25 16.06 18.65 18.00 19.95 21.89 22

218 15.35 15.57 15.42 15.74 15.76 16.28 17.13 18.49 21.95 23

217 15.29 15.38 15.34 15.52 15.63 16.10 16.99 18.39 21.90 24

216 14.99 15.04 15.06 15.18 15.37 15.80 16.70 18.28 21.88 25

215 14.96 15.02 15.05 15.17 15.36 15.81 16.59 18.28 22.06 26

214 14.96 15.00 15.04 15.16 15.35 15.80 16.63 18.23 21.90 27

213 12.62 12.59 12.85 12.95 13.09 13.87 14.94 17.17 21.88 28

212 11.88 11.94 12.06 12.23 12.54 13.18 14.35 16.91 21.71 29

211 11.93 11.98 12.10 12.27 12.61 13.19 14.46 16.82 21.95 210

210 9.93 10.00 10.12 10.30 10.71 11.44 12.90 15.94 21.90 211

29 9.89 9.95 10.09 10.27 10.64 11.44 12.86 15.87 21.69 212

28 10.02 10.06 10.18 10.38 10.74 11.50 12.91 15.72 21.93 213

27 10.00 10.05 10.15 10.34 10.67 11.34 12.77 15.35 21.78 214

26 10.22 10.29 10.37 10.56 10.93 11.55 13.00 15.53 22.15 215

25 8.74 8.79 8.88 8.98 9.22 9.73 10.67 13.28 23.93 216

24 7.91 7.95 7.99 8.09 8.28 8.60 9.56 13.14 21.93 217

23 7.10 7.13 7.19 7.32 7.56 8.09 9.25 14.22 22.45 218

22 7.57 7.55 7.63 7.84 8.07 8.20 9.61 15.11 24.50 219

21 8.29 8.35 8.56 8.86 9.32 8.96 10.79 16.40 29.07 220

20 11.65 11.57 11.47 11.72 12.50 12.22 13.77 21.49 40.06 221

Table 43: Absolute run times for Benchmark II, problem size 221, without shuffling step, using

global allocator

Validation of Memory-Allocation Benchmarks Page 50 of 67

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)
221 21.2 21.2 21.1 21.1 21.3 21.1 21.3 21.2 21.2 20

N
u

m
b

er o
f Lists (k

)

220 174.8 176.1 175.6 175.1 175.7 175.4 174.8 175.5 175.6 21

219 346.4 348.1 347.6 350.3 351.0 355.0 360.6 366.4 378.3 22

218 165.1 165.6 178.6 182.9 194.6 220.7 263.0 316.4 390.0 23

217 133.6 131.5 137.1 150.3 160.8 189.3 218.4 292.2 396.2 24

216 95.7 99.0 101.4 105.7 117.8 139.0 182.9 260.2 397.7 25

215 98.8 99.9 101.7 104.8 115.9 132.2 171.0 247.1 395.9 26

214 99.5 100.2 101.9 104.6 115.5 136.0 168.8 243.9 396.9 27

213 99.4 100.2 101.5 104.7 116.2 135.0 169.8 244.3 397.0 28

212 77.0 79.2 81.0 84.0 96.9 110.4 155.5 231.4 395.6 29

211 48.5 49.6 58.4 62.7 70.4 89.2 133.1 222.4 398.3 210

210 45.0 48.4 50.5 54.2 67.5 87.7 132.9 219.5 400.5 211

29 33.0 38.3 39.7 45.0 56.0 78.2 125.3 214.0 402.1 212

28 20.7 26.0 24.8 31.7 40.9 66.8 116.0 211.5 399.9 213

27 18.6 19.9 21.8 29.8 40.4 62.3 110.7 205.9 392.5 214

26 15.1 17.2 20.5 26.4 38.0 63.0 111.8 203.4 398.8 215

25 12.4 13.9 17.1 24.7 38.8 63.3 114.8 209.2 390.5 216

24 10.7 12.8 16.8 24.3 37.3 65.3 115.6 218.0 393.9 217

23 10.0 12.3 16.2 24.6 40.7 67.8 126.0 233.8 401.2 218

22 10.1 13.2 16.7 26.3 43.2 75.1 137.8 250.7 392.6 219

21 11.6 14.1 19.2 28.7 45.3 78.4 132.8 215.8 310.0 220

20 14.7 17.5 22.7 33.5 52.8 78.8 115.8 175.5 275.2 221

Table 44: Absolute run times for Benchmark II, problem size 221, with shuffling step, using

global allocator

Validation of Memory-Allocation Benchmarks Page 51 of 67

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)
221 32.3 32.2 32.5 32.4 32.3 32.3 32.2 32.3 32.2 20

