
	
Doc	number:		 P0126R1	
Revises:		 P0126R0,	N4195	
Date:		 	 2016-02-12	
Project:		 Programming	Language	C++,	Concurrency	Working	Group	
Reply-to:	 Olivier	Giroux	<ogiroux@nvidia.com>	

std::synchronic<T>	

Atomic	objects	make	it	easy	to	implement	inefficient	synchronization	in	C++.	The	first	problem	
that	users	typically	have,	is	poor	system	performance	under	oversubscription	and/or	contention.		
The	second	is	high	energy	consumption	under	contention,	regardless	of	oversubscription.	

At	issue	is	a	trade-off	centered	on	resource	arbitration	for	synchronization,	placing	in	tension:	
• The	focus	of	modern	platform	architecture	is	on	lowering	total	energy	use.	
• The	focus	of	performance-critical	software	is	on	minimizing	latency.	

Implementations	 could	 do	 significantly	 better	 with	 more	 semantic	 information.	 There	 exists	
different	native	support	for	efficient	polling	on	all	major	software	and	hardware	platforms.		We	
now	propose	“synchronic”	objects,	an	atomic	library	abstraction	for	this	diverse	support.	

For	more	background,	see	P0126R0	and	Futexes	are	Tricky.	

A	simplifying	abstraction	

Synchronic	 objects	 make	 it	 easier	 to	 implement	 scalable	 and	 efficient	 synchronization	 using	
atomic	objects.		The	easiest	way	to	use	a	synchronic	object	is	to	declare	an	expected	atomic	value	
for	synchronization,	and	notify	when	an	atomic	object	should	be	compared	against	this	value.		

For	example:
 //similar to std::latch (n4538)
 //using std::hardware_false_sharing_size (n4523)
 class example {	
 ...	
 void sync_up_my_team() {	
 if(count.fetch_add(-1)!=1)
 while(!released.load());	
 sync.expect(released, true);	
 else
 released.store(true);	
 sync.notify(released, true);	
 }
 ...	
 alignas(hardware_false_sharing_size) atomic<int> count;
 alignas(hardware_false_sharing_size) atomic<bool> released;
 synchronic<bool> sync;	
 };	 	

	

C++	Proposed	Wording	
The	proposed	edits	are	with	respect	to	the	current	working	draft	of	the	Standard.	

Feature	test	macros	

The	__cpp_lib_synchronic	feature	test	macro	should	be	added.	

29.2	Header	<atomic>	synopsis:	

 //	29.8,	fences	
 extern "C" void atomic_thread_fence(memory_order) noexcept;
 extern "C" void atomic_thread_fence(memory_order) noexcept;

 // 29.9,	synchronic	operations
 enum notify_hint { notify_all, notify_one };
 enum expect_hint { expect_urgent, expect_delay };

 template <class T> struct synchronic;
 }

29.9	Synchronic	objects		 	 	 	 	 	 	 	[atomics.synchronic]	
1 Synchronic	objects	provide	low-level	blocking	primitives	used	to	implement	synchronization	with	

atomic	 objects.	 Class	 synchronic<T>	 encapsulates	 an	 efficient	 algorithm	 to	 wait	 until	 a	
condition	 is	 met,	 a	 predicate	 associated	 with	 a	 single	 object	 of	 the	 corresponding	 class	
atomic<T>.	This	facility	neither	requires,	nor	provides	mutual-exclusion	between	threads.	

2 Concurrent	executions	of	the	notify	and	expect	member	functions	do	not	introduce	data	
races.	If	they	invoke	a	user-provided	function,	that	function	may	still	introduce	data	races.	

3 Executions	 of	 the	expect	member	 functions	 return	when	 the	 condition	 is	 satisfied,	 or	 else	
block.	While	blocked,	 subsequent	evaluations	of	 the	condition	may	be	deferred	until	another	
thread	invokes	a	notify	member	function	with	the	same	atomic	object.	[Note:	an	evaluation	
that	 is	 not	 deferred	 indefinitely	 is	 only	 eventually	 performed.	 This	makes	 synchronic	 objects	
susceptible	 to	 transient	 values,	 an	 issue	 known	 as	 the	 ABA	 problem,	 resulting	 in	 continued	
blocking	after	the	condition	is	temporarily	met.	–	End	Note.]	

