Document Number: P0161R0

Date: 2016-02-12

Project: ISO SC22/WG21 C++ Standard, Library Working Group
Reply to: Nathan Myers <ncm@cantrip.org>

Bitset Iterators, Masks, and Container Operations

Although the bitset<> of C++14 omits many essential bitwise operations, an augmented bitset<>
would be a near-ideal place to bind specialized bitwise instructions, such as POPCNT and CTz, as well
as a few of the long-word SIMD operations found on modern platforms. With modern compilers, a
round trip of an integer or integer array type through bitset often compiles to exactly zero
instructions, so that exposing the available operations through bitset<>, rather than as low-level
compiler intrinsics, reduces cognitive load on programmers without sacrificing performance.

This paper proposes iterator and set container access, and high-level bindings for the most
important operations commonly supported by bitwise instructions on normal and extended register
sizes.

Iterators

If bitset<N> is a set, we should be able to iterate over its elements and use its iterators in generic
algorithms. By definition, an iterator on a set should take on one value for each element in the set.
That is, given a bitset value b, we should expect std: :distance(b.begin(), b.end()) == b.count().

What should std: :bitset<N>::iterator::operatorx() return? A naive choice would be the numeric
index of the bit position represented. In practice, the most useful result is another bitset value b such
that b.count() == 1, usable as a bitmask to apply against other instances. In this view, a bitset is a
set, not of the indices of all its bits, or of its 1 bits, but rather of N-bit-long representations of

powers of 2 up to 2N°!, inserted into the set by a simple bitwise OR. (This is consistent with its
existing constructor from an integer type, which treats the argument as a set of bits, not a bit
index.)

This paper proposes a family of iterators, comprising iterator, reverse_iterator, index_iterator, and
reverse_index_iterator, and operations on them that work in constant time vs. set cardinality. The
additional, index, iterators behave in the naive way, yielding bit indices as if these were the
members of the set.

Iterators proposed here do not behave like the surrogate pointers typical of container iterators. Le.,
given an iterator it, the expression *it is an rvalue that cannot be used to alter the parent bitset,
and that does not reflect changes made to the parent bitset subsequent to construction. Iterators
also are not invalidated by such changes. Pointer semantics would interfere with efficient
implementation and use, and (particularly) with binding to native bitwise instructions. The iterators
satisfy requirements on Inputlterator types, and (in addition) they allow re-scanning via copies.

Generic Container Operations

We also propose insert and erase members, both by key and by iterator range (the latter a
constant-time operation) for better compatibility with generic code. For the same reason, we
propose members clear() and empty(), and a (constant-time) constructor from iterator ranges.

02/12/2016 06:58 PM



(We note in passing that, from the standpoint of container conventions, size() in bitset is
misdefined to report what would be capacity() in a proper container, necessitating the extra
member count() to report the set cardinality that would normally be reported as size(). We do not
here attempt to repair this historical infelicity; a backward-compatible repair would need to
introduce a new type, e.g. bitset_set<N>, presumably inheriting from bitset<n>. This alternative will
taken up if preferred.)

It is not unusual to need to use a bitset<> as the key in a container, so we also define operations
needed for this, including op< et al. This is meant to complement (DR1182) hash applied to bitsets.

Bindings to Native and SIMD Operations

C++14’s std: :bitset<N> already has member count(), which is (in fact) the only portable binding
found in C++14 to the assembly-language instruction commonly called porcNT. However, it does not
offer quick access to the index position of the lowest or highest bit, typical of cTz-family
instructions. It furthermore offers no direct way to get commonly needed related values, such as a
mask representing all bits to the right or left of a given index position.

The noted operations are available to a program that can afford to use compiler intrinsics or
assembly instructions, or if N is small enough for the bitset to be converted to and from
unsigned long long. When N is 65 or more, and your code must be portable, no optimal
implementation is available. This proposal exposes bindings for these operations on all set
capacities.

Modern lexical-scanning techniques achieve radical performance improvements over traditional
methods via operations on a collection of bitsets (typically placed in SIMD registers) with one bitset
for each bit-position in a char, longitudinally across a character sequence. (L.e., one bitset for the
least-significant, or value 1 bit, another for the value 2 bit, and so on up to the 8th, or value 128 bit.)
Such optimizations depend, to a large degree, on operations such as proposed here. std: :bitset<N>
offers a standard place to bind native bitwise operations. Subsequent proposals in this vein may
bind more of the commonly available operations: most usefully, transposition of a byte sequence
into a collection of bitsets.