N
u

m
b

er o
f Lists (k

)

220 32.2 32.4 32.3 32.3 32.3 32.2 32.3 32.4 32.1 21

219 31.2 30.4 29.6 29.4 30.4 29.7 30.3 31.9 32.4 22

218 22.8 22.4 22.4 23.3 23.6 24.0 25.0 27.8 32.5 23

217 21.7 21.9 21.9 22.0 22.4 23.0 24.4 27.1 32.3 24

216 21.7 21.7 21.8 22.0 22.3 23.0 24.3 27.0 32.5 25

215 21.3 21.3 21.4 21.6 21.9 22.6 24.0 26.8 32.2 26

214 21.3 21.3 21.4 21.6 21.9 22.6 24.0 26.9 32.2 27

213 21.3 21.3 21.4 21.5 21.9 22.6 23.9 26.7 32.6 28

212 14.8 14.9 15.1 15.3 15.9 17.0 19.3 23.9 32.7 29

211 14.8 15.0 15.2 15.5 16.1 17.2 19.6 24.0 33.1 210

210 15.0 15.2 15.3 15.7 16.2 17.5 19.8 24.4 34.1 211

29 10.0 10.1 10.4 10.8 11.5 13.2 16.2 22.9 35.5 212

28 10.4 10.5 10.7 11.2 12.1 13.8 17.2 24.2 38.8 213

27 10.1 10.3 10.6 11.1 12.2 14.4 18.8 27.6 45.3 214

26 10.5 10.7 11.2 11.8 13.4 16.2 22.2 34.0 58.0 215

25 8.9 9.2 9.7 10.6 12.9 16.7 25.5 41.3 80.5 216

24 8.3 8.7 9.4 10.7 13.9 19.4 31.5 59.0 105.4 217

23 7.4 8.0 9.1 10.9 15.3 22.7 37.6 70.4 120.5 218

22 7.8 8.5 9.7 12.0 16.4 27.8 53.8 81.6 184.9 219

21 9.0 10.2 12.2 15.6 23.4 39.4 66.5 107.7 297.5 220

20 13.3 14.9 18.4 24.5 36.2 54.9 80.7 129.6 345.7 221

Table 45: Absolute run times for Benchmark II, problem size 221, without shuffling step, using

multipool allocator

Validation of Memory-Allocation Benchmarks Page 52 of 67

 Access Factor (af)

28 27 26 25 24 23 22 21 20

Li
st

 L
en

gt
h

 (
S

)
221 32.2 32.5 32.4 32.3 32.3 32.4 32.2 32.1 32.5 20

N
u

m
b

er o
f Lists (k

)

