
P0089R1 : On Quantifying Memory -Allocator Strategies Page 1 of 57

Doc No: P0089R 1
Date: 201 6-02-12

Authors: John Lakos (jlakos@bloomberg.net)
 Jeffrey Mendelsohn (jmendelsohn4@bloomberg.net)

 Alisdair Meredith (ameredith1@bloomberg.net)
 Nathan Myers (nmyers12@bloomberg.net)

On Quantifying Memory-Allocation Strategies (Revision 2)

Abstract

Performance requirements drive many of our most difficult design choices . In memory

management, such choices can have surprising and far -reaching effect s. Although
performance of global memory allocato rs has improved markedly in recent years, use
of local memory allocators can provide significant (sometimes even dramatic) benefits

in commonly encountered circumstances we have tried to identify here .

To make reasoned choices on the use of local memory allocators, we need to
un derstand where and how the ir use may affect runtime performance . We have

identified several measure s of how syste ms can stress a global allocator, and may
benefit by applying a well -chosen local allocator in its place . If we are to choose wisely

where and how to apply a local allocator, we need objective measurements . We have
identified several usage patterns which we have encoded into benchmarks t o identify
precisely where local allocators do (and where they do not) provide substantial

benefits . This paper presents our results with limited analysis to help support
informed discussion.

Possibly the most significant result is that , where use of a local allocator does yield
dramatic improvements, the number of operations are about the same : The s low er
benchmark run times for the global allocator are dominated by stalls waiting on

cache interactions with main memory (due to a severe la ck of physical and temporal
locality); the ability to u se a local allocator empowers us to act to avoid such stalls.

Implementation s of standard allocators (and others) are freely available today ð
accompanied by copious usage examples ð in Bloombergõs open-source distribution of
the BDE library at <https://github.com/bloomberg/bde >. Benchmark code and

results , including those discussed in this paper , can be found in a fork of that
repository, <https://github.com/bloomberg/bde -allocator -benchmarks >. In light of
the data compiled here, there can be no remaining doubt about the industrial

importanc e of providing program control over the allocators used for C++ containers.

mailto:jlakos@bloomberg.net
mailto:jmendelsohn4@bloomberg.net
file:///C:/blp/data/ameredith1@bloomberg.net
file:///C:/blp/data/nmyers12@bloomberg.net
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde-allocator-benchmarks/tree/master/benchmarks/allocators

P0089R1 : On Quantifying Memory -Allocator Strategies Page 2 of 57

Contents

On Quantifying Memory -Allocation Strategies (Revision 2) 1

0 Changes from P0089R0 3

1 Introduction 3

2 Use an allocator? Which One? 4

3 Available Concrete Allocators: Monotonic and Multipool 5

4 Our Tool Chest of Allocation Strategies 5

5 Characterizing Memory -Allocator Usage Scenarios 8

5.1 Density of allocation operations (D) 9

5.2 Variation in allocated memory sizes (V) 9

5.3 Locality facilitating memory access/manipulation (L) 9

5.4 Utilization of allocated memory (U) 10

5.5 Contenti on due to concurrent memory allocations (C) 10

6 Designing Useful Benchmarks 11

7 Benchmark I: Creating/Destroying Isolated Basic Data Structures. 12

7.1 DS1, vector<int> 14

7.2 DS2, vector<string> 16

7.3 DS3, unordered_set<int> 17

7.4 DS4, unordered_set<string> 18

7.5 DS5, vector<vector<int>> 19

7.6 DS6, vector<vector <string>> 20

7.7 DS7, vector<unordered_set<int>> 21

7.8 DS8, vector<unordered_set<string>> 22

7.9 DS9, uno rdered_set<vector<int>> 23

7.10 DS10, unordered_set<vector<string>> 24

7.11 DS11, unordered_set<unordered_set<int>> 25

7.12 DS12, unordered_set<unordered_set<string>> 26

8 Benchmark II: Variation in Locality (Long Running) 28

9 Benchmark III: Variation in Utilization 48

10 Benchmark IV: Variation in Contention 53

11 Conclusion 57

12 References 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 3 of 57

0 Changes from P0089R0

The first version of t his paper appeared as N4468 . In both that version and P0089R0
the tables presented in Section 7 (Benchmark I) were laid out incorrectly: the
columns for the monotonic allocator (AS3 -AS6) contained the data for the multipool

allocator, and similarly the co lumns for the multipool allocator (AS7 -AS10) contained
the data for the monotonic allocator. The data in those tables ha s been re -arranged
to be correct in this version, and the accompanying text revised accordingly.

In addition, P0089R0 omitted the allocator categorization diagram that appears at the
start of Section 2.

This version of the paper also corrects typographical errors, and improves the
wording of some difficult phrases.

Finally, this version adds a reference to a paper (P0213R0) being prepared

concurrently with this paper by Graham Bleaney , which attempts to independently
recreate the data presented in P0089R0. Grahamõs work on P0213R0 led to the

discovery of th e swapped column data in Benchmark I.

1 Introduction

Serious engineers appreciate C++ for enabling them to fine -tune code at a low level
when needed. Resource management is a n important aspect of low -level control ð

particularly memory management.

Should we instrument the standard library for such fine -tuning ? The arguments

against are typically that fine -grained memory management requires more up -front
design effort , complicates interfaces, and may actually degrade performance where no
local allocator , or a poorly chosen one , is su pplied . These are valid concerns that can

be addressed only with well -supported facts ; by employing careful measurement , we
must identify precisely how much performance benefit is available , and where .

Nevertheless, a library instrumented to exploit local allocators enables benefits other

than just enhanced runtime performance : Allocators can aid testing , debugging, and
measurement . Not all memory is alike ð some is faster for certain processors, some is

shared, some m ay be write -protected , and we will need allocators to exploit such
heterogeneous memory effectively.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 4 of 57

2 Use an allocator? Which One?

Before exploring allocator -performance metrics, we should identify what we hope to

learn. We need help deciding, first, whether injecting a local allocator will help or
hurt performance. If supplying a local allocator wonõt help, we should use the
system -wide (default) global allocator.

If an allocator would be helpful, we would then need to determine whether one
should be òbaked in ó as a type parameter at compile time (e.g., with the intent of

squeezing out the last bit of runtime performance) or passed as an abstract base
class (thereby enabling e nhanced interoperability for non -template types) . Either way,
we then need to choose the allocator (or allocators) to use . The rest of this paper

addresses quantitatively the runtime consequences of th ese choices .

It is worth noting that we investigated alternative global allocators beside the native

ones on the various platforms , including tcmalloc and jemalloc , and determined

that the native allocator s (e.g., the one currently shipped with GCC on Lin ux)

performed as well or better . In short, it isnõt about how good the global allocator is,
but instead the relative benefits t o having local knowledge of the nature of how
allocation will occur . In some cases, e.g., Benchmark II, an allocator õs runtime

perfor mance is entirely irrelevant compared to the physical locality of memory
accesses it is able to preserve .

No

 Supply Alloca tor?

Yes

Use Global Allocator Via Base Class ?

No Yes

Which Allocator?

A B C . . .

P0089R1 : On Quantifying Memory -Allocator Strategies Page 5 of 57

3 Available Concrete Allocators: Monotonic and Multipool

In t his paper, we have selected the two kinds of allocators from the current Library

Fundament als TS : òmonotonicó and òmultipool ó.

A monotonic allocator supplies memory from a contiguous block , sequentially , until
the block is exhausted, and then dynamically allocates new block s of geometrically

increasing size , typi cally from the global allocator . Returning memory to a m onotonic
allocator is a no -op: Any returned memory remains unavailable until t he monotonic -

allocator object itself is destroyed.

A multipo ol allocator is quite different . Each such allocator object consists of an array
of (adaptive) pools, one for each geometrically increasing request size in a range up to

some specified maximum . Each time memory is requested, the memory is provided
from the most appropriately sized pool , and freed memory is returned to that pool .

When the pool has no free memory , the allocator delivers memory from increasingly
larger blocks obtained from the backing allocator (possibly the global allocator), up to
some (emp iri cally determined) limit . Requests that exceed the maximum pool size

pass directly through to the backing allocator . The combination of a multipool
allocator backed by a monotonic allocator forms the third allocator candidate that we
consider in this paper .

Both monotonic and multipool allocator s are òmanagedó. A managed allocator is an

allocator that, in addition to its allocate and deallocate method s, has a release

method that can be used to summarily r eturn all of the memory it manages to its

backing allocator . The release method is called implicitly upon destr uction of a

managed allocator.

For o bject s placed in memory obtained from a managed -allocator instance , and
managing no non -memory resource s themselves , we can avoid running the objectsõ

destructors . Instead , they can be òwinked outó en mass e by releasing the memory

they occu py, along with all the memory they manage , via the ir allocator õs release

method.

The runtime benefits of bypassing individual destruction of each element in a
container can be significant , as de-allocating memory can sometimes be more costly

than allocating it . Note that this òwinking outó technique requires new-ing the

container object itself into the m anaged allocator it is to use, so that (1) its destr uctor
is not called, and (2) it s footprint is also released when the allocator goes out of

scope. Also note that this behavior is fully defined in the current standard , so long as
no òwinked-outó object is subsequently accessed.