Some operations defined below are presented with a Precondition: spec that washes out common
differences between native-instruction versions of the operation (e.g. CTZ on a zero value), enabling
optimal implementation on a wide variety of hardware. There are complementary, possibly slower,
wide-contract versions of each.

Experiments with implementation using Gec’s “vector extensions” have thus far yielded
disappointing performance results even for what would seem the best potential uses. Possibly the
time needed to marshall values into the extended registers overwhelms benefits from SIMD parallel
execution, vs. unrolled operations on regular registers. Meanwhile, the instructions commonly
available that operate on extended registers are disappointingly devoid of whole-word operations,
most particularly decrement-by-one and shift, which must be implemented word-wise instead.

Notes

Many of the operations proposed here are defined as compositions of other public operations, but
are included because they are better done by taking advantage of implementation details, compiler
intrinsics, or assembly code. For example, many are specified recursively, but would be
implemented wordwise in constant time. The “exposition-only” elements and other code

02/12/2016 06:58 PM



expressions presented are chosen to aid precise definition, not to suggest a production-grade
implementation.

Some target instruction sets provide numerous minor variations on these operations, tacking on a
complement here, a decrement there. We assume that, where it makes a difference, a peephole
optimizer can identify simple compositions and substitute composite instructions, as they do to
generate MODQUOT and ROT instructions, so they need not be exposed at the interface level. (Too often,
the composite instructions offer no runtime benefit anyhow. We suppose that their purpose is more
for commercial advantage than for utility.) In addition, the members erase and op-= provide the most
commonly useful composite operation.

This proposal does not pretend to cover all useful forms of bitwise data organization. In particular, it
does not address data structures with size variable at runtime[3], nor specialty operations
accelerated in hardware in only a minority of target machines. These latter operations can be
considered where merited.

We do not consider it limiting to bind these operations to library class templates, rather than to
native machine words as in [2]. Compilers are lately very good at seeing past compile-time
fixed-size struct organization of rvalues to the arrays and native values they enwrap, so that, e.g., a
std::bitset may occupy the same register as an integer (or integer array) value it converts to or from.

In contrast to typical function interfaces elsewhere in the standard library, these functions take
their arguments and return results by value wherever possible. This approach reserves a maximum
of freedom for optimizers. The apparently-implied copy operations are routinely elided by compilers
when instantiating the mostly inline functions.

Note further that most of the operations proposed are declared constexpr, making them useful, at
compile time, to construct bitwise structures of any size.

Proposal

Declare constexpr all members of class bitset that do not involve iostreams.

Add to class bitset the following.

Class bitset

template <size_t N>
class bitset {

[...]

using key_type = bitset;
using value_type = bitset;

constexpr bitset(iterator b, iterator e);

constexpr bitset(reverse_iterator b, reverse_iterator e);

constexpr bitset(index_iterator b, index_iterator e);

constexpr bitset(reverse_index_iterator b, reverse_index_iterator e);

constexpr void insert(bitset s);

constexpr void insert(iterator b, iterator e);

constexpr void insert(reverse_iterator b, reverse_iterator e);
constexpr void insert(index_iterator b, index_iterator e);
constexpr void insert(

02/12/2016 06:58 PM



reverse_index_iterator b, reverse_index_iterator e);
constexpr void erase(bitset s);
constexpr void erase(iterator b, iterator e);
constexpr void erase(reverse_iterator b, reverse_iterator e);
constexpr void erase(index_iterator b, index_iterator e);
constexpr void erase(

reverse_index_iterator b, reverse_index_iterator e);

constexpr void clear();
constexpr bool empty() const;

constexpr bool operator<(bitset s) const;
constexpr bool operator<=(bitset s) const;
constexpr bool operator>(bitset s) const;
constexpr bool operator>=(bitset s) const;

constexpr bitset& operator-=(bitset s);

constexpr size_t low_bit_position() const;
constexpr bitset low_bit() const;
constexpr bitset low_mask() const;
constexpr bitset low_mask_not() const;

constexpr size_t high_bit_position() const;
constexpr bitset high_bit() const;
constexpr bitset high_mask() const;
constexpr bitset high_mask_not() const;

constexpr bitset range_mask(size_t n) const;

class iterator

void>

public iterator<input_iterator_tag, bitset, size_t, void,
{
bitset place_; // exposition only
explicit constexpr iterator(bitset s) // exposition only
place_(s) {}
public:
constexpr iterator();
constexpr bitset operator*() const;
constexpr iterator& operator++();
constexpr iterator operator++(int);
constexpr bool operator==(iterator other) const;
constexpr bool operator!=(iterator other) const;
constexpr iterator operator-(iterator other) const;
}s