220 51.2 51.3 50.7 50.8 51.2 51.0 51.3 51.0 51.5 21

219 47.3 49.0 51.1 50.2 49.0 51.2 53.5 53.6 57.7 22

218 35.9 35.5 35.6 37.0 38.0 39.0 43.2 49.7 60.5 23

217 32.2 32.4 32.6 33.1 34.0 35.9 39.7 47.4 62.1 24

216 32.2 32.4 32.6 33.0 34.0 35.9 39.9 48.1 63.9 25

215 31.8 31.9 32.2 32.7 33.8 35.8 40.0 48.7 65.8 26

214 31.8 31.9 32.1 32.7 33.8 36.0 40.5 49.5 67.5 27

213 31.8 32.0 32.3 32.9 34.1 36.6 41.5 51.4 71.1 28

212 24.5 24.7 25.1 26.0 27.6 31.0 37.9 51.3 77.7 29

211 24.2 24.5 25.2 26.3 28.4 32.4 40.8 57.1 90.6 210

210 23.7 24.0 24.7 26.0 28.4 33.1 43.1 61.6 99.6 211

29 10.7 11.1 11.9 13.5 16.8 23.1 35.9 61.6 111.9 212

28 10.6 11.1 12.0 13.9 17.3 24.6 39.3 67.8 124.5 213

27 10.6 11.1 12.2 14.2 18.5 26.6 42.9 76.2 141.2 214

26 10.9 11.6 12.7 15.3 19.8 29.4 48.5 86.7 162.0 215

25 10.5 11.3 12.7 15.7 21.6 32.9 55.8 100.9 187.3 216

24 9.5 10.3 12.1 15.2 22.2 36.4 61.8 112.5 211.4 217

23 8.8 10.0 12.3 16.6 25.6 44.3 80.6 149.6 274.7 218

22 9.4 11.1 14.4 21.5 34.5 61.5 112.6 211.9 353.5 219

21 11.3 13.8 18.5 28.1 46.5 79.8 138.1 231.0 364.9 220

20 15.5 19.1 26.3 41.0 69.0 101.4 140.1 213.2 367.6 221

Table 46: Absolute run times for Benchmark II, problem size 221, with shuffling step, using

multipool allocator

Validation of Memory-Allocation Benchmarks Page 53 of 67

Appendix 4: Absolute run times for Benchmark III

This section contains the absolute run times for Benchmark III, generated for this

paper. The analysis of these results is included in the body of the paper in Chapter
11 “Benchmark III: Variation in Utilization.” These raw numbers are included here for

completeness.

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

230 215 210 0.052 0.055 0.226 0.226 0.023 0.024 0.024 0.024

230 216 210 0.052 0.055 0.226 0.226 0.024 0.024 0.024 0.024

230 217 210 0.052 0.054 0.226 0.226 0.024 0.024 0.024 0.024

230 218 210 0.052 0.054 0.226 0.226 0.024 0.024 0.024 0.024

230 219 210 0.052 0.054 0.226 0.226 0.024 0.024 0.024 0.024

230 220 210 0.052 0.054 0.226 0.226 0.024 0.024 0.024 0.025

230 220 211 0.026 0.027 0.217 0.218 0.012 0.012 0.012 0.013

230 220 212 0.013 0.013 0.213 0.213 0.007 0.007 0.006 0.006

230 220 213 0.006 0.007 0.211 0.211 0.008 0.008 0.213 0.213

230 220 214 0.003 0.004 0.209 0.209 0.004 0.004 0.210 0.210

230 220 215 0.002 0.002 0.208 0.208 0.002 0.002 0.209 0.209

Table 47: Total Allocated Memory, T = 230, absolute run times in seconds

Validation of Memory-Allocation Benchmarks Page 54 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

231 215 210 0.104 0.109 0.453 0.453 0.046 0.048 0.048 0.048

231 216 210 0.104 0.109 0.452 0.453 0.048 0.048 0.047 0.048

231 217 210 0.103 0.108 0.452 0.452 0.047 0.048 0.048 0.048

231 218 210 0.103 0.108 0.452 0.452 0.048 0.048 0.048 0.048

231 219 210 0.103 0.108 0.452 0.452 0.048 0.048 0.048 0.049

231 220 210 0.103 0.108 0.452 0.452 0.048 0.048 0.048 0.049

231 220 211 0.053 0.054 0.435 0.435 0.024 0.025 0.024 0.025

231 220 212 0.025 0.026 0.426 0.427 0.014 0.014 0.012 0.012

231 220 213 0.013 0.013 0.421 0.421 0.015 0.015 0.425 0.425

231 220 214 0.007 0.007 0.418 0.419 0.008 0.008 0.420 0.420

231 220 215 0.003 0.004 0.417 0.417 0.004 0.004 0.418 0.418

Table 48: Total Allocated Memory, T = 231, absolute run times in seconds

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

232 215 210 0.208 0.218 0.905 0.906 0.092 0.096 0.095 0.096

232 216 210 0.208 0.217 0.905 0.905 0.095 0.096 0.095 0.096

232 217 210 0.207 0.216 0.904 0.905 0.095 0.097 0.095 0.096

232 218 210 0.206 0.216 0.904 0.904 0.095 0.096 0.095 0.096

232 219 210 0.206 0.216 0.905 0.905 0.096 0.096 0.096 0.097

232 220 210 0.206 0.216 0.904 0.905 0.096 0.097 0.096 0.097

232 220 211 0.105 0.109 0.870 0.870 0.049 0.049 0.048 0.049

232 220 212 0.050 0.053 0.853 0.853 0.026 0.026 0.024 0.025

232 220 213 0.025 0.026 0.842 0.842 0.030 0.030 0.850 0.850

232 220 214 0.013 0.014 0.837 0.837 0.016 0.016 0.840 0.840

232 220 215 0.007 0.007 0.835 0.834 0.008 0.008 0.836 0.836

Table 49: Total Allocated Memory, T = 232, absolute run times in seconds

Validation of Memory-Allocation Benchmarks Page 55 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

