
Document number: P0099R1
Supersedes: P0099R0
Date: 2016-10-16
Reply-to: Oliver Kowalke (oliver.kowalke@gmail.com), Nat Goodspeed (nat@lindenlab.com)
Audience: SG1

A low-level API for stackful context switching

Abstract . 2
Motivation . 2

Content . 2
Why Bother? . 2

Notes on suspend-up and suspend-down terminology . 2
Discussion . 3

Calling subroutines . 3
Why symmetric transfer of control matters . 3
First class object . 4
Stack strategies . 4

Design . 4
Suspend-by-call . 4
Call semantics . 5
std::execution_context<void> . 5
Passing data . 5
Toplevel functions: main() and thread functions . 7
std::execution_context<> and std::thread . 7
Termination . 7
Exceptions . 7
Invoke function on top of a context . 7
Stack destruction . 9
Stack allocators . 9
API . 10

A. Existing practice . 15
B. std::execution_context<> as Thread of Execution (ToE) . 15
References . 16

Revision History This document supersedes P0099R0.

Changes since P0099R0:

• std::execution_context<> with new API

• type-safe transfer of data

• static member function current() removed

• invoke function on top of a resumed execution context.

1

Abstract

This paper proposes a low-level and minimal API for a stackful execution context, suitable to act as building-
block for high-level constructs such as stackful coroutines as well as cooperative multitasking (aka fibers/user-
land threads/green threads).

The most important features are:

• first-class object that can be stored in variables or containers

• symmetric API, in which the target context is explicit - enables a richer set of control flows than
asymmetric API, in which a subordinate context can only switch back to its invoker

• benefits of traditional stack management retained

• ordinary function calls and returns not affected

• working implementation in Boost.Context13

Motivation

Content This paper proposes std::execution_context<> that serves as the crucial foundation on
which a number of valuable higher-level facilities can be built using pure C++.

std::execution_context<> itself is, however, impossible to code in portable C++. Having it provided
with the runtime library will be enabling technology for both third-party libraries and user applications.

Why Bother? Given P0057 resumable functions, why should we even consider a completely different
mechanism for suspending and resuming a function? Isn’t this completely redundant with that?

The answer is “no,” for several different reasons.∗

• With resumable functions, the markup to support suspension propagates virally through a code base.
Resumable functions suspend by returning. Every caller must therefore distinguish between “callee
returned value” and “callee suspended, you must also suspend.” The new co_await keyword makes
that distinction, suspending the containing function until the callee produces a value. Every call to a
resumable function must itself use co_await – which then imposes the same requirement on its caller,
and so on.

• Forgetting to annotate a call to a resumable function with co_await (perhaps because the caller is
unaware of its nature, perhaps because the callee changed its nature) can result in subtle timing bugs.
Suppose function f() returns a std::future<void>. The statement co_await f(); suspends the
containing function until the future returned by f() is fulfilled. Coding simply f(); merely discards
that future. Both forms are perfectly legal; both are likely to survive desk-checking and code review. It’s
even worse if f() usually fulfills its future by the time it returns, only occasionally taking longer. That
way the error will survive most QA as well, and escape into production.

• The need to co_await called functions means that we must evolve a whole new family of co_await-
aware STL algorithms.†

• Even if one is willing to accept the viral co_await markup of resumable functions, using normal
encapsulation to manage layers of abstraction could become expensive in runtime. Every entry to a
resumable function requires a heap allocation, freed on return. By contrast, once you have allocated a
side stack, function call and return on that side stack is just as efficient as function call and return on the
original application stack. It’s a classic time/space tradeoff. (If you determine to address that issue by
drastically pruning local variables from your resumable functions, note that the same tactic could allow
you to use a far smaller side stack – which would still be faster for nontrivial call chains.)

∗The authors are indebted to Christopher Kohlhoff for his excellent summary in N4453,4 sections 4.1 and 4.2.
†N44534 section 4.2 explains this more fully.

2

Notes on suspend-up and suspend-down terminology

The terms suspend-up and suspend-down were introduced in paper N42322 and carried forward in P01589 to
distinguish stackless (suspend-up) and stackful (suspend-down) context switching.
These terms rely on a particular visualization of the C++ function call operation in which calling a function
passes control “downwards,” whereas returning from a function passes control “upwards.”
The authors recommend the terms suspend-by-return instead of suspend-up, and suspend-by-call instead of
suspend-down. The recommended terminology directly references the underlying C++ operations, without
requiring a particular visualization.
suspend-by-return (suspend-up, or “stackless” context switching) is based on returning control from a called
function to its caller, along with some indication as to whether the called function has completed and is
returning a result or is merely suspending and expects to be called again. The called function’s body is coded
in such a way that – if it suspended – calling it again will direct control to the point from which it last returned.
This describes both P00576 resumable functions and earlier technologies such as Boost.Asio coroutines.12

suspend-by-call (suspend-down, or “stackful” context switching) is based on calling a function which, transpar-
ently to its caller, switches to some other logical chain of function activation records. (This may or may not be
a contiguous stack area. The processor’s stack pointer register, if any, may or may not be involved.)
This describes N43973 coroutines as well as Boost.Context,13 Boost.Coroutine214 and Boost.Fiber.15

std::execution_context<>::operator()() requires suspend-by-call semantics.