constexpr iterator begin() const;
constexpr iterator end() const;
using const_iterator = iterator;
constexpr iterator cbegin() const;
constexpr iterator cend() const;

class reverse_iterator : public iterator
public iterator<input_iterator_tag, bitset, size_t, void,
{
bitset place_; // exposition only
explicit constexpr reverse_iterator(bitset s)
place_(s) {} // exposition only
public:
constexpr reverse_iterator();
constexpr bitset operator*() const;
constexpr reverse_iterator& operator++();
constexpr reverse_iterator operator++(int);
constexpr bool operator==(reverse_iterator other) const;
constexpr bool operator!=(reverse_iterator other) const;

void>

02/12/2016 06:58 PM



constexpr reverse_iterator operator-(iterator reverse_other) const;
b
using const_reverse_iterator = reverse_iterator;
constexpr reverse_iterator rbegin() const;
constexpr reverse_iterator rend() const;
constexpr reverse_iterator crbegin() const;
constexpr reverse_iterator crend() const;

class index_iterator:
public iterator<input_iterator_tag, bitset, size_t, void, void>
{
bitset place_; // exposition only
explicit constexpr index_iterator(bitset s)
place_(s) {} // exposition only
public:
constexpr index_iterator();
constexpr size_t operator*() const;
constexpr index_iterator& operator++();
constexpr index_iterator operator++(int);
constexpr bool operator==(index_iterator other) const;
constexpr bool operator!=(index_iterator other) const;
constexpr index_iterator operator-(iterator index_other) const;
¥
using const_index_iterator = index_iterator;
constexpr index_iterator ibegin() const;
constexpr index_iterator iend() const;
constexpr index_iterator cibegin() const;
constexpr index_iterator ciend() const;

class reverse_index_iterator:
public iterator<input_iterator_tag, bitset, size_t, void, void>
{
bitset place_; // exposition only
explicit constexpr reverse_index_iterator(bitset s)
place_(s) {} // exposition only
public:
constexpr reverse_index_iterator();
constexpr size_t operator*() const;
constexpr reverse_index_iterator& operator++();
constexpr reverse_index_iterator operator++(int);
constexpr bool operator==(reverse_index_iterator other) const;
constexpr bool operator!=(reverse_index_iterator other) const;
constexpr reverse_index_iterator operator-(
iterator reverse_index_other) const;
}s
using const_reverse_index_iterator = reverse_index_iterator;
constexpr reverse_index_iterator ribegin() const;
constexpr reverse_index_iterator riend() const;
constexpr reverse_index_iterator cribegin() const;
constexpr reverse_index_iterator criend() const;

};

In addition, add constexpr overloads of a free function template from <iterator>, in support of
generic programming;:

template <size_t N>
size_t distance<bitset<N>::iterator>(bitset<N>::iterator a, bitset<N>::iterator<N> b);
template <size_t N>
size_t distance<bitset<N>::reverse_iterator>(
bitset<N>::reverse_iterator a, bitset<N>::reverse_iterator<N> b);
template <size_t N>

02/12/2016 06:58 PM



size_
bitset<N>::index_iterator a, bitset<N>::index_iterator<N> b);

t distance<bitset<N>::index_iterator>(

template <size_t N>

size_
bitset<N>::reverse_index_iterator a, bitset<N>::reverse_index_iterator<N> b);

t distance<bitset<N>::reverse_index_iterator>(

Returns: (b.place_ & ~e.place_).count()

And, at namespace scope, the constexpr overload:

template <size_t N>
bitset<N> operator-(bitset<N> a, bitset<N> b);

Returns:a -= b

Bitset Members

bitset(iterator b, iterator e);

bitset(reverse_iterator b, reverse_iterator e);
bitset(index_iterator b, index_iterator e);
bitset(reverse_index_iterator b, reverse_index_iterator e);

void

void
void
void
void

void

void
void
void
void

void

bool

Returns: b.place_ & ~e.place_
insert(bitset e);
Effect: operator|=(e)

insert(iterator b, iterator e);

insert(reverse_iterator b, reverse_iterator e);
insert(index_iterator b, index_iterator e);
insert(reverse_index_iterator b, reverse_index_iterator e);

Returns: operator|=(b.place_ & ~e.place_);
erase(bitset e);
Effect: operator&=(~e)

erase(iterator b, iterator e);

erase(reverse_iterator b, reverse_iterator e);
erase(index_iterator b, index_iterator e);
erase(reverse_index_iterator b, reverse_index_iterator e);

Effect: operator&=(~(b.place_ & ~e.place_))

clear();
Effect: reset()
empty() const;

Returns: none()