233 215 210 0.417 0.436 1.813 1.812 0.185 0.192 0.190 0.193

233 216 210 0.415 0.435 1.810 1.811 0.190 0.190 0.196 0.192

233 217 210 0.412 0.432 1.809 1.810 0.190 0.190 0.190 0.192

233 218 210 0.411 0.431 1.810 1.810 0.190 0.191 0.191 0.192

233 219 210 0.411 0.431 1.808 1.810 0.191 0.192 0.191 0.196

233 220 210 0.412 0.432 1.809 1.811 0.191 0.194 0.192 0.195

233 220 211 0.209 0.217 1.740 1.741 0.096 0.098 0.096 0.098

233 220 212 0.101 0.105 1.707 1.706 0.056 0.053 0.048 0.049

233 220 213 0.050 0.053 1.685 1.684 0.059 0.060 1.700 1.699

233 220 214 0.027 0.028 1.674 1.674 0.031 0.031 1.680 1.680

233 220 215 0.014 0.014 1.669 1.670 0.016 0.016 1.673 1.671

Table 50: Total Allocated Memory, T = 233, absolute run times in seconds

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

234 215 210 0.833 0.873 3.622 3.623 0.370 0.384 0.381 0.386

234 216 210 0.831 0.870 3.619 3.623 0.381 0.381 0.379 0.384

234 217 210 0.824 0.863 3.618 3.622 0.379 0.382 0.380 0.383

234 218 210 0.822 0.864 3.618 3.618 0.379 0.383 0.379 0.383

234 219 210 0.822 0.862 3.615 3.618 0.384 0.385 0.382 0.387

234 220 210 0.824 0.863 3.616 3.618 0.382 0.386 0.383 0.388

234 220 211 0.419 0.434 3.481 3.482 0.192 0.195 0.192 0.196

234 220 212 0.201 0.210 3.412 3.412 0.105 0.106 0.095 0.097

234 220 213 0.100 0.105 3.368 3.368 0.118 0.120 3.396 3.397

234 220 214 0.053 0.056 3.346 3.347 0.062 0.063 3.362 3.363

234 220 215 0.027 0.028 3.336 3.336 0.032 0.032 3.344 3.345

Table 51: Total Allocated Memory, T = 234, absolute run times in seconds

Validation of Memory-Allocation Benchmarks Page 56 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

235 215 210 1.670 1.748 7.240 7.245 0.752 0.771 0.769 0.776

235 216 210 1.662 1.740 7.242 7.244 0.761 0.762 0.759 0.769

235 217 210 1.647 1.727 7.233 7.242 0.758 0.763 0.764 0.766

235 218 210 1.645 1.728 7.232 7.245 0.758 0.765 0.761 0.771

235 219 210 1.645 1.725 7.236 7.240 0.767 0.775 0.769 0.773

235 220 210 1.647 1.728 7.236 7.241 0.768 0.774 0.775 0.775

235 220 211 0.837 0.867 6.958 6.963 0.384 0.389 0.385 0.391

235 220 212 0.401 0.421 6.827 6.830 0.208 0.213 0.193 0.195

235 220 213 0.200 0.211 6.741 6.738 0.236 0.240 6.799 6.801

235 220 214 0.106 0.111 6.695 6.697 0.124 0.126 6.718 6.714

235 220 215 0.054 0.056 6.672 6.673 0.062 0.063 6.684 6.682

Table 52: Total Allocated Memory, T = 235, absolute run times in seconds

Validation of Memory-Allocation Benchmarks Page 57 of 67

Appendix 5: Elided results for Benchmark III

This section contains the full analyzed results for Benchmark III, generated for this

paper. Some of these results are presented in the body of the paper in Chapter 11
“Benchmark III: Variation in Utilization.” These numbers were elided for space

reasons, and are included here for completeness.