4 Our Tool Chest of Allocation Strategies

Before we start con sidering interesting benchmarks, we need to consider the

availa ble allocation strategies . Each memory -usage pattern will have different
properties, and therefore we can reasonably expect different allocation strategies to

excel.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 6 of 57

In this paper , we consider up to 14 different allocation strategies for each of the
benchm arks we will subsequently present . The first of these strategies will be the

default global allocator (std::allocator , bound at compile time) which will form the

baseline for each successive compari son . (Supplying the default as a compile -time
parameter produces the same object code as having it default , and so we have

omi tted that as a separate category .) The second case is the new_delete allocator

supplied via an abstract base class, which (for the subset of popular compilers that

do not yet elide runti me dispatch where they clearly could) can be used to compare
that additional runtime overhead .

The remaining 12 allocation strategies can best be described by the following cross
product:

The first column represents the allocators themselves . The first entry is a monotonic

allocator, the second is a multipool allocator, and the third is a multipool allocator
backed by a monotonic allocator . The second column indicates whether the allocator
is invasively bound into the type of the container or is (non -invasively) passed via an

abstract base class . The third column indicates whether the container was destroyed
naturally or, instead, òwinked outó by virtue of letting the supplied managed allocator

go out of scope.

Monotonic

Multipool

Monotonic (Multipool)

Type Parameter

Abstract Base

Normal Destruction

(Magically) òWinked Outó
 X X

P0089R1 : On Quantifying Memory -Allocator Strategies Page 7 of 57

Label Allocator type Allocator binding Destruction of allocated
objects

AS1 Default Global
Allocator

Type Parameter Normal Destruction

AS2 New/Delete Allocator Abstract Base Normal Destruction

AS3 Monotonic Type Parameter Normal Destruction

AS4 Monotonic Type Parameter (magically) òWinked Outó

AS5 Monotonic Abstract Base Normal Destruction

AS6 Monotonic Abstract Base (magically) òWinked Outó

AS7 Multipool Type Parameter Normal Destruction

AS8 Multipool Type Parameter (magically) òWinked Outó

AS9 Multipool Abstract Base Normal Destruction

AS10 Multipool Abstract Base (magically) òWinked Outó

AS11 Monotonic (Multipool) Type Parameter Normal Destruction

AS12 Monotonic (Multipool) Type Parameter (magically) òWinked Outó

AS13 Monotonic (Multipool) Abstract Base Normal Destruction

AS14 Monotonic (Multipool) Abstract Base (magically) òWinked Outó

Table 1: Allocation Strategies

In each case, exactly one of these fourteen allocation strategies will be the best
answer from a purely runtime -performance perspective .

It is worth noting that a Multipool allocator comes in two flavors: synchronized and
unsynchronized (see the bd lma package in < https://github.com/bloomberg/bde >).

Throughout Benchmarks I and II, we used t he synchronized version ð even though it
was unnec essary to do so; in benchmarks III and IV used the unsynchronized version

(because we could, as there was just one allocator per thread) . The ability to use a

https://github.com/bloomberg/bde

P0089R1 : On Quantifying Memory -Allocator Strategies Page 8 of 57

local allocator enables the additional choice of not forcing synchronization to be
present where it is not needed. D emonstrating the (perhaps considerable) runtime

improvement for avoiding such synchronization where possible will (for now) be left
as an e xercise for the reader.

5 Characterizing Memory-Allocator Usage Scenarios

Knowing when to supply an allocator and which one to use is neither obvious nor is
it typically taught in school at any level . Rather, effective use of local memory
allocators is lear ned only from long real -world experience . In this paper, however, we

attempt to begin to elucidate some of the important considerations that experts
consi der when evaluating whether or not to take local control over an objectõs

memory management .

The first step in characterizing a problem such as this one is to identify its basic size
parameters . Problems of vastly different sizes are not usefully comparable . Problem

size can be roughly characterized in terms of two param eters:

N the number of instructions executed

W the number of active threads

The relationship between the number of instructions executed and the numbe r of
active threads is not obvious , and a single number that combines the two does not

seem useful . Clearly the number of available process ors, the size of L1 cache, and a
host of other machine -specific physical parameters will affect the detailed analysis .
For the scope of this paper, however, we will limit ourselves to characterizing the

logical program independently of physical hardwar e.

Given this overall òsizeó characterization (N, W), we now introduce five dimensions

that (we assert) span the space of memory -allocator usage:

D Density of allocation operations

V Variation in allocated memory sizes

L Locality facilitating memory access/manipulation

U Utilization of allocated memory

C Contention due to concurrent memory allocations

Each of these dimensions resides on a scale from 0 to 1, where 0 indicates the low -
end of the scale, an d 1 the high end . Note that none of these scales is (necessarily)
linear . It is also important to realize that each of these dimensions applies not to the

overall program, but instead to just an individual targeted subsystem over some
relevant subset of program execution . That i s, when considering these dimensions,

we are looking to improve the performance of a particular subsystem over a finite

P0089R1 : On Quantifying Memory -Allocator Strategies Page 9 of 57

duration of execution , rather than that of the program as a whole . Supporting whole -
program allocation is the remit of the global alloca tor .

5.1 Density of allocation operations (D)

The allocation density is a measure of the relative number of allocation instructions

(allocate and deallocate) to the total number of instructions executed . A density

of zero would imply that no allocation operations are employed, while a density of one
would indicate that every operation involves either allocation or deallocation . As an

example, a std::vector<int> is incapable of achieving a meaningfully high

allocation densi ty as the number of allocation operations are at most logarithmic in

the number of mutating operations , and we sometimes even do a reserve on vectors,

thereby reducing the number of allocat ion s for this data structure to just 1 (e.g.,

Benchmark I, see sect ion 7). By contrast, a vector of (long) strings could be used in a
way that admits a relatively high allocation density , as each mutating operation

would involve a llocation or deallocation of the string -element õs memory . Node-based
containers that (unlike Bloombergõs bsl https://github.com/bloomberg/bde/tree/master/groups/bsl) do

not do internal pooling are similarly ca pable of achieving a very high allocation

density . Even with a potentially high density for mutating operations, the overall
density will depend on the proportion of mutating to non -mutating (i.e., accessing or
other non-allocation/deallocation -related) operations.

5.2 Variation in allocated memory sizes (V)

The variation in allocated memory sizes attempts to roughly measure the extent to
which allocated memory requests vary over the region and duration of interest . A

variat ion of 0 would mean that (at most) a single memory size is allocated, while a
variat ion of 1 would suggest a much more diverse (e.g., hyperbolic) distribution of

memory allocation sizes. A low variation value might (in theory) tend to suggest a
pool -based allocato r, whereas a higher value (again in theory) could perhaps favor a
coalescing allocator (but see the actual data in Benchmark I) . Keep in mind that

requests that are relatively close i n size might be treated equivalently.

5.3 Locality facilitating memory access/manipulation (L)

The definition of access locality is complex, involving at least three factors:

I The number of instructions executed in the subsystem over the duration

M The size of the memory footprin t of the subsystem accessed for the duration

T The number of context transitions out of the subsystem during the duration

https://github.com/bloomberg/bde/tree/master/groups/bsl

P0089R1 : On Quantifying Memory -Allocator Strategies Page 10 of 57

The locality , L , corre lates directly to the instruction count , I , but inversely to both the
memory footprint size, M , and the transition count , T . We can therefore argue that

access locality, L , can be characterized (to a zeroth -order approximation) as :

╛
╘

╜ ╣z

In other words, the more instructions that flow through our subsystem (over the
duration of interest , the more access locality we have . On the other hand, the bigger
our subsystem õs footprint or the more context t ransitions that occur away from it , the

lower the access locality becomes . Physical locality can be independently
characterized by holding T constant, whereas temporal locality woul d be similarly

characterized by holding M constant . Note that a ccess locality ð both physical and
temporal ð will turn out to play a dominant role in some long -running programs, even

when the allocation density is negligible (e.g., Benchmark II, see sectio n 8).

5.4 Utilization of allocated memory (U)

Allocated memory utilization is a measure of the relative a mount of allocated

memory i n use at any one time ; it is defined as the maximum amount of memory in
use by a subsystem , during the durations of interest , divided by the total amount of
memory allocated by the subsystem over that period . A utilization of 1 means that , at

some point , all of the memory ever allocat ed by a subsystem (over the duration of
interest) is actively in use . A utilization that approaches zero implies a (typically long -

running) sub system in which the same memory is allocated and deallocated
repeatedly . Subsystems exhibiting high utilization are often good candidates for
monotonic allocators, whi le a long -running sub system having low utilization is

almost always much more suited to a multipool allocator , or perhaps a multipool
allocator backed by a monoto nic one (but see the benchmarks below) .

5.5 Contention due to concurrent memory allocations (C)

Allocation co ntention is a measure of the potential bottlenecks that could result
from multiple threads attempting to access the same synchronized memory allocator .
We define allocation contention as the expected number of concurrent memory

allocatio n operations in any given instant of time, over the duration of interest ,
divided by the number of active threads, W. A contention, C, of 0 indicates that W is

1 (or the allocation density, D, for all but one thread is 0) . A contention of 1 would
mean that W > 1 and each thread is always trying to allocate or deallocate memory
on every instruction executed (i.e., D per thread is 1) . Many modern global memory

allocators are òthread aware ó and make heroic efforts to mitigate such contention . In
doing so, however, they typically slow down subsystems in situations that do not

require synchronization , while ð compared to the use of local alloca tors ð also
degrad ing performance in situations that do . Note that, because of the strong
correlation between dimensions C and D, it will turn out to be difficult to observe

variations in C independently of D (e.g., Benchmark IV, see section 10).

