
Document number: P0198R0

Date: 2016-02-11

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++

Audience: Evolution Working Group / Library Evolution Working Group

Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

Abstract

Defining swap as copy/move constructor/assignment operators, for simple classes is tedious, repetitive,
slightly error-prone, and easily automated.

I propose to (implicitly) supply default version of this operation by the compiler, if needed. The meaning
swap is to swap each member.

This paper contains only a working paper wording. This is a discussion paper to determine EWG/LEWG
interest in the feature, and if there is interest to get direction for a follow-up paper with more detailed
wording.

1. Introduction
2. Motivation
3. Proposal
4. Design rationale
5. Working paper wording
6. Alternative solutions
7. Implementability
8. Open points
9. Acknowledgements

10. References

Defining swap as copy/move constructor/assignment operators for simple classes is tedious, repetitive,

Default Swap

Table of Contents

Introduction

mailto:vicente.botet@wanadoo.fr
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#motivation
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#working-paper-wording
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#alternative-solutions
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/reflection/P0198R0.md#references

slightly error-prone, and easily automated.

I propose to (implicitly) supply default version of this operation by the compiler, if needed. The meaning
swap is to swap each member.

If the simple defaults are unsuitable for a class, a programmer can, as ever, define more suitable ones or
suppress the defaults. The proposal is to add the operations as an integral part of C++ (like =), rather than
as a library feature.

The proposal follows the same approach as Default comparison as in N4475, that is, that having default
generated code for these basic operations only when needed and possible would make the language
simpler.

This paper contains only a working paper wording. This is a discussion paper to determine EWG interest in
the feature, and if there is interest to get direction for a follow-up paper with more detailed wording.

Some standard algorithms require that an argument type supply an overload for swap .

The standard std::swap algorithm works well for Movable types. However a compiler generated
member-wise swap function could apply to more types, e.g. std::array is Swappable and not
Movable, and be even more efficient. Writing such types can be tedious (and all tedious tasks are error
prone).

For example

class Foo {
 int i;
 string str;
 bool b;
 //...

 friend void swap(const Foo& lhs, const Foo& rhs) {
 using std::swap;
 swap(lhs.i,rhs.i);
 swap(lhs.str, rhs.str);
 swap(lhs.b, rhs.b);
 }
};

One of the benefit for a default member-wise swap respect to std::swap move-based, beside the
performances, is that the former can sometimes offer a better noexcept guarantee. E.g., for
std::vector , swap can be always guaranteed to be noexcept , whereas its move operations

Motivation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

throw.

Even, when one of the member-wise swap can throw, it is worth generating the member-wise swap

because otherwise the std::swap move-based will also throw, if a class has a swap throw it will also
have a move that throws.

I propose to generate a default version for swap for simple classes when needed. If this default is
unsuitable for a type, =delete it. If non-default of this operation is needed, define them (as always). If
swap is already declared, a default is not generated for it. This is exactly the way assignment and

constructors work today and as comparison operators would work if N4475 is adopted.

We propose a member-wise swap definition.

swap will be generated regardless of noexcept of member swap function, and will have automatic
noexcept specification that would depend on is_nothrow_swapable on each base class and non-

static data member.

The following restricts the generation of swap

has that operation defined or deleted in the class namespace in any translation unit [Note: this requires
link-time checking], or
the move constructor and assignment operations are not generated by default or
has a non-static data member for which the swap operation doesn’t exist and cannot be generated

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator. -- end].

[For example:

Proposal

What is the definition of swap ?

noexcept expression

When it could be applied

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

class S {
 int i;
 string str;
 bool b;
 //...
};

void f(S& x, S& y)
{
 swap(x,y);
}

Is equivalent to

class S {
 int i;
 string str;
 bool b;
 //...
};

void f(S& x, S& y)
{
 {
 using std::swap;
 swap(x.i,y.i);
 swap(x.str,y.str);
 swap(x.b,y.b);
 }
}

-- end]

I may be beneficial to have proper rule of six: i.e. non of following copy constructor/assignment, move
constructor/assignment, swap , destructor is generated if at least on of them is defined. However this
would be breaking change (as we may already have classes with swap, that uses compiler generated
special functions), so we stick to making swap depended on other five.

Design Rationale

Rule of 6

As copy/move constructor/assignment and destructor can be declared =default by the author of the
class, declaring swap as =default , should also be possible. The major case we have in mind is
when the user add some traces in the destructor.

This wording is very “drafty” and has not gone through expert review. It is intended to reflect the design
decisions described above. It is inspired from the wording for Default comparison in N4532.

Add a "Swap expression" section in 5

A swap expression is a particular case of a function call expression when the function name is swap .