Discussion

Calling subroutines The advantage of stackless coroutines is that they reuse the same linear processor
stack for stack frames for called subroutines. The advantage of stackful context switching is that it permits
suspending from nested calls.

If a resumable function calls a traditional function (rather than another resumable function), then the ac-
tivation record belonging to the traditional function is allocated on the processor stack (so it is called a stack
frame). As a consequence, stack frames of called functions must be removed from the processor stack before
the resumable function yields back to its caller.
In other words: the calling convention of the ABI dictates that, when the resumable function returns (sus-
pends), the stack pointer must contain the same address as before the resumable function was entered.
Hence a yield from nested call is not permitted – unless every called function down to the yield point is also a
resumable function.
The benefit of stackless coroutines consists in reusing the processor stack for called subroutines: no separate
stack memory need be allocated.

Of course even a stackless resumable function might fail if its called functions exhaust the available stack.

In stackful context switching, each execution context owns a distinct side stack which is assigned to the
stack pointer (thus the stack pointer must be exchanged during each context switch).
All activation records (stack frames) of subroutines are placed on the side stack. Hence each stackful execution
context requires enough memory to hold the stack frames of the longest call chain of subroutines. Therefore,
to support calling subroutines, stackful context switching has a higher memory footprint than resumable
functions.
On the other hand, it is beneficial to use side stacks because the stack frames of active subroutines remain
intact while the execution context is suspended. This is the reason why stackful context switching permits
yielding from nested calls.

Why symmetric transfer of control matters As a building block for user-mode threads, symmetric
control transfer is more efficient than the asymmetric mechanism.

Asymmetric coroutines (as implied with keywords like resumable, co_await or co_yield) provide two
operations for context switching. The caller and the coroutine are coupled, that is, such a coroutine can only
jump back to the code that most recently resumed it.

3

main

f1

f2

f1()

f2()

co_yield

co_yield

For N asymmetric coroutines, 2N context switches are required. This is sufficient in the case of generators, but
in the context of cooperative multitasking it is inefficient.

The proposed stackful execution context (std::execution_context<>) provides only one operation to
resume/suspend the context (operator()()). Control is directly transferred from one execution context to
another (symmetric control transfer) - no jump back to the caller. In addition to supporting generators, this
enables an efficient implementation of cooperative multitasking: no additional context switch back to caller,
direct context switch to next task.
The next execution context must be explicitly specified.

ctxm ctx2 ctx1
ctx2() ctx1()

mctx()

Resuming N instances of std::execution_context<> takes N+1 context switches.

First class object Symmetric control transfer requires that the context is represented by a first class object
(context that has to be resumed next must be selectable).

Stack strategies For stackful coroutines two strategies are typical: a contiguous, fixed-size stack (as used
by threads), or a linked stack (grows on demand).
The advantage of a fixed-size stack is the fast allocation/deallocation of activation records. A disadvantage is
that the required stacksize must be guessed.
The benefit of using a linked stack is that only the initial size of the stack is required. The stack itself grows on
demand, by means of an overflow handler. The performance penalty is low. The disadvantage is that code
executed inside a stackful coroutine must be compiled for this stack model. In the case of GCC’s split stacks,
special compiler/linker flags must be specified - no changes to source code are required.
When calling a library function not compiled for linked stacks (expecting a traditional contiguous stack),
GCC’s implementation uses link-time code generation to change the instructions in the caller. The effect is that
a reasonably large contiguous stack chunk is temporarily linked in to handle the deepest expected chain of
traditional function stack frames (see GCC’s documentation10).

Design

Class std::execution_context<> provides a low-level and minimal API on which to build higher-level
APIs such as stackful coroutines (N39851) and user-mode threads (such as Boost.Fiber15).

4

Suspend-by-call std::execution_context<>::operator()() preserves the CPU register set∗: the
content of those registers is pushed at the end of the stack of the current context (at the current stack-
pointer). Then operator()() restores the stack-pointer register stored in *this and pops the CPU reg-
ister set from the newly-restored stack. Because the context state is preserved on the context’s stack, a
std::execution_context<> instance need only store the stack-pointer register.