P0089R1 : On Quantifying Memory -Allocator Strategies Page 11 of 57

DVLUC

Remembering these five dimensions characterizing memory allocation is a challenge
for anyone, includi ng us, so we offer a mnemonic aid by wa y of a mascot: The mascot
is a d uck, and his name is DVLUC .

6 Designing Useful Benchmarks

After identifying the dimensions of allocation space to explore, we wanted suitable
benchmarks to elucidate how each of these dimensions affect s our design decisions .

Our first thought was to create a single benchmark that spanned all five of the
dimensions ð the idea being to find the centroid, and then vary the arguments along
each dimension separately in order to discover its effect on the best allocator -strategy

choice .

As it turns out, a single problem that encompasses all five dimensions is not at all
easy to invent , as some dimensions are s trongly correlated with others ð e.g.,

Contention (C), and Density (D). Instead, we settled on four separate benchmarks,
which together seem to cove r this five -dimensional space as well as enabling each of

the fourteen proposed allocat ion strategies (where appropriate) to have their fair shot .

Separately, we tried not to assume the answers we expected, and hence strove to
cover the entire design space without prejudice . Hence, in our benchmarks we

typically explore a wide range of problem sizes using successive powers of two . To
better understand secondary effects, we will often choose to trade off comparable

parameters, such as the subsystem size vers us the number of subsystems (physical
locality) or the number of consecutive accesses of a subsystem vers us the number of

subsystems visited (temporal locality) while holding othe r benchmark parameters
constant.

All the results presented here are from runs on a server having dual Intel Xeon E5 -

2620v2 processors, each having 6 cores (for a total of 12 cores) and 15 MB of L3
cache, running at a fixed clock rate of 2.1 GHz, with 16GB of DDR3 -1600 RAM (with

D = Density of allocation operations

V = Variation in allocated memory sizes

L = Locality facilitating memory access/manipulation

U = Utilization of allocated memory

C = Contention due to concurrent memory allocations

P0089R1 : On Quantifying Memory -Allocator Strategies Page 12 of 57

13G available to processes), and otherwise unused . Thi s particular processor has the
òSandy Bridgeó architecture, from 2010, re-stepped (òv2ó) to a smaller die in 2013

and called òIvy Bridge EPó (http://ark.intel.com/products/75789). Programs were all

compil ed using gcc -5.1 , optimizing ò- O3 ïmarch= native ó, and run under Linux

3.18 . All experiments used only one core at a time except for Benchmark IV, which

measure s Contention (C) and used more of the available cores.

In addition, we ran the same programs on several other configurations and platforms ,

including versions built with clang -3.6 on the machine described above, and with gcc
and clang on an IBM POWER7 under Linux 3.10 , and with MSVC2015R1 on an Intel
Haswell desktop machine under Windows 7. Results of these runs can be found on

the github site.

Finally, a separate effort has recently been made to recreate our experiments in order
to confirm these results (P0213 by Graham Bleaney) . We anticipate that paper will
appear at approximately the same time as this revision.

7 Benchmark I: Creating/Destroying Isolated Basic Data Structures.

In this expe riment, we look at the process of creating a variety of isolated composite
data structures, using them lightly (i.e., writing to each element exactly once using

memset via a pointer -to-volatile), and then quickly destroying them . The set of data

structures under test encompass es many of those we us e every day, and were chosen
speci fically to explore the first two dimensions discusse d earlier (section 5), namely

Density (D), and Variation (V). Each standard container under consideration

(std::vector and std:: unordered _set) will ultimately consist of òleafó objects of

either int or st d::st rin g, where each string õs length ð chosen randomly over a

uniform distribution between 33 and 100 0 ð is deliberately outside the range where
the sho rt -string optimization pertains .

The container implementations are the native ones for the platform, using

scoped_allocator_adaptor to ensure that the same allocator is used for all parts of

the data structure. The monotonic and multipool allocators come from the BSL

library.

Twelve representative standard -library data structures were chosen ð the fifth

throug h twelfth being, respectively, std::vector s and std::unordered_ set s of

elements containing each of the first four data structure types :

http://ark.intel.com/products/75789

P0089R1 : On Quantifying Memory -Allocator Strategies Page 13 of 57

DS1 vector<int>

DS2 vector<string>

DS3 unordered_set<int>

DS4 unordered_set<string>

DS5 vector<vector<int>>

DS6 vector<vector<string>>

DS7 vector<unordered_set<int>>

DS8 vector<unordered_set<string>>

DS9 unordered_set<vector<int>>

DS10 unordered_set<vector<string>>

DS11 unordered_set<unordered_set<int>>

DS12 unordered_set<unordered_set<string>

Table 2: Data Structures

The runtim e results for executing these benchmark tests using each of the 12 data
structures above, employing each of the 14 allocation strategies discussed in section
4, for a wide variety of problem sizes on just one of the several popular platforms we

tried (section 6) are presented below .

Unlike our previous paper, however, all tabular numbers for this benchmar k are
presented (as heat maps) in terms of absolute run time s in seconds (rather than

percentages relative to the first column) . Moreover, the color coding of the maps
applies to an entire chart, rather than each individual row ð this to help identify

patter ns ð especially in allocation -strategies (columns) ð that might otherwise be
obfuscated . The first column , 26 through 216 , indicate s the size o f the data structure
constructe d ð e.g., for data size 2 8, the outermost data structure is built up to have

28 = 256 elements before being destroyed .

This process of creating and destroying each data structure is repeated many times
to allow for meaningful measurements . In order to allow for comparisons across data

structu res of different sizes, the product of the data structureõs size (in terms leaf
elements) and the number of iterations of creating and destroy ing it will be held

constant, which we have chosen (arbitrarily) to be ς . That is, the data structure

P0089R1 : On Quantifying Memory -Allocator Strategies Page 14 of 57

associated with row ς of any of the first four data structures (DS1-DS4) will be

created and destroyed ς ς times during the benchmark . Note that f or data
structures DS5-DS12, where the number of leaf elements being con structed per

immediate element is increased by a constant factor (e.g., ς), a corresponding drop in
iterations occurs, thereby keeping the benchmarks roughly comparable in terms of

total number of leaf elements created (see below).

Although this benchmark focuses , primarily, on the dimensions of Density (D) and
Vari ation (V), discussed in section 5, t he relatively short -lived nature of the objects in

this benchmark ð along with their extremely high Utilization (U) ð facilitate measuring
the benefit of allocations strategies, such as AS4 , AS6, AS8, AS10, AS12, and AS14,
that òwink-outó object memory. Finally note that, in each of the tables below, Green

indicates substantial ly shorter run times whereas yellow , orange , and especially red
indicate longer run times .

7.1 DS1, vector<int>

Ŷ global Ÿ Ŷ Monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtu
al

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 1.2 1.9 0.3 0.4 0.4 0.4 0.8 1.0 0.9 1.1 0.6 0.7 0.8 0.7

2
7 0.9 1.6 0.3 0.4 0.4 0.4 0.5 0.7 0.6 0.7 0.5 0.5 0.6 0.5

2
8 0.8 1.0 0.2 0.4 0.4 0.3 0.4 0.6 0.5 0.6 0.3 0.5 0.5 0.5

2
9 0.8 1.0 0.2 0.4 0.4 0.4 0.3 0.5 0.5 0.5 0.3 0.4 0.4 0.4

2
10 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
11 0.7 0.9 0.2 0.3 0.4 0.3 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
12 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
13 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
14 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
15 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

2
16 0.8 0.9 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4

Table 3: DS1, vector<int>

This first data structure (DS1) corresponds to an std::vector<int> ranging in size

from ς (top row) to ς (bottom row). Recall that AS1 is the default (global) allocator
accessed directly, and that AS2 is the default allocator accessed via pure -virtual
functions in an abstract base class. The following three large bloc ks (four columns

each) correspond to the three local allocator mechanisms: monotonic (AS3-AS6),
multipool (AS7-AS10), and monotonic backing a multipool (AS11-AS14). The first pair
of columns within each block (AS3 -AS4, AS7 -AS8, and AS11 -AS12) correspond to

direct access where the second pair (AS4 -AS5, AS9 -AS10, and AS13 -AS14)
correspond to access via an abstract base class. Finally, the first member of each

pair (AS3, AS5, AS7, AS9, AS11, and AS13) corresponds to the normal destruction

P0089R1 : On Quantifying Memory -Allocator Strategies Page 15 of 57

process, whereas the second member of each pair (AS4, AS6, AS8, AS10, AS12, and
AS14) corresponds to òwinking outó the memory, bypassing normal destruction.