If an operand is of class type and no suitable function is found in the class namespace, the implicitly-
declared swap non-member operation as described in over.generate_swap is used.

Add a "Special non-member swap operation" section after 13.6

If no user-defined swap operation is provided for a class type T (struct , class or union),
and all of the following is true:

there are no user-declared copy constructors;
there are no user-declared copy assignment operators;
there are no user-declared move constructors;
there are no user-declared move assignment operators;
there are no user-declared destructors;

then the compiler will declare a friend swap operation with the signature

friend void swap(T&, T&) noexcept(see below);

swap(T&, T&) = default

Working paper wording

Swap expression [expr.swap]

Special non-member swap operation
[over.generate_swap]

Implicitly-declared swap non-member operation

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
file:///Users/viboes/github/std_make/doc/proposal/reflection/if%20any

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator.].

The user may still force the generation of the implicitly declared swap operation declaring it as a friend
with the keyword default .

The generated implementation is not considered a function so it cannot have its address taken [Note: like
the = operator.].

The implicitly-declared or defaulted swap operation for class T is defined as deleted in any of the
following is true:

T has non-static data members that cannot be swapped;
T has direct or virtual base class that cannot be swapped;
T implicit-generated move constructor is deleted;
T implicit-generated move assignment is deleted;
T implicit-generated destructor is deleted;

The deleted implicitly-declared swap operation is ignored by overload resolution.

If the implicitly-declared swap operation is not deleted, it is defined (that is, a function body is generated
and compiled) by the compiler if odr-used.

For union types, the implicitly-defined swap operation do as the std::swap .
For non-union class types (class and struct), the swap non-member operation performs full
member-wise swap of the object's bases and non-static members, in their initialization order.

Based on a future reflection library e.g. N4428 or N4451, we could define a generic swap function
instead of generating it. However, to the author knowledge, this would need to declare a friend function,
which is much more intrusive than the compiler generated solution.

Next follows how the generic overload could be defined making use of some reflection

Explicitly defaulted swap non-member operation

Deleted implicitly-declared swap non-member operation

Implicitly-defined swap non-member operation

Alternative solution

Reflection, generic swap and friend

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

namespace std {
namespace experimental {namespace reflect { inline namespace v1 {

 template <class C>
 struct is_swap_generation_enabled;

 template <class C>
 struct is_nothrow_swapable_generated_swap;

}}}

// However this swap overload would need a friend declaration
template <class C>
enable_if<reflect::is_swap_generation_enabled<C>{}> swap(C & x, C & y)
 noexcept(is_nothrow_swapable_generated_swap<C>{})
{
 using std::swap
 // swap the base classes (needs friend access and reflection)
 ...
 // swap the non-static data-member (needs friend access and reflection)
 ...
}

} // namespace std

Note that the swap overload would need to be declared as friend on the class.

namespace MyNS {

class MyC {

 template <class C>
 friend
 enable_if<std::experimental::reflect::is_swap_generation_enabled_t<C>{}>
 std::swap(C & x, C & y)
 noexcept(std::experimental::reflect::is_nothrow_swapable_generated_swap_t<C>{
 // ...
};

} //namespace

This would be almost a showstopper and one of the reasons, that even with reflection, a compiler
generated version is a better and less intrusive choice.

The user could also add the

namespace MyNS {

void swap(MyC & x, MyC & y)
 noexcept(std::swap(x,y))
{
 return std::swap(x,y);
}

} //namespace

so that there is no more need to introduce std::swap .

MyNs::MyC a, b;
MyNs::swap(a,b)

This proposal needs some compiler magic, either by generating directly the swap function or by
providing the reflection traits as e.g. in N4428 or N4451.

The authors would like to have an answer to the following points if there is any interest at all in this
proposal:

Do we want a default or a reflection solution?

Quiz of generating also the swap member function.

Defaulting swap operations is simple, removes a common annoyance. It is completely compatible. In
particular, the existing facilities for defining and suppressing those operations are untouched.

Thanks to Tomasz Kamiński for its clear identification of the types that are subject to this kind of default
generation.

Thanks to all those that have commented the idea on the std-proposals ML helping to the proposal in

Implementability

Open Questions

Summary

Acknowledgments

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

general, in particular Andrzej Krzemieński.

N3746 Proposing a C++1Y Swap Operator, v2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3746.pdf

N4428 Type Property Queries (rev 4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf

N4451 Static reflection

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf

N4475 Default comparisons (R2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf

N4511 "Adding [nothrow-]swappable traits, revision 1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4511.html

N4532 Proposed wording for default comparisons

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html

P0017R0 Extension to aggregate initialization

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r0.html

References

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3746.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4428.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4451.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4475.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4511.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4532.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0017r0.html