Call semantics When std::execution_context<>::operator()() is called, a new instance of
std::execution_context<> is synthesized representing the current state of the running context (e.g. the
stack-pointer). This new instance is passed to the resumed context. On initial entry, it is passed as the first
argument to the top-level function. On every subsequent resumption, the new std::execution_context<>
instance is returned by the suspended operator()() call.
On completion of a successful context switch, the std::execution_context<> instance on which
operator()() was called is invalidated. The data member from which the stack pointer was just restored is
set to nullptr.
At most one instance of std::execution_context<> can represent a given execution context. The
currently-running execution context is not represented by any std::execution_context<> instance. Only
when operator()() is called on some other std::execution_context<> instance is the state of the
running execution context captured in a synthesized std::execution_context<> instance.
As mentioned in the (destructor) section, ~execution_context<>() on a suspended (not terminated)
instance destroys the stack managed by that instance. Thus, the stack must be managed by only one
std::execution_context<> instance.†

Because of the symmetric context switching (only one operation transfers control), the target execution context
must be explicitly specified.

std::execution_context<void> With std::execution_context<void> no data will be transferred,
only the context switch is executed.
The function or lambda passed to the constructor of a std::execution_context<void> must accept a
single std::execution_context<void> parameter and return std::execution_context<void>.

std::execution_context<void> ctx1([](std::execution_context<void>&& ctx2){
std::cout << "inside ctx1" << std::endl;
return std::move(ctx2);

});
ctx1();

output:
inside ctx1

ctx1() resumes ctx1, that is, control enters the lambda passed to the constructor of ctx1. Argument ctx2
represents the previous context: the context that was suspended by the call to ctx1(). When the lambda
returns ctx2, context ctx1 will be terminated while the context represented by ctx2 is resumed, hence
control returns from ctx1().

Passing data You may pass data between contexts by constructing a std::execution_context<> with
template arguments other than void. Consider std::execution_context<args...> (where args...
here represents any list of type template arguments other than void), for purposes of discussion. The function
or lambda that initializes that instance must accept parameters (std::execution_context<args...>,
args...).
It must return std::execution_context<args...>.
The initial std::execution_context<> argument is synthesized by operator()(). All other arguments
must be passed explicitly to operator()().
The first call to operator()() with those arguments populates the parameter list for the newly-entered
function or lambda.

∗defined by ABI’s calling convention
†An earlier design used reference counting, but that subverts the intended role of this facility as an extremely fast substrate

for higher-level libraries.

5

That function or lambda switches context back to the original context by calling the passed
std::execution_context<>::operator()(), passing appropriate arguments.
A std::tuple<std::execution_context<args...>, args...> is returned by the original context’s
call to operator()(). The returned std::execution_context<> is a synthesized instance representing
the context that just suspended. The rest of the args... are as passed by that context to operator()().
So, for instance:

std::execution_context<int> ctx1([](std::execution_context<int>&& ctx2,int j){
std::cout << "inside ctx1,j==" << j << std::endl; // (b)
std::tie(ctx2,j) = // (f)

ctx2(j+1); // (c)
return std::move(ctx2); // (g)

});
int i=1;
std::tie(ctx1,i) = // (d)

ctx1(i); // (a)
std::cout << "i==" << i << std::endl;

output:
inside ctx1,j==1
i==2

The ctx1(i) call at (a) enters the lambda in context ctx1 with argument j=1, as shown by the output at (b).
The expression ctx2(j+1) at (c) resumes the original context (represented within the lambda by ctx2) and
transfers back an integer of j+1. On return from ctx1(i), the assignment at (d) sets i to j+1, or 2.
The assignment at (d) illustrates a recommended idiom: since the call to operator()() at (a) has invalidated
ctx1, it should be replaced by the newly-synthesized std::execution_context<> instance returned by
operator()().
To continue the example:

std::tie(ctx1,i) = // (h)
ctx1(i); // (e)

assert(! ctx1); // (i)
// ignore i: value unspecified

The call to ctx1(i) at (e) (the updated ctx1) resumes the ctx1 lambda, returning from the ctx2() call at (c)
and executing the assignment at (f). Here, too, we replace the std::execution_context<> instance ctx2
invalidated by the operator()() call at (c) with the new instance returned by that same operator()()
call. Moreover, we replace j with the value passed by the call at (e).
Finally the lambda returns (the updated) ctx2 at (g), terminating its context.
Since the updated ctx2 represents the context suspended by the call at (e), control returns to the assignment
at (h). Once again we replace the invalidated ctx1 with the one returned by operator()().
However, since context ctx1 has now terminated, the updated ctx1 is invalid. Its operator bool()
returns false; its operator!() returns true.
This is important, since in that case the values of any remaining fields of the returned std::tuple are
indeterminate.
It may seem tricky to keep track of which std::execution_context<> instance is currently valid, rep-
resenting the state of the suspended context. Please bear in mind that this facility is intended as a high-
performance foundation for higher-level libraries. It is not intended to be directly consumed by applications.
We can extend the example to multiple arguments.