02/12/2016 06:58 PM



bool operator<(bitset s) const;
Returns: if *this == s, false; else, if none(), true; else, if s.none(), false; else, if
high_bit() == s.high_bit(), (*this * high_bit()) < (s * s.high_bit()); else,
high_bit_position() < s.high_bit_position().
bool operator<=(bitset s) const;
Returns: ! (s < *this)
"bool operator>(bitset s) const;
Returns: s < xthis
bool operator>=(bitset s) const;
Returns: ! (xthis < s)
bitset& operator-=(bitset s);
Returns: *this &= ~s;
bitset operator-(bitset s) const;
Returns: *this & ~s
size_t low_bit_position() const;
Precondition: any() == true
Returns: test(0) ? 0 : 1 + low_bit_position(xthis >> 1) [Note: this is also the number of zero
bits to the right of the low bit. —end note]

bitset low_bit() const;

Precondition: any() == true
Returns: bitset{}.set(low_bit_position())

bitset low_mask() const;

Precondition: any() == true
Returns: test(0) ? bitset{} : (low_mask(*this >> 1) << 1).set(@)

bitset low_mask_not() const;
Returns: none() ? ~bitset{} : ~low_mask()
size_t high_bit_position() const;

Precondition: any() == true
Returns: test(N-1) ? N-1 : high_bit_position(*this << 1) - 1

bitset high_bit() const;

Precondition: any() == true

02/12/2016 06:58 PM



Returns: bitset{}.set(high_bit_position()) [Note: This is the floor of log, of the bitset viewed as
an integer type —end note]

bitset high_mask() const;

Precondition: any() == true
Returns: test(N-1) ? bitset{} : (high_mask(xthis << 1) >> 1).set(N-1)

bitset high_mask_not() const;
Returns: none() ? ~bitset{} : ~high_mask()
bitset range_mask(size_t n) const;
Returns: ~high_mask_not() & bitset{}.set(n).low_mask_not()

iterator begin() const;
iterator cbegin() const;

Returns: [as if] iterator(xthis)

iterator end() const;
iterator cend() const;

Returns: iterator{}

reverse_iterator rbegin() const;
reverse_iterator crbegin() const;

Returns: [as if] reverse_iterator(xthis)

reverse_iterator rend() const;
reverse_iterator crend() const;

Returns: reverse_iterator{}

index_iterator ibegin() const;
index_iterator cibegin() const;

Returns: [as if] index_iterator(*this)

index_iterator iend() const;
index_iterator crend() const;

Returns: reverse_iterator{}

reverse_index_iterator ribegin() const;
reverse_index_iterator cribegin() const;

Returns: [as if] reverse_index_iterator(*this)

reverse_index_iterator riend() const;
reverse_index_iterator criend() const;

02/12/2016 06:58 PM



Returns: reverse_index_iterator{}
Iterator Members

iterator::iterator();
Effect: [as if] place_ = bitset{}
Remark: While this presents as an Inputlterator, multiple passes are allowed using additional
copies of an iterator.

bitset iterator::operator*() const;

Precondition: xthis != iterator{}
Returns: place_.low_bit()

iterator& iterator::operator++();
Precondition: xthis != iterator{}
Effect: place_ &= ~place_.low_bit()
Returns: «this

iterator iterator::operator++(int);
Precondition: xthis != iterator{}
Effect: place_ &= ~place_.low_bit()
Returns: a copy of the previous value of xthis

bool iterator::operator==(iterator other) const;
Returns: place_ == other.place_

bool iterator::operator!=(iterator other) const;
Returns: place_ != other.place_

bool iterator::operator-(reverse_iterator other) const;

Returns: iterator(this->place_ & ~other.place_)
Reverse Iterator Members

reverse_iterator::reverse_iterator();
Effect: [as if] place_ = bitset{}
Remark: While this presents as an Inputlterator, multiple passes are allowed using additional
copies of an iterator.

bitset reverse_iterator::operator*() const;

Precondition: *this != reverse_iterator{}
Returns: place_.high_bit()

reverse_iterator& reverse_iterator::operator++();

02/12/2016 06:58 PM



Precondition: *this != reverse_iterator{}
Effect: place_ &= ~place_.high_bit()
Returns: *this

reverse_iterator reverse_iterator::operator++(int);
Precondition: *this != reverse_iterator{}
Effect: place_ &= ~place_.high_bit()
Returns: a copy of the previous value of *this

bool reverse_iterator::operator==(reverse_iterator other) const;
Returns: place_ == other.place_

bool reverse_iterator::operator!=(reverse_iterator other) const;
Returns: place_ != other.place_

bool index_iterator::operator-(reverse_iterator other) const;