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

231 215 210 0.1042 105 434 435 44 46 46 46

231 216 210 0.1039 105 435 436 46 46 46 46

231 217 210 0.1030 105 439 439 46 46 46 47

231 218 210 0.1029 105 439 440 46 47 46 47

231 219 210 0.1029 105 439 439 46 47 47 47

231 220 210 0.1032 105 438 438 47 47 47 47

231 220 211 0.0528 103 824 824 46 47 46 47

231 220 212 0.0253 104 1682 1684 54 56 48 49

231 220 213 0.0128 104 3299 3300 117 118 3331 3330

231 220 214 0.0067 105 6201 6210 117 118 6229 6224

231 220 215 0.0034 103 12121 12123 115 116 12147 12148

Table 53: Total Allocated Memory, T = 231

Validation of Memory-Allocation Benchmarks Page 58 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

232 215 210 0.2083 105 435 435 44 46 46 46

232 216 210 0.2078 105 435 436 46 46 46 46

232 217 210 0.2070 105 437 437 46 47 46 46

232 218 210 0.2060 105 439 439 46 47 46 47

232 219 210 0.2057 105 440 440 47 47 47 47

232 220 210 0.2063 105 438 439 46 47 47 47

232 220 211 0.1050 103 829 829 46 47 46 47

232 220 212 0.0504 104 1692 1693 52 52 48 49

232 220 213 0.0253 104 3332 3333 118 119 3362 3363

232 220 214 0.0134 104 6249 6248 117 118 6272 6274

232 220 215 0.0068 103 12285 12269 115 117 12295 12292

Table 54: Total Allocated Memory, T = 232

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

233 215 210 0.4166 105 435 435 44 46 46 46

233 216 210 0.4155 105 436 436 46 46 47 46

233 217 210 0.4117 105 439 440 46 46 46 47

233 218 210 0.4113 105 440 440 46 46 46 47

233 219 210 0.4112 105 440 440 46 47 47 48

233 220 210 0.4122 105 439 439 46 47 47 47

233 220 211 0.2093 104 831 832 46 47 46 47

233 220 212 0.1005 104 1698 1697 56 53 47 49

233 220 213 0.0502 105 3353 3353 118 119 3383 3383

233 220 214 0.0267 105 6276 6276 117 118 6299 6299

233 220 215 0.0136 103 12302 12311 115 117 12331 12319

Table 55: Total Allocated Memory, T = 233

Validation of Memory-Allocation Benchmarks Page 59 of 67

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

234 215 210 0.8330 105 435 435 44 46 46 46

234 216 210 0.8308 105 436 436 46 46 46 46

234 217 210 0.8236 105 439 440 46 46 46 47

234 218 210 0.8223 105 440 440 46 47 46 47

234 219 210 0.8221 105 440 440 47 47 46 47

234 220 210 0.8238 105 439 439 46 47 47 47

234 220 211 0.4185 104 832 832 46 47 46 47

234 220 212 0.2009 104 1698 1698 52 53 47 48

234 220 213 0.1003 105 3358 3358 118 119 3386 3387

234 220 214 0.0532 105 6287 6288 117 118 6317 6317

234 220 215 0.0271 103 12324 12325 116 118 12354 12357

Table 56: Total Allocated Memory, T = 234

 global ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

235 215 210 1.6700 105 434 434 45 46 46 46

235 216 210 1.6615 105 436 436 46 46 46 46

235 217 210 1.6471 105 439 440 46 46 46 47

235 218 210 1.6453 105 440 440 46 47 46 47

235 219 210 1.6448 105 440 440 47 47 47 47

235 220 210 1.6474 105 439 440 47 47 47 47

235 220 211 0.8373 104 831 832 46 47 46 47

235 220 212 0.4013 105 1701 1702 52 53 48 49

235 220 213 0.2005 105 3363 3361 118 120 3392 3392

235 220 214 0.1064 105 6293 6295 117 118 6314 6311

235 220 215 0.0541 104 12344 12346 115 117 12366 12362

Table 57: Total Allocated, T = 235

Validation of Memory-Allocation Benchmarks Page 60 of 67

Appendix 6: Absolute Run Times for Benchmark IV

This section contains the absolute run times for Benchmark IV, generated for this

paper. The analysis of these results is included in the body of the paper in
Chapter12: “Benchmark IV: Variation in Contention.” These raw numbers are

included here for completeness.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 26 1 0.103 0.105 0.026 0.025 0.049 0.049 0.049 0.049