Note that each std::vector instance used in this benchmark is explici tly pre -sized

(using reserve) to have exactly the needed capacity . H ence, the measurement data

for vector<int> (DS1) involves only a single memory allocation/deallocation . Hence,

for this first data structure, the allocation Density (D) was vanishingly small , and the
requested memory -size Variation (V) was nil . Although the data for DS1 (above) is

largely composed of test -apparatus artifacts, it exhibits recurring patterns across the
various alloca tion strategies (columns) consistent with what is seen below .

The first observation is that direct acces s is superior to acce ss via a base class for
global an d local allocators in essentially all cases. For the global allocator (AS1-AS2),

this overhead ranged from ~20% -25% for larger vector sizes, but jumped sharply to
~60% -70% for the two smallest ones shown (64 and 128 elements). The clear

winning strategy for each of the three local allocators was direct access without
òwinking outó memory (AS3, AS7, and AS11, respectively). Any attempt to deviate
from typical usage dramatically reduced runtime performa nce (~50% -80%). (A

plausible conjecture here would be that the optimizer is tuned for the typical case.)

When always òwinking outó memory, accessing the allocator directly versus via a pure
abstract base class generally made no statistical ly significant difference. Finally note

that , except for the two smallest vectors (corresponding to the rows labeled ς and

ς), all of the local allocation strategies (AS3 -AS14) were ð at least ð close to twice as
fast as directly accessing the default allocator (AS1). It will turn out that this

surprising observation can b e repeated in each of the eleven remaining experiments
in this benchmark, again in Benchmark III (except , of course , for the monotonic
allocator alone (AS3 -AS6)), and yet again in Benchmark IV. Note that Benchmark II

deals entirely with locality of access , and therefore the runtime performance of the
allocation and deallocation operations themselves is not relevant .

P0089R1 : On Quantifying Memory -Allocator Strategies Page 16 of 57

7.2 DS2, vector<string>

Ŷ global Ÿ Ŷ Monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 68.9 67.3 12.9 12.8 13.3 12.9 18.1 17.8 18.2 17.7 15.5 14.8 15.6 14.8

2
7 68.8 68.2 12.8 12.9 13.2 12.9 20.6 20.2 20.6 20.4 15.1 14.3 15 14.4

2
8 70.8 68.9 13.2 12.8 13.6 12.9 30.8 30.4 30.7 30.3 15.3 14.6 15.4 14.7

2
9 73.1 71.2 13.5 13.5 13.9 13.5 38.2 37.6 38 37.3 15.9 15.1 15.9 15.1

2
10 75.4 74.3 13.6 13.5 14 13.7 41.1 40.3 41.6 40.9 16 15.1 15.9 15

2
11 76.9 74.5 13.6 13.5 14.1 13.6 43.9 43.2 43.7 42.6 16 15 16 15.1

2
12 76.1 74.8 13.7 13.5 14 13.6 41.2 38.8 40.6 39.4 15.9 14.9 15.8 15

2
13 76.1 74.8 13.6 13.6 14 13.6 41.4 39.2 41.3 39.9 15.9 15 15.8 14.9

2
14 78.3 76.5 13.6 13.6 14 13.6 45.8 42.3 44.8 44 16.1 15.2 16.2 15.4

2
15 90.4 91 20.2 20.1 20.5 20.1 62.2 58.7 62.2 58.2 26 25 26 24.9

2
16 103 103 21.5 21.3 21.8 21.3 66.5 59.2 65.1 59.9 27 25.3 27.1 25.2

Table 4: DS2, vector<string>

For DS2, vector<string> , we insert 2 n strings , where n again rang es from 26 (top

row) to 216 (bottom row) . E ach string is of randomly chosen, uniformly distributed

length (in the range [33..1000] bytes), its data is accessed (written via memset), and

then the entire vector is destroyed , all of which is repeated for a total of 227-n
iterations . Because each mutating operation in this benchmark involves an allocation

or deallocation (and all other operations are few) , the Density (D) is extremely high,
and the Variation (V), due to the randomly chosen string length s (greater than 32) is
also quite high.

Looking at the data for DS2 (above), we quickly observe that the choice of the
underlying allocator mechanism used dominates . First we see that run time of using
the default allocator (AS1-AS2), which is roughly the same irrespective of how it is
accessed , is dramatically more (~75%-575%) than that of any of the local -allocator -
based strategies (AS3-AS14). Next we observe that using ju st a monotonic allocator

(AS3-AS6) works best with respect to the run time of the global allocator (~20%, or
5x), followed by a combination of monotonic and multipool allocators (~25%, or 4 x),

with a multipool allocator alone bringing up the rear (~60%, or 1.7 x.), yet all are still
significantly and consistently faster than the global allocator . We can also easily
observe that t here is a n abrupt jump in run time (across the board) when the data

structure size rises beyond ς string elements, yet the relati ve performance of all of

the allocat ion strateg ies remain s roughly the same . Looking more closely, we can see
that the effects of accessing each of the allocators directly , versus via a virtual -
function interface , makes little or no difference , although there is some slight

recurring bias favoring direct access . Finally we note that òwinking outó tends to
somewhat reduce run time (~1%-9%) ð the most pronounced being when a monotonic

P0089R1 : On Quantifying Memory -Allocator Strategies Page 17 of 57

allocator is involved and, secondarily when the allocator is a ccessed via a virtual
function .

7.3 DS3, unordered_set<int>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 10.2 11 5.08 4.88 5.62 5.34 7.16 7.12 7.5 7.2 6.19 5.73 6.4 5.81

2
7 12.5 13.3 5.04 4.81 5.68 5.24 6.37 6.22 6.71 6.31 5.8 5.46 6.08 5.5

2
8 15.8 16.4 4.99 4.79 5.54 5.22 5.95 5.81 6.21 5.92 5.65 5.32 5.82 5.4

2
9 18.3 19 5.01 4.8 5.53 5.18 5.78 5.56 6.01 5.7 5.56 5.2 5.76 5.21

2
10 21.4 22.3 4.99 4.83 5.55 5.2 5.72 5.46 5.95 5.55 5.52 5.27 5.68 5.24

2
11 25.5 26.1 4.98 4.81 5.56 5.16 5.67 5.44 5.86 5.65 5.53 5.23 5.69 5.26

2
12 27.1 28 5.02 4.81 5.55 5.2 6.42 6.1 6.57 6.25 5.51 5.12 5.68 5.27

2
13 27.9 28.8 5.03 4.81 5.59 5.21 7.34 6.91 7.46 7.03 5.61 5.16 5.71 5.24

2
14 28.5 29 5.03 4.8 5.58 5.26 7.03 6.59 7.18 6.68 5.64 5.19 5.8 5.34

2
15 28.3 29.2 5.03 4.78 5.56 5.28 7.11 6.65 7.2 6.83 5.68 5.17 5.78 5.24

2
16 31.6 31.8 5.02 4.76 5.6 5.22 6.79 6.37 6.93 6.46 5.68 5.17 5.79 5.24

Table 5: DS3, unordered_set<int>

For DS3, unordered_map<int> , we repeated the initial experiment, DS1, on elements

of type int , but this time substituting unordered_map for vector as the container

type . Although the appended data does not itself involve memory allocation, creating
each container node to hold it (absent bsl -style internal pooling, which was the case
on this platform) does; h ence, Density (D) for this data set is high, while Variation (V)

is nil.

Our first observation with respect to the DS3 data (above) is that run time using the

global allocator (A S1-AS2) is always the largest, and grows substantially with
(physical) data -structure size, while such growth doesnõt appear for any of the (local)
allocation strategies (A S3-AS14). For this data structure , there is indication that

access via a virtual function call (AS2, A S5-AS6, A S9-AS10, A S13-AS14) is typically
somewhat slower (~1%-10%) than direct access (AS1, A S3-AS4, A S7-AS8, and AS11-

AS12); however, t he DS3 data shows consistently that the òwinking -outó feature (AS4,
AS6, A S8, A S10, A S12, A S14) is a clear win (5% -10%) everywhere that it can b e done .
Finally , we note that monotonic (alone) A S3-AS6 is the best allocator choice, with

direct access and òwinking outó (AS4) being the overall best allocation strategy : We
observe a runtime improvement (over the global allocator) approaching 7 00% for
larger data stru ctures (e.g., 2 16 nodes).

P0089R1 : On Quantifying Memory -Allocator Strategies Page 18 of 57

7.4 DS4, unordered_set<string>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 103 120 52.2 51.9 52.4 51.2 58.4 57.6 59.7 58.9 55.1 54.1 56.9 55.3

2
7 103 122 52.5 52.1 52.9 51.8 63.3 61.9 64.4 63.8 55.3 54 56.8 55.7

2
8 109 128 53.6 53 53.7 52.6 76.3 74.7 77.4 75.9 56.5 54.9 57.9 56.7

2
9 113 134 54.5 53.4 54.9 53 83.1 81.7 82.8 81.4 57.3 56.7 58 56.4

2
10 119 143 56.6 54.9 56.9 54.6 87.6 85.9 88.1 86.5 58.8 56.9 59.2 57.3

2
11 122 144 57 55.3 57.7 54.9 90.7 89.2 90.7 88.4 59.4 57.6 60 57.8

2
12 122 146 57.9 55.9 58.4 55.7 93.2 90.7 93.2 90.7 60.5 58.3 60.7 58.4

2
13 124 148 58.2 56.3 58.5 55.9 95.1 91.5 94.3 92 60.5 58.2 60.7 58.7

2
14 139 166 59.1 57.3 59.6 56.8 98.5 94.1 97.8 95.8 61.8 59.6 62.2 60

2
15 176 211 66 62.7 66.2 62.4 121 115 122 115 76.5 73.3 76.8 74

2
16 196 232 78.5 72 79.1 71 137 127 136 127 87.1 82.4 87.8 82.9

Table 6: DS4, unordered_set<string>

Next, we again used an unordered_set as our container, but this time, like DS2,

used, as elements, strings of uniformly distributed random length (again in the range

of 33 to 1000 to thwart the short -string optimization). This time we have a high
Density (D) with moderately high (unimodal) Vari ation (V).