std::execution_context<int,int> ctx1(
[](std::execution_context<int,int>&& ctx2,int i,int j){

std::cout << "inside ctx1,i==" << i << " j==" << j << std::endl;
std::tie(ctx2,i,j)=ctx2(i+j,i-j);
return std::move(ctx2);

});
int i=3,j=2;
std::tie(ctx1,i,j)=ctx1(i,j);

6

std::cout << "i==" << i << " j==" << j << std::endl;

output:
inside ctx1,i==3 j==2
i==5 j==1

operator()() accepts the parameters specified by std::execution_context<>’s template parameters.
It returns a std::tuple of that std::execution_context<> specialization, prepended to those types.

Toplevel functions: main() and thread functions main() as well as the entry-function of a thread can
be represented by an execution context. That std::execution_context<> instance is synthesized when
the running context suspends, and is passed into the newly-resumed context.

int main() {
std::execution_context<void> ctx1(

[](std::execution_context<void>&& ctx2){ // (b)
return std::move(ctx2); // (c)

});
ctx1(); // (a)
return 0;

}

The ctx1() call at (a) enters the lambda in context ctx1.
The std::execution_context<> ctx2 at (b) represents the execution context of main().
Returning ctx2 at (c) resumes the original context (switch back to main()).

std::execution_context<> and std::thread Any execution context represented by a valid
std::execution_context<> instance is necessarily suspended.
It is valid to resume a std::execution_context<> instance on any thread – except that you must not
attempt to resume a std::execution_context<> instance representing main(), or the entry-function of
some other std::thread, on any thread other than its own. std::execution_context<> provides a
method to test for this. If std::execution_context<>::any_thread() returns false, it is only valid
to resume that std::execution_context<> instance on the thread on which it was initially launched.

Termination When you explicitly construct a particular std::execution_context<args...> special-
ization, passing its constructor a function or lambda, that callable must accept that same
std::execution_context<args...> specialization as its first parameter. It must return that same
std::execution_context<args...> specialization as well.
When that toplevel callable returns a std::execution_context<> instance, the running context is volun-
tarily terminated. Control switches to the context indicated by the returned std::execution_context<>
instance.
Returning an invalid std::execution_context<> instance (operator bool() returns false) invokes
undefined behavior.
If the toplevel callable returns the same std::execution_context<> instance it was originally passed (or
rather, the most recently updated instance returned from the previous instance’s operator()()), control
returns to the context that most recently resumed the running callable. However, the callable may return
(switch to) any reachable valid std::execution_context<> instance with the correct type signature.

Exceptions If an uncaught exception escapes from the toplevel context function, std::terminate is
called.

Invoke function on top of a context Sometimes it is useful to invoke a new function (for instance, to
trigger unwinding the stack) on top of a suspended context. For this purpose you may pass to
std::execution_context<>::operator()():

• the special argument invoke_ontop_arg

7

• the function to execute

• any additional arguments required by the std::execution_context<> specialization.

The function passed in this case must accept as parameters the std::execution_context<> specializa-
tion for that context plus any arguments specified by that specialization. It must return a tuple of that
std::execution_context<> specialization plus the same set of arguments.∗

For purposes of discussion, consider two std::execution_context<void> instances: mctx and fctx.
Suppose that code running on the program’s main context instantiates fctx with function
f(std::execution_context<void>&& mctx) and calls fctx(), thereby entering f(). This is the point
at which mctx is synthesized and passed into f().
Suppose further that after doing some work, f() calls mctx(), thereby switching context back to the main
context. f() remains suspended in the call to mctx.operator()().
At this point the main context calls fctx(std::invoke_ontop_arg, g); where g() is declared as:
std::execution_context<void> g(std::execution_context<void> gmctx);
g() is entered in the context of f(). It is as if f()’s call to mctx.operator()() directly called g().
However, as usual, the fctx.operator()() call synthesizes a std::execution_context<> instance
representing the main context and passes it to g() as gmctx.
Function g() has the same range of possibilities as any function called on f()’s context. It can context-switch
back to the main context, or to any other reachable context. Its special invocation only matters when control
leaves it in either of two ways:

1. If g() throws an exception, that exception unwinds all previous stack entries in that context (such as
f()’s) as well, back to a matching catch clause.†

2. If g() returns, its return value becomes the value returned by f()’s suspended mctx.operator()()
call. This is why g()’s return type must be the same as that of operator()(), rather than that of an
ordinary toplevel context function.