100*215 26 2 0.103 0.105 0.051 0.026 0.049 0.049 0.049 0.049

100*215 26 3 0.103 0.105 0.026 0.026 0.049 0.049 0.049 0.049

100*215 26 4 0.103 0.105 0.026 0.026 0.078 0.049 0.049 0.049

100*215 26 5 0.181 0.190 0.050 0.052 0.080 0.081 0.079 0.082

100*215 26 6 0.181 0.190 0.051 0.051 0.079 0.079 0.082 0.080

100*215 26 7 0.186 0.191 0.059 0.055 0.081 0.082 0.079 0.081

100*215 26 8 0.192 0.192 0.058 0.055 0.082 0.096 0.089 0.084

Table 58: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 26, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 27 1 0.208 0.210 0.027 0.026 0.049 0.049 0.049 0.049

100*215 27 2 0.208 0.210 0.027 0.026 0.049 0.049 0.049 0.049

100*215 27 3 0.209 0.210 0.027 0.026 0.049 0.049 0.049 0.049

100*215 27 4 0.209 0.210 0.028 0.051 0.080 0.049 0.049 0.049

100*215 27 5 0.461 0.379 0.060 0.054 0.079 0.080 0.080 0.078

100*215 27 6 0.467 0.477 0.059 0.058 0.085 0.082 0.081 0.079

100*215 27 7 0.470 0.480 0.077 0.076 0.083 0.083 0.080 0.083

100*215 27 8 0.477 0.480 0.106 0.092 0.082 0.080 0.083 0.082

Table 59: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 27, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 61 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 28 1 0.209 0.210 0.030 0.029 0.049 0.049 0.049 0.049

100*215 28 2 0.209 0.210 0.030 0.029 0.049 0.049 0.049 0.049

100*215 28 3 0.213 0.217 0.064 0.045 0.053 0.053 0.081 0.049

100*215 28 4 0.209 0.210 0.101 0.102 0.049 0.049 0.080 0.080

100*215 28 5 0.461 0.476 0.129 0.147 0.080 0.080 0.083 0.080

100*215 28 6 0.461 0.476 0.166 0.166 0.080 0.080 0.079 0.080

100*215 28 7 0.461 0.478 0.182 0.182 0.080 0.079 0.086 0.085

100*215 28 8 0.461 0.477 0.199 0.198 0.097 0.082 0.080 0.080

Table 60: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 28, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*216 28 1 0.417 0.419 0.059 0.056 0.097 0.098 0.098 0.097

100*216 28 2 0.417 0.419 0.181 0.180 0.097 0.098 0.102 0.097

100*216 28 3 0.921 0.420 0.202 0.201 0.157 0.157 0.100 0.105

100*216 28 4 0.921 0.957 0.299 0.216 0.097 0.098 0.098 0.157

100*216 28 5 0.920 0.752 0.312 0.317 0.162 0.157 0.157 0.157

100*216 28 6 0.921 0.953 0.336 0.338 0.168 0.161 0.161 0.157

100*216 28 7 0.921 0.962 0.366 0.372 0.162 0.172 0.172 0.164

100*216 28 8 0.928 0.961 0.397 0.402 0.162 0.162 0.159 0.158

Table 61: Absolute run times in seconds for number of iterations N = 100*216, size of allocation

S = 28, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 62 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*217 28 1 0.834 0.838 0.338 0.342 0.194 0.196 0.196 0.194

100*217 28 2 1.843 0.838 0.378 0.375 0.194 0.196 0.196 0.194

100*217 28 3 0.835 0.838 0.405 0.403 0.194 0.196 0.196 0.194

100*217 28 4 0.836 0.839 0.434 0.435 0.194 0.196 0.196 0.194

100*217 28 5 1.843 1.902 0.631 0.635 0.316 0.316 0.320 0.318

100*217 28 6 1.471 1.907 0.672 0.635 0.317 0.321 0.318 0.323

100*217 28 7 1.843 1.901 0.720 0.718 0.318 0.321 0.324 0.321

100*217 28 8 1.841 1.905 0.791 0.790 0.320 0.323 0.325 0.318

Table 62: Absolute run times in seconds for number of iterations N = 100*217, size of allocation