The DS4 results largely mirror those of DS3 , but with some notable differences . The
run time for the global allocator (AS1-AS2) is again substantially larger than that of

any local allocator, and grows aggressively with increasing data structure size . On the
other hand, that same relative gro wth is this time reflected in each of the other (local)
allocation strategies (AS3-AS12). There is some tendency for access via a virtual -

function interface to be slower than direct access, but much less so : ~1% for all local
alloca tors compared to ~20% for the global one . For this data structure, we agai n see
that the monotonic allocator (AS3-AS6) is clearly optimal , and that òwinking outó is a

consistent win (~1%-10%) across all (local) allocators, the relative runtime benefit of
which tend s to grow quickly with increasing data structure size . Finally, using a

monotonic allocator (alone) and employing òwinking outó (AS4 and AS 6) were fastest
at roughly 2 x better than the default global allocator (AS1 and AS2). Note that access
via a virtual function (AS6) consistently won out (~2%-4%) over direct access (AS4).

For the remaining eight benchmark scenarios (DS5 ð DS8 and DS9 ð DS12) , each of
the (composite) elements correspond, respectively, to the four preceding
configurations (DS1 ð DS4), and were chosen (arbitrarily) to have 27 =128 leaf

elements (of type either int or std::string). Each outer container again has 2n

(composite) elements (each of those having 128 leaf elements), and is constructed

and destroyed 227-7-n times, for a total of 2 27 leaf -element insertions, as was the case
for DS1 -DS4 . In this way , we keep t he total number of operations involving leaf

P0089R1 : On Quantifying Memory -Allocator Strategies Page 19 of 57

objects across all 12 distinct data structures (DS1 ð DS12) in this benchmark
comparable (section 6).

7.5 DS5, vector<vector<int>>

 Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 0.97 1.00 0.19 0.13 0.20 0.17 0.24 0.20 0.20 0.21 0.21 0.19 0.20 0.21

2
7 0.96 0.96 0.22 0.16 0.18 0.14 0.21 0.20 0.19 0.20 0.16 0.20 0.21 0.19

2
8 0.99 1.00 0.19 0.13 0.18 0.17 0.27 0.30 0.27 0.29 0.19 0.19 0.20 0.21

2
9 0.99 1.02 0.19 0.13 0.18 0.14 0.36 0.33 0.33 0.36 0.19 0.15 0.20 0.20

2
10 1.01 1.04 0.19 0.18 0.19 0.14 0.37 0.36 0.36 0.38 0.22 0.19 0.20 0.22

2
11 1.02 1.05 0.19 0.13 0.19 0.14 0.36 0.35 0.36 0.36 0.20 0.15 0.20 0.22

2
12 1.03 1.05 0.19 0.19 0.22 0.18 0.33 0.36 0.32 0.32 0.20 0.21 0.20 0.19

2
13 1.02 1.05 0.19 0.13 0.22 0.19 0.35 0.35 0.34 0.33 0.20 0.21 0.22 0.19

2
14 1.05 1.10 0.19 0.17 0.19 0.16 0.38 0.36 0.38 0.37 0.17 0.19 0.20 0.19

2
15 1.13 1.18 0.22 0.19 0.19 0.16 0.50 0.45 0.47 0.45 0.21 0.21 0.17 0.18

2
16 1.29 1.32 0.22 0.19 0.20 0.17 0.54 0.47 0.52 0.50 0.22 0.21 0.22 0.21

Table 7: DS5 , vector<vector<int>>

This first composite data structure, vector<vector<int> > (DS5) has a low

allocation Density (D) and a nil requested memory -size Variation (V).

The data for DS5 suggest that (1) every local allocator strategy considered is far, far
better (~300% -700%) than the global one (AS1-AS2), (2) any runtime differences

between virtual -function interface versus direct access are not statistically
significant, (3) òwinking outó this data structure is typically a relative win (~10%-
30%), especially for the most runtime -performant allocator in these tests , namely

monotonic (AS3-AS6). In passing, we also observe a n ac ross -the -board òplat form
boundary ó in the form of an òelbowó to increasing run time as the size of the outer
vector exceeds 2 14 composite elements (last two rows). Note that this increase is per
leaf element inserted as precisely the same number of lea f element s are inserted for
each row of each table corresponding to each of the twelve experiment s in this

benchmark.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 20 of 57

7.6 DS6, vector<vector<string>>

 Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 72.6 72.7 9.06 9.06 9.36 8.98 41.7 40 41.2 39.2 11.2 10.3 11.2 10.3

2
7 74.9 76 8.92 8.98 9.29 8.89 46.5 44.8 46 43 11.4 11 12.7 10.3

2
8 85.5 85.2 17.1 17.4 17.3 16.9 62.9 58.4 61.3 58.4 22.8 22.5 23.3 22

2
9 96.4 96.3 18.4 18.7 19 18.4 66.2 59 64.7 59.3 24.2 22.7 24.5 22.3

2
10 102 102 18.7 18.6 19.1 18.6 67 59.6 65.9 59 24.8 22.5 24.8 22.5

2
11 102 101 18.4 18.7 19.2 18.2 62.4 55 61.3 54.2 24.8 22.6 25.1 22.3

2
12 104 103 18.5 18.7 19.4 18.3 61.6 54.2 60.5 53.4 24.9 22.7 25.1 22.3

2
13 103 104 18.8 18.4 19 18.6 61.8 53.4 59.9 53.5 25.3 22.6 25.1 22.6

2
14 97.1 96.3 19.2 19.6 20.1 19.2 60.6 53.7 60.2 52.9 29 26.7 29.2 26.3

2
15 88.1 88.7 23.4 23.2 23.7 23.4 62.6 54.4 60.9 53.9 33.4 30.6 33.2 30.7

2
16 76.7 76.7 25 25.3 25.8 25 63.4 54.8 62.9 54.3 35 32.8 35.5 32.4

Table 8: DS6, vector<vector<string>>

Next we consider vector<vector<string >> (DS6), which has both a high allocation

Density (D) and a high Variation (V).

The data for DS6 (above) suggests that the default global allocator (AS1-AS2) is the
least performant choic e, and that direct versus virtual -function access make s no

significant difference . The monotonic alloca tor (AS3-AS6) again proves to be the best
allocator choice , but òwinking outó doesnõt seem to have much of a (consist ent) effect

for this al locator . Yet òwinking outó clearly does exhibit a significant improvement
(~5%-15%) when the monotonic allocator is used to back a m ultipool allocator (AS11-
AS14), and especiall y when used alone (AS3-AS6). We also note that the global

allocator (unlike all local allocators) exibited a reduction in run time as the outer

data -structure size increased beyo nd ς composit e (vector<string>) elements .

Note that there appears to be an across -the -board òplatform boundaryó when the

number of (composite) elements increases from ς to ς where all allocation times ð
especially the local ones, and particularly those involving a multipool ð jump abruptly

(~12%-100%). A second òplatform boundaryó occurs for just the global allocator (AS1-

AS2) when the number of (composit e) elements increases from ς to ς , where the

(per-element) runtime cost plat eaus (see rows ς-ς). Yet a third òplatform boundaryó
occurs for the 12 local allocator st rategies (AS3-AS14) when the number of composit e

elements increases from ς and ς , where the (per -element) cost begins to
accelerate, and ð at the same time ð the (per-element) global allocator run times also

begin to decrease sharply (see rows ς -ς).

P0089R1 : On Quantifying Memory -Allocator Strategies Page 21 of 57

7.7 DS7, vector<unordered_set<int>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 28.8 28.7 2.97 2.69 3.43 2.98 4.89 4.37 5.33 4.73 3.21 2.65 3.64 3.05

2
7 28.3 28.5 2.97 2.66 3.36 2.95 4.99 4.44 5.43 4.91 3.2 2.62 3.61 2.97

2
8 28.2 28.1 2.94 2.62 3.33 2.92 5.02 4.53 5.53 4.97 3.23 2.6 3.6 3.01

2
9 31.8 31.7 2.92 2.61 3.33 2.93 5.08 4.54 5.52 4.92 3.16 2.58 3.58 2.96

2
10 46.6 47.2 2.92 2.61 3.33 2.89 5.07 4.49 5.48 4.93 3.15 2.58 3.57 2.98

2
11 54.3 54.1 2.92 2.61 3.33 2.89 5.63 4.75 5.88 5.37 3.16 2.6 3.61 2.98

2
12 54.7 54.8 2.96 2.66 3.34 2.91 6.9 5.79 7.28 6.23 4.15 3.05 4.58 3.4

2
13 55.1 56 3.51 2.95 3.77 3.21 7.01 6.03 7.47 6.35 4.27 3.08 4.65 3.48

2
14 51 50.9 3.53 2.99 3.81 3.25 7.08 6 7.47 6.46 4.29 3.14 4.71 3.47

2
15 44.8 45.4 3.58 3.01 3.83 3.26 7.07 6.04 7.55 6.52 4.35 3.14 4.75 3.53

2
16 38.2 38.2 3.58 3.06 3.86 3.3 7.14 6.11 7.58 6.47 4.37 3.18 4.8 3.54

Table 9: DS7, vector<unordered_set<int>>

Then we have vector<unordered_set<int >> (DS7), which has a fairly high

allocation Density (D) and nil Variation (V).