Consider the following example:

// f1() is the toplevel context function:
// it returns only std::execution_context<args...>
std::execution_context<int> f1(std::execution_context<int>&& ctx,int data) {

std::cout << "f1: entered first time: " << data << std::endl; // (b)
std::tie(ctx,data) = // (g)

ctx(data+1); // (c)
std::cout << "f1: entered second time: " << data << std::endl; // (h)
std::tie(ctx,data) = // (o)

ctx(data+1); // (i)
std::cout << "f1: entered third time: " << data << std::endl; // (p)
return std::move(ctx); // (q)

}

// f2() is an invoke_ontop_arg function:
// though its parameter list is very like that of a toplevel context function,
// it must return std::tuple<std::execution_context<args...>, args...>
std::tuple<std::execution_context<int>,int>
f2(std::execution_context<int>&& ctx,int data) {

std::cout << "f2: entered: " << data << std::endl; // (m)
return std::make_tuple(std::move(ctx),-1); // (n)

}

int data=0;
std::execution_context<int> ctx(f1);

∗But in the case of std::execution_context<void>, the return type is simply
std::execution_context<void>.

†As stated in Exceptions, if there is no matching catch clause in that context, std::terminate() is called.

8

std::tie(ctx,data) = // (d)
ctx(data+1); // (a)

std::cout << "f1: returned first time: " << data << std::endl; // (e)
std::tie(ctx,data) = // (j)

ctx(data+1); // (f)
std::cout << "f1: returned second time: " << data << std::endl; // (k)
std::tie(ctx,data) = // (r)

ctx(std::invoke_ontop_arg,f2,data+1); // (l)

output:
f1: entered first time: 1
f1: returned first time: 2
f1: entered second time: 3
f1: returned second time: 4
f2: entered: 5
f1: entered third time: -1

Control passes from (a) to (b) to (c), and so on.
The ctx(std::invoke_ontop_arg, f2, data+1) call at (l) passes control to f2() on the context origi-
nally created for f1().
The return statement at (n) causes the operator()() call at (i) to return, executing the assignment at (o).
The std::tuple returned by f2() is directly returned to that assignment at (o).
So in this example, the call at (l) synthesizes a std::execution_context<> instance representing the main
context and passes it to f2() as ctx. f2() returns that ctx instance, which is received by f1() and assigned
to its ctx variable. Finally, f1() returns its own ctx variable, switching back to the main context.

Stack destruction On construction of execution_context a stack is allocated. If the toplevel context-
function returns, the stack will be destroyed. If the context-function has not yet returned and the (destructor)
of a valid execution_context instance (operator bool() returns true) is called, the stack will be
unwound and destroyed.∗

The stack on which main() is executed, as well as the stack implicitly created by std::thread’s constructor,
is allocated by the operating system. Such stacks are recognized by std::execution_context<>, and are
not deallocated by its destructor.

Stack allocators are used to create stacks.† Stack allocators might implement arbitrary stack strategies.
For instance, a stack allocator might append a guard page at the end of the stack, or cache stacks for reuse, or
create stacks that grow on demand.
Because stack allocators are provided by the implementation, and are only used as parameters of
std::execution_context<>’s constructor, the StackAllocator concept is an implementation detail, used
only by the internal mechanisms of the std::execution_context<> implementation. Different implemen-
tations might use different StackAllocator concepts.
However, when an implementation provides a stack allocator matching one of the descriptions below, it should
use the specified name.
Possible types of stack allocators:

• protected_fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs
a contiguous stack of specified size, appending a guard page at the end to protect against overflow. If
the guard page is accessed (read or write operation), a segmentation fault/access violation is generated
by the operating system.

∗An implementation is free to unwind the stack without throwing an exception. However, if an exception is
thrown, it should be named std::execution_context_unwind. Portable consumer code must permit
std::execution_context_unwind exceptions to propagate, even if all other exceptions are caught with
catch (...).

†This concept, along with the std::execution_context<> constructor accepting std::allocator_arg_t,
is an optional part of the proposal. It might be that implementations can reliably infer the optimal stack representation.

9

• fixedsize: The constructor accepts a size_t parameter. This stack allocator constructs a contiguous
stack of specified size. In contrast to protected_fixedsize, it does not append a guard page. The
memory is simply managed by std::malloc() and std::free(), avoiding kernel involvement.

• segmented: The constructor accepts a size_t parameter. This stack allocator creates a segmented
stack with the specified initial size, which grows on demand.