S = 28, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*218 28 1 1.666 1.675 0.694 0.685 0.388 0.391 0.391 0.388

100*218 28 2 1.668 1.676 0.742 0.750 0.388 0.391 0.391 0.387

100*218 28 3 1.669 1.676 0.801 0.799 0.388 0.391 0.391 0.388

100*218 28 4 1.670 1.678 1.177 0.856 0.388 0.391 0.391 0.388

100*218 28 5 3.684 2.796 1.252 1.250 0.630 0.625 0.547 0.625

100*218 28 6 3.682 3.593 1.270 1.349 0.631 0.628 0.629 0.625

100*218 28 7 3.692 3.805 1.439 1.436 0.632 0.629 0.640 0.633

100*218 28 8 3.686 3.817 1.575 1.576 0.630 0.632 0.632 0.632

Table 63: Absolute run times in seconds for number of iterations N = 100*218, size of allocation

S = 28, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 63 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*219 28 1 3.333 3.351 1.380 1.377 0.775 0.781 0.781 0.774

100*219 28 2 3.335 3.351 1.498 1.482 0.775 0.782 0.782 0.775

100*219 28 3 3.337 3.840 1.599 1.596 0.775 0.782 0.782 0.775

100*219 28 4 3.337 3.353 1.700 1.704 0.775 0.782 0.782 0.775

100*219 28 5 6.276 5.159 2.439 2.497 1.262 1.254 1.253 1.254

100*219 28 6 5.584 7.500 2.658 2.617 1.258 1.144 1.253 1.254

100*219 28 7 6.595 7.613 2.852 2.861 1.260 1.258 1.264 1.250

100*219 28 8 7.374 7.618 3.151 3.150 1.261 1.265 1.258 1.262

Table 64: Absolute run times in seconds for number of iterations N = 100*219, size of allocation

S = 28, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 64 of 67

Appendix 7: Absolute Run Times for Benchmark IV, with static buffer
removed

This section contains the absolute run times for Benchmark IV, after re-running the
benchmark with the static buffer removed. The analysis of these results is included

in the body of the paper in Chapter 12: “Benchmark IV: Variation in Contention.”
These raw numbers are included here for completeness.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 26 1 0.103 0.105 0.076 0.076 0.049 0.049 0.049 0.049

100*215 26 2 0.104 0.105 0.079 0.078 0.049 0.049 0.049 0.049

100*215 26 3 0.103 0.105 0.080 0.080 0.049 0.049 0.049 0.049

100*215 26 4 0.104 0.105 0.081 0.081 0.049 0.049 0.049 0.049

100*215 26 5 0.180 0.190 0.121 0.123 0.078 0.079 0.080 0.072

100*215 26 6 0.192 0.191 0.123 0.125 0.079 0.080 0.081 0.080

100*215 26 7 0.182 0.191 0.127 0.134 0.082 0.082 0.080 0.082

100*215 26 8 0.188 0.196 0.140 0.136 0.092 0.093 0.083 0.087

Table 65: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 26, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 65 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 27 1 0.208 0.210 0.133 0.132 0.049 0.049 0.049 0.049

100*215 27 2 0.209 0.210 0.142 0.141 0.079 0.053 0.049 0.049

100*215 27 3 0.209 0.210 0.146 0.146 0.049 0.049 0.049 0.049

100*215 27 4 0.209 0.210 0.150 0.150 0.049 0.049 0.049 0.081

100*215 27 5 0.461 0.476 0.215 0.213 0.086 0.080 0.079 0.083

100*215 27 6 0.464 0.476 0.223 0.227 0.081 0.079 0.082 0.085

100*215 27 7 0.467 0.486 0.243 0.241 0.080 0.083 0.091 0.096

100*215 27 8 0.464 0.479 0.256 0.251 0.081 0.081 0.083 0.080

Table 66: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 27, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*215 28 1 0.208 0.210 0.203 0.201 0.049 0.049 0.049 0.049