The data for DS7 (above) shows that the default global allocator (AS1-AS2) is again,
this time by far, the least performant choic e, and that direct versus virtual -function

access makes no significant difference for the glo bal allocator, but does have a
noticable effect for all local allocators (~5%-15%). The best allocator choice in this

scenario is again the monotonic al locator (AS3-AS6) but this time by a factor of
almost 20x over the default . The second most striking observation in this data is the
across -the -board imp rovement (~5% -35%) (for local allocators) of òwinking outó the

data structure, especially for larger physical sizes , with the larg est percentage benefit
ð by fa r ð coming from the composite allocator (AS11-AS14). Notice that, just like

DS6, the global allocator õs (per-leaf element) run times pe ak and then recede,

where as the local allocator times tend to grow monotonically and, except between ς

to ς , very slowly.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 22 of 57

7.8 DS8, vector<unordered_set<string>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 114 116 26 23.8 26.3 24 56.2 54.7 56.9 54.6 27.5 25.8 27.9 26

2
7 123 130 26.5 24.4 25.7 23.5 62.7 60.1 62.7 60.5 27.5 26.3 28.2 26.1

2
8 162 171 31.7 27.3 32.2 27.8 78 74.2 79.2 73.9 35 32 35.5 32.5

2
9 175 181 36.8 28 38.1 28 81.7 74.1 81.2 74.9 36.3 32.1 37.2 32.1

2
10 176 183 40 28.9 37.4 28.2 82.1 74.5 82.1 74.7 36.9 32 37.4 32.2

2
11 176 183 39.3 28 37.3 28 81.4 74.4 82 74.3 36.9 32.1 37.8 32.1

2
12 179 185 39.4 28 37.1 28 81.8 74.1 81.6 74.4 37 32 37.8 32.2

2
13 173 178 39.6 27.9 36.9 28.2 81.8 73.6 81.5 74.3 37.2 32 37.8 32.4

2
14 157 160 41 29.9 38.8 29.9 81.5 74.1 82.2 74 44 39.3 45.1 39.2

2
15 122 131 47.6 35.8 44.8 36.2 85.2 75.5 83.7 76.1 50.5 45.2 51 45.5

2
16 95.4 106 51.4 40.5 48.1 38.9 84.8 76.2 88.7 75.9 53.1 48.5 54.8 48.2

Table 10 : DS8, vector<unordered_set<string>>

Now we consider the final data structure in this second set of four employing

std::vector as the outermost container , vector<unordered_set<string >> (DS8),

which has a high allocation Density (D) and a moderately high (unimodal) memory -
size Variation (V).

The above data for DS8 again shows that the global allocator (AS1-AS2) is the least
performant, and that t he monotonic allocator by itself (AS3-AS6) is the best choice .

Access via a virtual -function -based interface (when compared to direct access) seems
to have a consistant overhead for the global allocator (~1 0%), but not nearly so for
the local allocators , especially the monoto nic allocator (AS3-AS6), for which run time

using a pure abstract base class for data structures having ς or more (composite)
elements was consistently better (~5-7%). òWinking outó is agai n a relative win (~5 %-
25%) across all local allocators . Note that the global -alloca tor times (AS1-AS2), much

like DS6 and DS7 , peak and then rec ede with data structure size, where as all of the

local -allocator times (AS3-AS14) above ς elements are largely monotonically non -

decreasing.

We pause here briefly to mention that the detailed raw data present ed throughout
this paper reflects execution on just a single platform. In preparations for th e first
revision of this paper (P0089R0) , however, we ran these benchmarks using multiple

compilers on multiple machine types. An interesting result , the details of which can
be viewed online, is that, for the Clang compiler (only) , the runtime overhead of
accessing via an abstract base class on the hardwar e platforms we tested was two to

three times that of using an allocat or directly, but only for the previous four (out of

twelve) data structures (DS5 -DS8), which have an std::vector at the top -level.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 23 of 57

We now turn to consider the t hird and final set of four data structures, each having

instead an std:: unordered _set as the outer -most container.

7.9 DS9, unordered_set<vector<int>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10

AS1
1 AS12 AS13 AS14

2
6 0.97 0.94 0.23 0.19 0.24 0.21 0.26 0.27 0.30 0.26 0.25 0.26 0.25 0.24

2
7 1.40 1.43 0.22 0.21 0.22 0.19 0.24 0.26 0.25 0.27 0.24 0.26 0.24 0.24

2
8 1.35 1.39 0.25 0.22 0.24 0.23 0.30 0.35 0.34 0.33 0.24 0.23 0.25 0.24

2
9 1.29 1.32 0.22 0.18 0.22 0.17 0.37 0.38 0.37 0.36 0.23 0.22 0.19 0.22

2
10 1.32 1.38 0.24 0.22 0.22 0.19 0.41 0.39 0.42 0.39 0.23 0.24 0.23 0.22

2
11 1.34 1.36 0.23 0.21 0.22 0.17 0.44 0.42 0.43 0.41 0.23 0.23 0.25 0.22

2
12 1.34 1.41 0.22 0.20 0.22 0.16 0.46 0.42 0.45 0.43 0.23 0.17 0.27 0.22

2
13 1.46 1.54 0.22 0.18 0.22 0.16 0.48 0.49 0.49 0.48 0.23 0.21 0.25 0.21

2
14 1.53 1.61 0.22 0.17 0.22 0.18 0.43 0.42 0.45 0.41 0.24 0.22 0.24 0.22

2
15 1.61 1.76 0.25 0.21 0.24 0.19 0.50 0.49 0.50 0.49 0.24 0.18 0.23 0.21

2
16 1.79 1.92 0.28 0.25 0.29 0.24 0.55 0.51 0.56 0.55 0.30 0.23 0.32 0.24

Table 11 : DS9, unordered_set<vector<int>>

The first data structure in our final group of four, unordered_set<vector<int >>,

has a high allocation Density (D), and a nil Variation (V).

The data for DS9 (above) again suggest that the global allocator is clearly the least

effective choice (~300% -~900%) , and that the relative overhead of access via a virtual -
function interface (compared to direct acc ess) is quite small (~1%-5%) for the global

allocator, and non-existent for all local allocators . For this data structure, the best
allocator choice again appears to be monotonic (AS3-AS6), however the composite
allocator ð i.e. a multipool backed by a monotonic allocator (AS11-AS14) is a very

close second . Note that the substantial (per-leaf -element) increase in run time (with
respect to increasing data -structure size) for the global allocator (AS1-AS2) is not

refl ected in local allocators employing a monotonic allocator (AS3-6, AS11 -AS14). For
larger data -structure sizes, t here was also a consistent benefit to òwinking outó local
memory (~2%-30%), especially where a monotonic allocator was involved .

P0089R1 : On Quantifying Memory -Allocator Strategies Page 24 of 57

7.10 DS10, unordered_set<vector<string>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

 virtual Ŷ virtual Ÿ Ŷ virtual Ÿ Ŷ virtual Ÿ

 (wink) (wink) (wink) (wink) (wink) (wink)
data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12

AS1
3 AS14

2
6 73 73.2 9.41 9.39 9.34 8.97 41.7 39.7 41.1 39.3 11.2 10.4 11.2 10.3

2
7 74.7 75.3 9.32 9.34 9.24 8.87 46.2 43.7 45.3 44.2 12.7 10.6 11.4 10.8

2
8 83.1 85.4 18 17.3 16.9 17.2 62.2 58.9 61.9 57.6 23.2 22.3 23.1 22.4

2
9 91.4 94.9 19 19 18.8 18.6 65 59.9 64.4 58.9 24.3 22.6 24.1 22.6

2
10 98.2 101 19.2 18.9 19.1 18.6 66.5 59.7 65.4 59.1 24.8 22.6 24.6 22.7

2
11 99.5 101 19 19.1 19.3 18.4 66.9 59.5 66.1 58.7 24.9 22.7 25.1 22.5

2
12 102 105 19.4 19 19.2 18.8 67 58.9 65.8 59.4 25.3 22.6 25.1 22.7

2
13 103 104 19 19.2 19.4 18.4 66.7 59.2 66.2 58.2 25.3 22.9 25.5 22.6

2
14 95.8 97.2 19.8 20 20.3 19.3 62.8 55.6 61.9 54.3 29.2 26.8 29.6 26.5

2
15 87.1 89.8 24 23.7 24 23.5 64.3 55 61.9 54.9 33.6 30.8 33.5 31

2
16 77.1 78.2 25.6 25.7 26 25.1 63.9 55.5 63.3 54.5 35.3 33 35.7 32.6

Table 12 : DS10, unordered_set<vector<string>>

Next we consider unordered_set<vector<string >> (DS10), which has a high

allocation Density (D) and a moderately high (unimodal) memory -size Variation (V).