API declaration of class std::execution_context<>

template<typename ...Args>
class execution_context {
public:

execution_context() noexcept;

template<typename Fn,
typename ...Params>

execution_context(Fn&& fn, Params&& ...params);

template<typename StackAlloc,
typename Fn,
typename ...Params>

execution_context(std::allocator_arg_t, StackAlloc salloc,
Fn&& fn, Params&& ...params);

~execution_context();

execution_context(execution_context&& other) noexcept;

execution_context&
operator=(execution_context&& other) noexcept;

execution_context(const execution_context& other)=delete;

execution_context&
operator=(const execution_context& other)=delete;

std::tuple<execution_context, Args ...>
operator()(Args ...args);

template<typename Fn>
std::tuple<execution_context, Args ...>
operator()(std::invoke_ontop_arg_t, Fn&& fn, Args ...args);

explicit operator bool() const noexcept;

bool operator!() const noexcept;

bool any_thread() const noexcept;

bool operator==(const execution_context& other) const noexcept;

bool operator!=(const execution_context& other) const noexcept;

bool operator<(const execution_context& other) const noexcept;

bool operator>(const execution_context& other) const noexcept;

10

bool operator<=(const execution_context& other) const noexcept;

bool operator>=(const execution_context& other) const noexcept;

void swap(execution_context& other) noexcept;
};

member functions

(constructor) constructs new execution context

execution_context()noexcept (1)

template<typename Fn, typename ...Params>
explicit execution_context(Fn&& fn, Params&& ...params) (2)

template<typename StackAlloc, typename Fn, typename ...Params>
execution_context(std::allocator_arg_t, StackAlloc salloc,
Fn&& fn, Params&& ...params) (3)

execution_context(execution_context&& other) (4)

execution_context(const execution_context& other)=delete (5)

1) This constructor instantiates an invalid std::execution_context<>. Its operator bool() returns
false; its operator!() returns true.

2) takes a callable (function, lambda, object with operator()()) as argument. The callable must have
signature as described in std::execution_context<void> or Passing data. The stack is constructed
using either fixedsize or segmented (see Stack allocators). An implementation may infer which of
these best suits the code in fn. If it cannot infer, fixedsize will be used.

3) takes a callable as argument, requirements as for (2). The stack is constructed using salloc (see Stack
allocators).∗

4) moves underlying state to new std::execution_context<>

5) copy constructor deleted

Notes
When a std::execution_context<> is constructed using either of the constructors accepting fn, control
is not immediately passed to fn. Resuming (entering) fn is performed by calling operator()() on the new
std::execution_context<> instance.

(destructor) destroys an execution context

~execution_context() (1)

1) destroys a std::execution_context<> instance. If this instance represents a context of execution
(operator bool() returns true), then the context of execution is destroyed too. Specifically, the
stack is unwound. As noted in Stack destruction, an implementation is free to unwind the stack either
by throwing std::execution_context_unwind or by intrinsics not requiring throw.

∗This constructor, along with the Stack allocators section, is an optional part of the proposal. It might be that implementa-
tions can reliably infer the optimal stack representation.

11

operator= moves the context object

execution_context& operator=(execution_context&& other) (1)

execution_context& operator=(const execution_context& other)=delete (2)

1) assigns the state of other to *this using move semantics

2) copy assignment operator deleted

Parameters

other another execution context to assign to this object

Return value

*this

operator() resume context of execution

std::tuple<execution_context, Args ...> operator()(Args ...args) (1)

execution_context<void> operator()() (2)

template<typename Fn>
std::tuple<execution_context, Args ...>
operator()(invoke_ontop_arg_t, Fn&& fn, Args ...args) (3)

template<typename Fn>
execution_context<void>
operator()(invoke_ontop_arg_t, Fn&& fn) (4)

1) suspends the active context, resumes the execution context

2) specialization of (1) for execution_context<void>

3) suspends the active context, resumes the execution context but executes fn(args ...) in the resumed
context (on top of the last stack frame)

4) specialization of (3) for execution_context<void>

Parameters

...args If the toplevel context-function represented by *this has not yet been entered, the arguments you
pass are passed to the context-function as its parameters, following the std::execution_context<>
first parameter.
If the context represented by *this suspended by calling operator()(), the arguments you pass are
constructed into a std::tuple<std::execution_context<args...>, args...> and returned
by that suspended operator()() call.
See section Passing data.

fn The fn passed to (3) must accept std::execution_context<args...>, args.... It must return
std::tuple<std::execution_context<args...>, args...>.
The fn passed to (4) must accept std::execution_context<void>.
It must return std::execution_context<void>.

Return value

void When called on a std::execution_context<void> instance, operator()() returns a different
std::execution_context<void> instance. This new instance represents the context that sus-
pended in order to resume the current context. That may or may not be the same context that was
previously represented by *this, depending on other context switches executed in the meantime.

12

tuple When called on a std::execution_context<args...> instance, operator()() returns a
std::tuple<std::execution_context<args...>, args...> containing a different
std::execution_context<args...> instance. This new instance represents the context that sus-
pended in order to resume the current context, as above.
If the context represented by the new std::execution_context<args...> instance suspended by
calling operator()(), the arguments passed to operator()() are used to populate the rest of the
members of the returned std::tuple.
See section Passing data.
If the context represented by the new std::execution_context<args...> instance voluntarily
terminated by returning from its toplevel context-function, the rest of the members of the returned
std::tuple are indeterminate.