Returns: reverse_iterator(this->place_ & ~other.place_)
Index Iterator Members

index_iterator::index_iterator();

Effect: [as if] place_ = bitset{}
Remark: While this presents as an Inputlterator, multiple passes are allowed using additional
copies of an iterator.

size_t index_iterator::operatorx() const;

Precondition: xthis != index_iterator{}
Returns: place_.low_bit_position()

index_iterator& index_iterator::operator++();
Precondition: xthis != index_iterator{}
Effect: place_ &= ~place_.low_bit()
Returns: «this

index_iterator index_iterator::operator++(int);
Precondition: xthis != index_iterator{}
Effect: place_ &= ~place_.low_bit()
Returns: a copy of the previous value of xthis

bool index_iterator::operator==(index_iterator other) const;
Returns: place_ == other.place_

bool index_iterator::operator!=(index_iterator other) const;

Returns: place_ != other.place_

02/12/2016 06:58 PM



bool index_iterator::operator-(index_iterator other) const;
Returns: _index_iterator(this->place_ & ~other.place_)

Reverse Index Iterator Members

reverse_index_iterator::reverse_index_iterator();

Effect: [as if] place_ = bitset{}

Remark: While this presents as an Inputlterator, multiple passes are allowed using additional

copies of an iterator.
size_t reverse_index_iterator::operator*() const;

Precondition: xthis != reverse_index_iterator{}
Returns: place_.high_bit_position()

reverse_index_iterator& reverse_index_iterator::operator++();
Precondition: xthis != reverse_index_iterator{}
Effect: place_ &= ~place_.high_bit()
Returns: «this

reverse_index_iterator reverse_index_iterator::operator++(int);
Precondition: xthis != reverse_index_iterator{}
Effect: place_ &= ~place_.high_bit()
Returns: a copy of the previous value of xthis

bool reverse_index_iterator::operator==(reverse_index_iterator other) const;
Returns: place_ == other.place_

bool reverse_index_iterator::operator!=(reverse_index_iterator other) const;
Returns: place_ != other.place_

bool reverse_index_iterator::operator-(reverse_index_iterator other) const;

Returns: reverse_index_iterator(this->place_ & ~other.place_)

Open questions

1. Given the historical baggage of members size() and count(), and unfortunate implementation

/ ABI choices that make a bitset<8> unnecessarily occupy 8 bytes with a mixed-endian
memory layout, should we instead introduce a wholly new type bitset_set<> resolving

bitset’s infelicities?

2. Is there any value in defining an end_iterator type derived from iterator, with its own

operators == and != against iterator, that can be implemented more efficiently? Or does inline

definition of end() provide a compiler all the information it needs to do just as well?

3. What important low-level operations are not represented yet? (I have omitted those that

02/12/2016 06:58 PM



should be trivially folded from constituent operations by a peephole optimizer.)
a. Do we need composed forms, e.g. b |= m << 160 and b &= ~(m << 100)

4. What would a bitwise transpose from a sequence of char/short/int to a commensurate
collection of bitsets look like? (e.g. eight bitsets from a string_view)

5. What would integration with ranges, range iterators, and/or proxy iterators involve? Is this
actually desirable; i.e., can we get it with exactly zero runtime cost? Does it necessarily
impose awkward layout restrictions?

6. How should conversion to/from an array of integers commensurate with N look? This is
important for compatibility with other encapsulated interpretations of multiple words, to
avoid redundant copying and enable a bitset to live in the same register as, e.g., std::array or
a multiprecision integer type.

References

1. P0125R0 “std::bitset inclusion test methods”, http://www.open-std.org/jtc1/sc22/wg21/docs
/papers/2015/p0125r0.html

2. N3864 “A constexpr bitwise operations library for C++”, http://www.open-std.org/jtc1/sc22
/wg21/docs/papers/2014/n3864.html

3. Howard Hinnant, “On vector<bool>": http://howardhinnant.github.io/onvectorbool.html

4. libc++ bit_reference implementation: https://github.com/llvm-mirror/libcxx/blob/master
/include/ bit reference

5. Gee “vector intrinsics” http://gec.gnu.org/onlinedocs/gec/Vector-Extensions.html

6. Clang “extended vectors” http://clang.llvm.org/docs/LanguageExtensions.html#vectors-
and-extended-vectors

7. Portable-esque “SSE intrinsics” http://www.linuxjournal.com/content/introduction-
gcc-compiler-intrinsics-vector-processing

8. MSVC SSE intrinsics (cf. (7)) https://msdn.microsoft.com/en-us/library/y0dh78ez(VS.80).aspx

02/12/2016 06:58 PM