The results for DS10 , unordered_set<vec t or<st r ing >> (above) are, unsurprisingly,

not dissimilar for those of DS8 , ve ctor<unordered_set<string>> . The global

allocator is yet again the least efficient choice , and the best choice yet again appears
to be the monotonic allocator alone (~300% -600%) , with the overhead of non -direct
access minimal : ~1%-3% for the global allocator (AS1-AS2), and non -existent for all

local allocators (AS3-AS14). The technique of òwinking outó the data structure is not
as consistant a win fo r the monotonic allocator alone (AS3-AS6) as it was i n DS8 , but

con tinues to be so for the other two (less runtime performant) local allocator
mechanisms (AS7-AS14).

Interestingly, a s with DS8, there appears to be a n across -the -board òplatform

boundary ó (i.e., where run time s differ sharply) for data structures between ς and ς
(composit e) elements , and another on e, more closely tied to the monotonic allocators

(AS3-AS6, AS11 -AS14) between ς and ς elements . Global alloca tor times (AS1-
AS2) again pe ak and then reced e, whereas all local a ll ocator times (AS3-AS14), for

systems above ς composit e elements , are again ð for the most part ð monotonically
increasing .

P0089R1 : On Quantifying Memory -Allocator Strategies Page 25 of 57

7.11 DS11, unordered_set<unordered_set<int>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12

AS1
3 AS14

2
6 28.7 29.1 3.06 2.75 3.55 3.14 4.96 4.4 5.41 4.84 3.24 2.73 3.73 3.15

2
7 29.1 29 3.02 2.71 3.47 3.06 5.03 4.52 5.49 4.89 3.23 2.66 3.68 3.08

2
8 28.8 29.1 3 2.68 3.45 3.04 5.18 4.55 5.57 4.98 3.24 2.66 3.65 3.06

2
9 31.8 32.3 2.99 2.64 3.43 2.98 5.12 4.54 5.55 4.95 3.22 2.6 3.65 2.99

2
10 46.5 47.1 2.95 2.65 3.4 2.99 5.13 4.57 5.62 4.96 3.21 2.58 3.62 2.97

2
11 53.3 53.5 2.94 2.64 3.43 2.96 5.58 4.84 5.75 5.39 3.2 2.63 3.67 3.01

2
12 54.6 55 3.02 2.66 3.43 2.98 6.47 5.94 6.99 6.28 3.83 3 4.21 3.38

2
13 56.5 56.5 3.38 2.98 3.72 3.26 7.04 6.04 7.48 6.45 4.15 3.03 4.58 3.39

2
14 52.1 52.2 3.5 2.99 3.88 3.25 7.35 6.07 7.83 6.59 4.33 3.05 4.76 3.38

2
15 45.7 46.2 3.62 2.99 3.95 3.27 7.7 6.39 8.11 6.83 4.43 3.06 4.81 3.44

2
16 39.3 39.3 3.72 3.05 4.03 3.31 7.57 6.3 8.09 6.61 4.52 3.1 4.92 3.45

Table 13 : DS11, unordered_set< unordered_set<int>>

We next consider unordered_set<unordered_set<int >> (DS11), which has a high

allocation Density (D) and a fairly low (entirely bimodal) memory -size Variation (V).

The data for DS11 (above) strongly suggest ð even more so than any other data set
considered in this benchmark ð that the global allocator is by far the least effective

choice : ~10x-20x slower when compared to the best one s, which in this case is either
a monotonic allocator alone (AS3-AS6), or possibly one backing a m ultipool allocator

(AS11-AS14), that òwinks outó allocated memory , and provides direct access to the
allocator, as opposed to via a base class (i.e., AS4 or AS12). The relative overhead of
access via a virtual -function interface (compared to direct access) is negli gible (~0%-

1%) for the global allocator (AS1-AS2), and somewhat larger (~5%-10%) for all the
local allocators (AS3-AS14) ð at least on a percentage basis ; the maximum absolute

runtime overhead , however, remains roughly the same at ~0.5s . The multipool
allo cator alone (AS7-AS10) was again less effective (~2x) than the other local allocator
strategie s (AS7-AS14), but still a considerable improvement (~5x-10x) over the global

one (AS1-AS2). The relative advantage of òwinking outó memory was significant
across the board (~10% -45%), especially when a monotonic allocator was involved,
and the composite allocator (AS11 -AS14) in particular.

We not e that the global allocator (AS1 -AS2) seemed to hi t a òplatform boundary ó

between ς and ς (composite) elements , where the (per -leaf -element) run time

increased dramatically (~50%), before eventually receding (see rows ς -ς). This
anomaly did not appear to be reflected in any of the local allocators (AS3-AS14),
although there did appear to a fairly abrupt increase in run time (~1 0%-%25) for all

local allocators, when the data size increased from ς to ς (composite) elements.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 26 of 57

7.12 DS12, unordered_set<unordered_set<string>>

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ

virtual

Ŷ virtual Ÿ

Ŷ virtual Ÿ

Ŷ virtual Ÿ

(wink)

(wink)

(wink)

(wink)

(wink)

(wink)

data
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14

2
6 121 125 25.9 23.7 26.1 23.9 56.3 54.5 56.7 54.7 27.4 25.8 27.8 26

2
7 141 145 26.4 24.3 25.6 23.4 62.1 59.6 62.5 60 27.9 25.8 28.3 25.8

2
8 165 173 31.5 27.3 32.2 27.7 77.4 73.7 77.8 74.2 34.8 31.9 35.6 32.2

2
9 171 178 35.9 27.6 34.4 27.8 80 73.7 79.7 74.6 35.7 32 36.5 31.9

2
10 177 182 38.7 28.6 35.6 27.9 81.1 74.3 81.3 74.3 36.7 31.8 37.1 32

2
11 177 183 38.2 27.6 36.2 27.7 81.3 74.3 82.2 74.1 37 32 37.8 31.9

2
12 179 186 39.1 27.7 36.5 28 81.6 73.5 81.5 74.1 37.3 31.8 37.9 32.1

2
13 165 169 39 27.8 36.7 27.8 81.3 73.9 82.8 73.5 37.3 32.1 38.3 32.1

2
14 153 156 40.9 29.6 38.7 29.6 81.5 74.1 82.4 73.7 44.4 39.2 45.4 39.1

2
15 122 131 47.6 35.7 44.8 36.1 85.7 75.2 83.9 75.4 51 45.1 51.4 45.5

2
16 100 111 51.4 40.4 48 38.8 85.1 75.5 86.2 75.6 53.6 48.4 54.6 48.2

Table 14 : DS12, unordered_set<unordered_set<string>>

In this final data structure , we consider unordered_set<unordered_set<string >>

(DS12), which has a very high allocation Density (D) and a moderately low (bimodal)
Variation (V).

The data for DS12 (above) again suggests that the global allocator (AS1-AS2) is the

least runtime performant choice (~300 % to 500%) compared with the most
performant one, m onotonic (AS3-AS6), but not nearly as much so as in the preceding

data structure, DS 11 , where the leaf component was instead of type int . There

seems to be a òplatform boundaryó between ς and ς (composite) elements, where
run time jumps abruptly (~15%-25%) for all allocators . The overhead of accessing
through a n abstract base class (ver sus direct ly) for the global allocator (AS1 -AS2) was

generally minimal (~1 %-3%), but increased (to ~10%) above an other apparent across -

the -board òplatform boundaryó between ς to ς (composite) elements, in which the

run time of the global allocator decreased by ~20%, while the run time s of all local
allocators increased by roughly the same percentage . This unusual trend continued

between ς to ς elements .

The overhead for accessing local allocators via a base c lass varied, sometimes more,
someti mes less, but, for the m onotonic allocator alone (AS3-AS6) for data structure s

having at least ς elements, the òoverheadó was consistently negative (~5%-10%) ð
that is, access via a virtual function was typically faster than direct access. Finally

we not e that, for all local allocators, òwinking outó for this particular data structure
was a lways a very significant win : ~10%-40%. (Due to unexpected result s observed
for this specific data structure, we nominate it ð in particular ð as a prime candidate

for further study.)

P0089R1 : On Quantifying Memory -Allocator Strategies Page 27 of 57

The DS9 -DS12 experiments show similar relative performance to DS5 -DS8 for the
corresponding allocation strategies. Again, multipool allocators perform significantly

better when the leaf -most element type is int rather than string , while t he

monotonic allocator retains most of its gains in such cases.

We now make several general empirical observations deliberately avoiding any (naïve)

attempts at trying to explain their underlying causes. The most obvious result,
looking at the heat -mapped charts, is that monotonic allocators are always a big win,

generally giving a speedup in the range of 4x -20x. The relative cost of direct vers us
abstract -base-class access to allocators (where it exists at all) appears to be mostly in
the ~2%-10% range. Th e multipool allocator appears to provide much less of a gain,

although still observable, which is generally in the ~20%-100% range. Note, however,
that the multipool allocator seems competitive with the m onotonic allocator for the

data structures incorpor ating unordered_set<int> (DS7 and DS11), generally

offering more than a 5x speedup.