Exceptions

1) calls std::terminate if an exception escapes toplevel fn

Preconditions

1) *this represents a context of execution (operator bool() returns true)

2) any_thread() returns true, or the running thread is the same thread on which *this ran previously.

Postcondition

1) *this is invalidated (operator bool() returns false)

Notes
The prologue preserves the execution context of the calling context as well as stack parts like parameter list and
return address.∗ Those data are restored by the epilogue if the calling context is resumed.
A suspended execution_context can be destroyed. Its resources will be cleaned up at that time.
The returned execution_context indicates whether the suspended context has terminated (returned from
toplevel context-function) via operator bool(). If the returned execution_context has terminated, no
data are transferred in the returned tuple.
Because operator()() invalidates the instance on which it is called, no valid std::execution_context<>
instance ever represents the currently-running context.
When calling operator()(), it is conventional to replace the newly-invalidated instance – the instance on
which operator()() was called – with the new instance returned by that operator()() call. This helps
to avoid inadvertent calls to operator()() on the old, invalidated instance.
For any std::execution_context<> specialization other than std::execution_context<void>,
when operator()() returns, it is important to test the returned std::execution_context<args...>
instance using operator bool() or operator!() before referencing any of the args... in the returned
std::tuple<std::execution_context<args...>, args...>. If that context voluntarily terminated
by returning from the toplevel context-function, only the std::execution_context<args...> member
of the std::tuple will be populated. The rest of the members will have indeterminate values.

operator bool test whether context is valid

explicit operator bool()const noexcept (1)

1) returns true if *this represents a context of execution, false otherwise.

Notes
A std::execution_context<> instance might not represent a context of execution for any of a number of
reasons.

• It might have been default-constructed.

∗required only by some x86 ABIs

13

• It might have been assigned to another instance, or passed into a function.
std::execution_context<> instances are move-only.

• It might already have been resumed (operator()() called). Calling operator()() invalidates the
instance.

• The toplevel context-function might have voluntarily terminated the context by returning.

The essential points:

• Regardless of the number of std::execution_context<> declarations, exactly one
std::execution_context<> instance represents each suspended context.

• No std::execution_context<> instance represents the currently-running context.

operator! test whether context is invalid

bool operator!()const noexcept (1)

1) returns false if *this represents a context of execution, true otherwise.

Notes
See Notes for operator bool().

any_thread test whether suspended context may be resumed on a different thread

bool any_thread()const noexcept (1)

1) returns false if *this must be resumed on the same thread on which it previously ran, true otherwise

Notes
As stated in Toplevel functions: main() and thread functions, a std::execution_context<> instance
can represent the initial context on which the operating system runs main(), or the context created by the
operating system for a new std::thread.
It is not permitted to attempt to resume such a std::execution_context<> instance on any thread other
than its original thread. any_thread() allows consumer code to distinguish this case.

(comparisons) establish an arbitrary total ordering for std::execution_context<> instances

bool operator==(const execution_context& other)const noexcept (1)

bool operator!=(const execution_context& other)const noexcept (1)

bool operator<(const execution_context& other)const noexcept (2)

bool operator>(const execution_context& other)const noexcept (2)

bool operator<=(const execution_context& other)const noexcept (2)

bool operator>=(const execution_context& other)const noexcept (2)

1) Every invalid std::execution_context<> instance compares equal to every other invalid instance. But
because the running context is never represented by a valid std::execution_context<> instance,
and because every suspended context is represented by exactly one valid instance, no valid instance can
ever compare equal to any other valid instance.

2) These comparisons establish an arbitrary total ordering of std::execution_context<> instances, for
example to store in ordered containers. (However, key lookup is meaningless, since you cannot construct
a search key that would compare equal to any entry.) There is no significance to the relative order of two
instances.

14

swap swaps two std::execution_context<> instances

void swap(execution_context& other)noexcept (1)

1) Exchanges the state of *this with other.

A. Existing practice

As a library-only facility, boost::context::execution_context<>13 is existing practice, used to imple-
ment Boost.Coroutine214 and the Boost.Fiber library.15

The facility described in this proposal adds significant semantics beyond resumable functions. For instance,
you cannot build cooperative user-mode threads on resumable functions.

These libraries based on Boost.Context can seamlessly interoperate with Boost.Asio:11 Asio’s async_result
mechanism (proposed for standardization in N45885) supports adapters that can, using a natural syntax,
suspend the caller for the duration of an asynchronous network call. For instance, using Boost.Coroutine2:

void read_msg(yield_context yield) {
try {

array< char, 64 > bf1;
async_read(socket,buffer(b1),yield);
header hdr(bf1);
std::size_t n=hdr.payload_size();
std::vector< char > b2(n,’\0’);
async_read(socket,buffer(bf2),yield);
payload pld(bf2);
// process message ...