100*215 28 2 0.209 0.210 0.222 0.224 0.049 0.049 0.079 0.049

100*215 28 3 0.209 0.211 0.245 0.241 0.049 0.049 0.049 0.049

100*215 28 4 0.210 0.210 0.268 0.263 0.049 0.082 0.049 0.049

100*215 28 5 0.461 0.476 0.400 0.379 0.085 0.082 0.079 0.079

100*215 28 6 0.462 0.477 0.421 0.415 0.080 0.081 0.083 0.083

100*215 28 7 0.462 0.476 0.462 0.463 0.080 0.081 0.083 0.084

100*215 28 8 0.463 0.478 0.491 0.491 0.079 0.083 0.093 0.088

Table 67: Absolute run times in seconds for number of iterations N = 100*215, size of allocation

S = 28, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 66 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*216 28 1 0.417 0.419 0.323 0.320 0.097 0.098 0.097 0.097

100*216 28 2 0.418 0.422 0.423 0.425 0.097 0.098 0.097 0.097

100*216 28 3 0.417 0.419 0.509 0.513 0.159 0.098 0.097 0.097

100*216 28 4 0.418 0.420 0.571 0.557 0.097 0.098 0.097 0.097

100*216 28 5 0.922 0.637 0.801 0.830 0.158 0.157 0.158 0.158

100*216 28 6 0.921 0.953 0.855 0.856 0.159 0.165 0.159 0.171

100*216 28 7 0.921 0.949 0.897 0.892 0.160 0.158 0.159 0.158

100*216 28 8 0.921 0.954 0.929 0.919 0.167 0.165 0.162 0.168

Table 68: Absolute run times in seconds for number of iterations N = 100*216, size of allocation

S = 28, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*217 28 1 0.834 0.838 0.793 0.793 0.194 0.196 0.194 0.194

100*217 28 2 0.833 0.838 0.986 0.945 0.194 0.196 0.194 0.194

100*217 28 3 0.835 1.908 0.999 0.993 0.194 0.196 0.194 0.194

100*217 28 4 0.836 0.840 1.031 1.042 0.315 0.196 0.194 0.194

100*217 28 5 1.842 1.391 1.538 1.515 0.318 0.316 0.317 0.314

100*217 28 6 1.840 1.584 1.580 1.559 0.318 0.319 0.317 0.318

100*217 28 7 1.846 1.905 1.631 1.618 0.325 0.316 0.320 0.316

100*217 28 8 1.842 1.913 1.686 1.673 0.326 0.320 0.319 0.320

Table 69: Absolute run times in seconds for number of iterations N = 100*217, size of allocation

S = 28, number of threads W varied.

Validation of Memory-Allocation Benchmarks Page 67 of 67

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*218 28 1 1.668 1.676 1.822 1.821 0.388 0.391 0.388 0.388

100*218 28 2 1.669 1.677 1.872 1.870 0.388 0.391 0.388 0.388

100*218 28 3 1.670 1.677 1.909 1.905 0.388 0.392 0.388 0.388

100*218 28 4 1.669 1.677 2.052 2.877 0.628 0.392 0.388 0.388

100*218 28 5 3.685 2.842 2.595 2.779 0.634 0.628 0.627 0.543

100*218 28 6 3.682 3.810 2.912 2.887 0.633 0.629 0.630 0.615

100*218 28 7 3.682 3.809 3.003 2.966 0.631 0.636 0.640 0.630

100*218 28 8 3.701 3.824 3.055 3.022 0.637 0.637 0.636 0.640

Table 70: Absolute run times in seconds for number of iterations N = 100*218, size of allocation

S = 28, number of threads W varied.

 ←global→ ←monotonic→ ←multipool→ ←mono+multi→

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

100*219 28 1 3.331 3.350 3.404 3.406 0.775 0.782 0.775 0.775

100*219 28 2 3.335 3.354 3.484 3.484 0.775 0.782 0.775 0.775

100*219 28 3 3.334 3.355 3.548 3.548 1.256 1.250 0.779 0.775

100*219 28 4 3.337 3.355 3.592 3.603 0.775 0.783 0.775 0.775

100*219 28 5 5.163 6.050 4.809 4.800 1.259 1.254 1.257 1.256

100*219 28 6 5.914 7.623 5.594 5.595 1.231 1.259 1.253 1.257

100*219 28 7 7.123 7.430 5.672 5.649 1.253 1.257 1.254 1.261

100*219 28 8 7.381 7.630 5.804 5.802 1.261 1.255 1.256 1.269

Table 71: Absolute run times in seconds for number of iterations N = 100*219, size of allocation

S = 28, number of threads W varied.