4 The	implementation	shall	behave	as	if	the	start	of	each	evaluation	of	the	condition	by	executions	
of	 the	 expect	 functions	 and	 invocations	 of	 notify	 functions	 are	 executed	 in	 a	 single	
unspecified	total	order	consistent	with	the	"happens	before"	order.	
29.9.1	 Class	synchronic	 	 	 	 	 	 	[atomics.synchronic.class]	
 namespace std {
 template <class T>
 class synchronic {
 public:
 synchronic();
 ~synchronic();
 synchronic(const synchronic&) = delete;
 synchronic& operator=(const synchronic&) = delete;
 synchronic(synchronic&&) = delete;

 synchronic& operator=(synchronic&&) = delete;

 void notify(A& object, T value,
 memory_order order = memory_order_seq_cst,
 notify_hint hint = notify_all) noexcept;
 void expect(A const& object, T desired,

 memory_order order = memory_order_seq_cst,
 expect_hint hint = expect_urgent) const noexcept;

 void notify(A& object, F&& func, notify_hint hint = notify_all);
 void expect(A const& object, F&& func,
 expect_hint hint = expect_urgent) const;

 void expect_update(A const& object, T current,
 memory_order order = memory_order_seq_cst,
 expect_hint hint = expect_urgent) const noexcept;
 void expect_update_for(A const & object, T current,
 chrono::duration<Rep, Period> const& rel_time,
 expect_hint hint = expect_urgent) const;
 void expect_update_until(A const& object, T current,
 chrono::time_point<Clock,Duration> const& abs_time,
 expect_hint hint = expect_urgent) const;

 }
 }

1 In	the	following	operation	definitions:		
• an	A	refers	to	a	corresponding	atomic	class	type.	
• an	F	refers	to	a	callable	type.	

synchronic();
	

2 Effects:	Constructs	an	object	of	type	synchronic<T>.	
3 Throws:	system_error	(19.5.6).	

	
~synchronic();

	
4 Requires:	There	shall	be	no	threads	blocked	on	*this.		[Note:	a	synchronic	object	can	

be	destroyed	if	all	threads	blocked	on	this	have	been	notified.	–	end	note]		
5 Effects:		

- May	block	until	all	invocations	of	notify	return.	
- Destroys	the	object.	

void notify(A& object, T value, memory_order order,
 notify_hint hint) noexcept;
void notify(A& object, F&& func, notify_hint hint);

	
6 Requires:	 func	 is	 callable	 with	 the	 signature	 void()	 and	 does	 not	 invoke	 a	 member	

function	on	this.	
7 Effects:		

• Invokes	func	or	object.store(value, order).	
• If	hint	is	notify_one	and	any	execution	of	expect	member	functions	invoked	with	

the	same	atomic	object	object	are	blocked,	unblocks	one	of	those	executions.	
• If	hint	is	notify_all,	unblocks	all	executions	of	expect	member	functions	invoked	

with	the	same	atomic	object	object	that	are	blocked.	
8 Throws:	system_error	(19.5.6)	or	any	exception	thrown	by	func.	

	
void expect(A const& object, T desired, memory_order order,
 expect_hint hint) const noexcept;
void expect(A const& object, F&& pred, expect_hint hint) const;
void expect_update(A const& object, T current, memory_order order,
 expect_hint hint) const noexcept;
void expect_update_for(A const & object, T current,
 chrono::duration<Rep, Period> const& rel_time,
 expect_hint hint) const;
void expect_update_until(A const& object, T current,
 chrono::time_point<Clock,Duration> const& abs_time,
 expect_hint hint) const;

	
9 Requires:	 pred	 is	 callable	 with	 the	 signature	 bool()	 and	 does	 not	 invoke	 a	 member	

function	on	this.		
10 Effects:		

• Invokes	pred,	or	object.load(order).	If	a	timed	function	is	used,	then	order	is	
memory_order_relaxed.	

• Blocks	until	pred	returns	true,	or	the	value	of	object	is	either	equal	to	desired	or	
not	equal	to	current,	or	the	absolute	time-out	specified	by	abs_time	expires,	or	the	
relative	time-out	specified	by	rel_time	expires,	or	may	unblock	spuriously	if	a	timed	
function	is	used.	

11 Throws:	system_error	(19.5.6)	or	any	exception	thrown	by	pred.	
12 Remarks:	the	value	of	hint	has	only	a	performance	effect.		

	

	

	