} catch (exception const&) {
// ...

}
}

It is important to realize that in these examples, the symbol yield is neither a keyword nor a macro, but
simply the name of an ordinary C++ object.
The same example recast using Boost.Fiber:

void read_msg() {
try {

array< char, 64 > bf1;
async_read(socket,buffer(b1),boost::fibers::asio::yield);
header hdr(bf1);
std::size_t n=hdr.payload_size();
std::vector< char > b2(n,’\0’);
async_read(socket,buffer(bf2),boost::fibers::asio::yield);
payload pld(bf2);
// process message ...

} catch (exception const&) {
// ...

}
}

Libraries based on std::execution_context<> will similarly interoperate cleanly with the proposed
standard Networking Library.5

At C++Now 201616 and CppCon 2016,17 Nat Goodspeed presented the Fiber library and described some use
cases.

15

B. std::execution_context<> as Thread of Execution (ToE)

As described in P0073,8 a std::execution_context<> represents a ToE.
Each std::execution_context<> has its own execution path (sequence of instructions). (In the termi-
nology used by P0072,7 this ToE runs on a “weakly parallel” execution agent.) An operating system thread
(std::thread) consists of at least one std::execution_context<> representing the main-stack/thread-
stack.
Multiple std::execution_context<> instances might interact in following manner:

• an asymmetric coroutine involves two std::execution_context<> s simply passing control back
and forth to each other

– the two are strongly coupled; the callee std::execution_context<> can only resume its caller
– they directly exchange data (in general this could be bidirectional; a generator restricts data flow

to a single direction)

• each fiber runs on a std::execution_context<> of its own
– fibers are loosely coupled: a scheduler selects the next ready fiber
– no direct data transfer

• shift/reset operators involve a few interacting std::execution_context<> s
– coupled
– data exchanged
– interleaved transfer of execution

References

[1] N3985: A proposal to add coroutines to the C++ standard library

[2] N4232: Stackful Coroutines and Stackless Resumable Functions

[3] N4397: A low-level API for stackful coroutines

[4] N4453: Resumable Expressions

[5] N4588: Working Draft, C++ extensions for Networking

[6] P0057R5: Wording for Coroutines

[7] P0072R1: Light-Weight Execution Agents

[8] P0073R2: On unifying the coroutines and resumable functions proposals

[9] P0158R0: Coroutines belong in a TS

[10] Split Stacks / GCC

[11] Library Boost.Asio

[12] Boost.Asio Coroutines

[13] Library Boost.Context

[14] Library Boost.Coroutine2

[15] Library Boost.Fiber

[16] C++Now 2016: Nat Goodspeed, The Fiber Library

[17] CppCon 2016: Nat Goodspeed, Elegant Asynchronous Code

16

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3985.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4232.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4397.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4453.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/n4588.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0057r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0072r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0073r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0158r0.html
http://gcc.gnu.org/wiki/SplitStacks
http://www.boost.org/doc/libs/release/doc/html/boost_asio.html
http://www.boost.org/doc/libs/release/doc/html/boost_asio/reference/coroutine.html
http://www.boost.org/doc/libs/release/libs/context/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/coroutine2/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/fiber/doc/html/index.html
https://www.youtube.com/watch?v=gcNphOWuUb0
https://www.youtube.com/watch?v=e-NUmyBou8Q

	Abstract
	Motivation
	Content
	Why Bother?

	Notes on suspend-up and suspend-down terminology
	Discussion
	Calling subroutines
	Why symmetric transfer of control matters
	First class object
	Stack strategies

	Design
	Suspend-by-call
	Call semantics
	[basicstyle=black, breakatwhitespace=true, breaklines=true, captionpos=b, commentstyle=gray, keywordstyle=blue, language=C++, morekeywords=co_await,from,noexcept,resumable,co_yield, showspaces=false, showstringspaces=false, showtabs=false, stringstyle=red] !std::execution_context<void>!
	Passing data
	Toplevel functions: main() and thread functions
	[basicstyle=black, breakatwhitespace=true, breaklines=true, captionpos=b, commentstyle=gray, keywordstyle=blue, language=C++, morekeywords=co_await,from,noexcept,resumable,co_yield, showspaces=false, showstringspaces=false, showtabs=false, stringstyle=red] !std::execution_context<>! and std::thread
	Termination
	Exceptions
	Invoke function on top of a context
	Stack destruction
	Stack allocators
	API

	A. Existing practice
	B. std::execution_context<> as Thread of Execution (ToE)
	References

