Proposal of Bit-field Default Member
Initializers

Document No.: P0187R0

Project: Programming Language C++ - Evolution

Author: Andrew Tomazos <andrewtomazos@gmail.com>
Date: 2015-11-20

Summary

We propose default member initializers for bit-fields.
Example:

struct S {
int x ¢ 6 = 42;
b

To ease parsing we specify a rule, roughly summarized as “you have to use =, and = always
starts the initializer”. We apply this rule by adjusting the grammar.

Background

The declarators of class members are called member-declarators:

member—-declarator:
declarator virt-specifier-seq,, pure-specifier, .
declarator brace-or-equal-initializer,,
constant-expression

identifier,, attribute-specifier-seq,.:

As can be seen, non-bit-field members may have default member initializers. Bit-fields may not.

The motivation for having initializers for bit-fields is the same as having initializers for
non-bit-fields. It can be argued that the motivation is even stronger for bit-fields, as they usually
occur in “simple structs” where member initializers are heavily used for their
tersity/compactness.

Naively adding them...

member-declarator:

mailto:andrewtomazos@gmail.com

declarator virt-specifier-seqopt pure-specifier,
declarator brace-or-equal-initializer,

identifier,, attribute-specifier-seq,, : constant-expression \

brace-or-equal-initializer,,

...creates parsing difficulties and parsing ambiguities. In particular, if a constant-expression is
immediately followed by an optional brace-or-equal-initializer, it can be unclear if a non-nested =
or { is the first token of the initializer or a continuation of the constant-expression, and in some
of those cases this remains ambiguous even with infinite lookahead.

For example:
struct S {
int y : true ? 1 : a = 42; // Is 42 a default member initializer
// or the rhs of an assignment?
int x : 1 || new int { 43 }; // Is 43 a default member initializer
// or part of the new expression?
i
Proposal

We propose to resolve these ambiguities by effectively adding a couple of special parsing rules
that serves to both (a) resolve potential ambiguities; and (b) make it easy to parse.

Roughly, the first proposed rule is that, in a bitfield declarator, the first non-nested =
token terminates parsing of the constant-expression.

Consequences: A bitfield width may not contain a non-nested = token. A non-nested = token
after the : token in a bitfield declarator unambiguously commences the initializer in a
well-formed program.

Rationale: It would be a very strange constant-expression that uses an overloaded assignment
operator. In such bizarre cases, it remains possible to wrap the bitfield width in parenthesis to
get it to parse as intended.

Roughly, the second proposed rule is that, in a bitfield declarator, a { token does not start
parsing of the brace-or-equal-initializer.

Consequences: The initializer of a bitfield must start with an = token. That is, it must use the
copy-initialization or copy-list-initialization form, and may not use the direct-initialization or
direct-list-initialization form. Informally the rule is “you have to use the equals” in a bitfield
default member initializer.

Rationale:

1. For a bit-field, there is no difference in effect between copy-initialization and
direct-initialization (likewise no difference between copy-list-initialization and
direct-list-initialization). Therefore a would-be use of the direct forms can be replaced
with the copy forms, without semantic difference.

2. Leaving it ambiguous lead to complaints about implementation difficulty.

3. Non-nested braces are useful in constant expressions. For example:

enumE {k=4;};
struct X {int n : in{E::k}; };

Weighing these three points we decided to propose that the brace be given to the constant
expression.

We apply these two rules by adjusting the grammar, reducing the would-be constant-expression
to not allow non-nested = syntactically, and reducing the would-be brace-or-equal-initializer to =
initializer.

Wording

Add to grammar and member-declarator:

member-declarator:
declarator virt-specifier-seq,, pure-specifier,,
declarator brace-or-equal-initializer

\

attribute-specifier-seq

1dent1flerw opt ©

t
noassign-conditional-expression
identifier attribute-specifier-seq,,: \

noassign-conditional-expression = initializer
noassign-conditional-expression
logical-or-expression

logical-or-expression ? noassign-conditional-expression : \

noassign-conditional-expression

Modify [class.bit]:
A member-declarator of one of the forms:

identifier,, attribute-specifier-seq,: \

noassign-conditional-expression
identifier attribute-specifier-seq,,: \

noassign-conditional-expression = initializer

specifies a bit-field; its length is set off from the bit-field name by a colon. If an = initializer is
present, it is treated as a brace-or-equal-initializer of this data member ([class.mem]/4). The
optional attribute-specifier-seq appertains to the entity being declared. The bit-field attribute is
not part of the type of the class member. The noassign-conditional-expression shall be
an integral constant expression with a value greater than or equal to zero.

Add new paragraph to [class.bit]:

A noassign-conditional-expression is equivalent, by definition, to a
conditional-expression that consists of the same sequence of tokens.

Add new section [diff.cpp14.class]:

Change: Change bit-field widths to be noassign-conditional-expressions.

Rationale: To enable bit-field default member initializers.

Effect on original feature: Valid C++ 2014 code may fail to compile or change meaning in this
International Standard:

int a;
struct S {
int b : true ? 2 : a = 1;
// before: bit-field width of 2, not initialized
// after: bit-field width of 2, initialized with the wvalue 1.

i 2

References

CWG ISSUE 1341
Thread starting [c++std-core-28391] “another observation on core issue 1341”

CWG Kona 2015 discussion about same

Acknowledgements

Thanks to James Widman for submitting the original core issue asking for this
feature. Thanks to Richard Smith for the initial discussion that lead to this
proposal. Thanks to Jens Maurer for reviewing and presenting this proposal.