Similarly, the òwink -out ó strategy generally offers a modest , but predictable win in

most cases, with a particular affinity for combining some form of monotonic allocator

with containers incorporating the composite element unordered_set <T>. When the

type of T is string , best performance is achieved with a simple monotonic allocator,

but when the type of T is int , best performance is achieved with a monotonic

allocator backing a multipool allocator . In the two cases of data structure s

incorporating the composite element vector<string> (DS6 and DS 10) with a simple

monotonic allocator (AS3-AS6), however, the òwink -out ó strategy seems to have no
effect, neither positive nor negative .

As previously stated (section 7.8), l ooking at additional data (available online) from

runs using a variety of compilers, operating systems, and hardware platf orms, there

is an odd effect for Clang specific to data structures DS 5-DS8, vector s of containers.

The time taken to run the benchmark for allocation via an abstract base class is two

to three times that of using an allocator directly, although the monotonic allocator
dispatched through an abstract base class still handily outperforms the standard

(default) allocator by around a factor of 5x -10x (rather than by a factor of x20). N.B.,
we speculate that the likely effect is that other compilers are doi ng a better job at
devirtualization in these examples. We also note that, at the time these experiments

were conducted , devirtualization was an active topic on the Clang development lists.

A second outlier is the Microsoft platform, which shows a much lowe r benefit than

the Unix platforms from applying custom allocation strategies (AS 3-AS14), rarely
showing more than a doubling of performance. Similarly, data structures featuring

containers of int appear to pay a runtime cost of ~50%-100% for allocating thr ough

an abstract base class compared to using an allocator directly, while data structures

of containers of string show a runtime overhead of around 5%. Comparing the run

time for Microsoft Visual C++ 2015 with the Linux -Intel results, the (containers -of-

)containers -of-string experiments complete in a similar time, while the (containers -

of-)containers -of- int experiments complete in around ~10%-25% of the time when

run on Windows. The final oddity on Windows is that , for the largest experiment

P0089R1 : On Quantifying Memory -Allocator Strategies Page 28 of 57

sizes, unles s a monotonic allocator is used, the last 3 or 4 rows of many of the tables
either fail to complete, or suddenly become excessively expensive, such as taking an

hour to run rather than <30 seconds .

Comparing across platforms, the Linux/Power7 results show similar (relative)

performance across the benchmarks when using the same compiler. However, the
gcc results for the standard (default) allocator are substantially (3x -4x) slower for

vector<int> and containers of vector<int> (DS1, DS5, and DS9) . This specific

result is not observed when using Clang. However, the poor results for Clang when
allocat ing via a virtual -function interface are even more pronounced on the Power7
platform.

8 Benchmark II: Variation in Locality (Long Running)

Perhaps the most valuable aspects of local (òarenaó) allocators is that, besides
speeding up short -running programs, as demonstrated in the previous benchmark,

they keep long ðrunning ones from slowing down over time. All global allocators
eventually exhibi t diffusion ð i.e., memory initially dispensed and therefore

(coincidentally) accessed contiguously, over time, ceases to remain so, hence runtime
performance invariably degrades. This form of degradation has little to do with the
runtime performance of th e allocator used, but rather is endemic to the program

itself as well as the underlying computer platform, which invariably thrives on locality
of reference .

N.B., diffusion should not be confused with fragmentation ð an entirely different

phenomenon pert aining solely to (òcoalescingó) allocators (not covered in this paper)
where initially large chunks of contiguous memory decay into many smaller (non -
adjacent) ones, thereby precluding larger ones from subsequently being allocated ð

even though there is su fficient total memory available to accommodate the request.
Substituting a pooling allocator, such as the one used in this benchmark (AS7), is a

well -known solution to the fragmentation problems that might otherwise threaten
long -running mission -critical s ystems.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 29 of 57

To demonstrate this common degradation phenomenon resulting from memory

dif fusion across subsystems over time, we created a simple program that acts like a
long -running time -multiplexed system , similar in nature to one employing

Boost. Asio . Given that this experiment is all about access Locality (L) in a long -

running program, the allocation Density (D) approaches (is effectively) zero, and the
memory -size Variation (V), though entirely irrelevant here, happens to be nil as well.

The overall system, G, will consist of an std::vector<Subsystem *> of size k , where

each subsystem, S, is modeled as an std::l ist<int > initially having |S| links;

hence, |G | = k * |S|, and the number of subsystems, k , will be the (integral)

ratio |G|/|S| . At the start of the program, each subsystem, S, is new-ed in turn, and,

when constructed, populates itself with the specified |S| links. The system, G, is now

in its initial state .

The first experiment is geared towards identifying opportunities for the use of
allocators ð specifically a multipool -allocator -based strategy (e.g., AS7 or AS9) ð

before actually plugging one in. To that end, we want to contrast the runtime
performance of subsystems where memory has been allocated contiguously and then
accessed immediately, and where it has been first òshuffledó (which inevitably occurs

over time in practice) to be less so, and then similarly accessed. We therefore define a

parameter, sf , that represents the shuffle factor .

Specifying a shuffle factor of 0 leaves the system in its initial sate. A shuffl e factor of

one (s f = 1) means that each S (linked list) is visited (in turn) and popped exactly

once (from the front), immediately after which a new value is pushed onto (the back

of) the list in some randomly chosen S in G. After each S has been visited, this

traversal process is repeated until each element in each list has been popped exactly

once ð i.e., a total of s f * |G| = 1 * |G| pop/push operation pairs has occurred. A

shuffle factor of two means that the process is repeated until s f * |G| = 2 * |G |

pop/push operation pairs have been executed (though there is no longer any

 G:

S S S S S S S . . . S

Physical System Size | G| = k * |S|

k

P0089R1 : On Quantifying Memory -Allocator Strategies Page 30 of 57

assurance that all of the lists still have the same length that they had initially). The
larger the shuffle factor, the more non -contiguous and òrandomó the memory

associated with each subsystem becomes.

In order to determine the extent to which local memory allocators might be useful ð

prior to actually installing them ð we wanted to measure the effect on memory access
times within each subsystem as we vary the amount of shuffling . To do that, we will
want to iterate through the linked list in each subsystem some number of times,

accessing each integer datum in turn, before moving to the next subsystem. An

access factor , af , of two denotes two complete passes through a subsystemõs linked

list before moving to the next one in the vector of subsystems comprised by G. While

we are at it, we will also want to vary the number subsystems, k , and, inversely,

subsystem -size, |S| , so as to keep the overall physical system size, |G| , constant .

Keep in mind that this first experiment was done entirely using the default (global)

allocator (AS0).

P0089R1 : On Quantifying Memory -Allocator Strategies Page 31 of 57

0 1 2 3 4 5 6 7 8 9

ρπ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

ρπ 1.0 11.4 15.6 16.2 16.0 15.8 15.6 15.8 15.7 16.2

ρπ 1.0 7.7 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2

ρπ 1.0 8.0 8.1 8.1 8.1 7.9 8.2 8.2 8.3 8.2

ρπ 1.0 5.4 5.4 5.4 5.4 5.7 5.3 5.4 5.3 5.4

ρπ 1.0 3.8 4.0 4.1 4.2 4.1 4.2 4.3 4.2 4.2

ρπ 1.0 3.4 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.6

ρπ 1.0 4.7 5.7 5.8 5.7 5.8 5.8 5.7 5.5 5.6

Table 15 : Shuffle Effects

P0089R1 : On Quantifying Memory -Allocator Strategies Page 32 of 57

The graph and corresponding table (above) illustrate the effect of shuffling on an
overall problem size of 10 7 links. Each row (back to front in the graph) corresponds to

a different system size, where ρπ (top row) represents a single subsystem of size ρπ
links, and ρπ (bottom row) represents ρπsubsystems, each having (on average) just
a single link. The columns (left to right in the graph) represent the number of times

each linked list (on average) was shuffled .

The element values in the table ð and corresponding height of the graph at the

various (shuffle factor and subsystem size) coordinates, represents the ratio of access
times ð after shuffle / before shuffle ð once the shuffle times themselves (which
shou ld be the same for both) have been, respectively, subtracted. For this initial

experiment, the access factor, af , was held constant at 10 . Again, keep in mind that

all memory accesses so far in this benchmark are via the default allocator (AS0). It
will tu rn out (below) that whatõs important is whether the memory is accessed before

(-) or after (+) it is òshuffledó.

Each entry in every row of the table is scaled to the run without prior shuffling (sf =

0); hence, column 0 is (by definition) identically 1.0 for each subsystem size |S| in

the range [ρπ.. ρπ] (shown, top to bottom, on successive rows in the table).

Similarly, when the subsystem size |S| is the same as the overall systemõs size |G |

(top row), there is no distinction between a local and a glob al allocator; hence , each of

the entries in the top row of the table, corresponding to a single subsystem S of size

|S| = |G| = ρπ is naturally expected to be 1.0 as well.

Recall that the physical size of each overall system |G| is held constant at 10 7 (links),

and that the access factor is maintained throughout at 10 (i.e., each linked list of a

subsystem, S, is accessed sequentially 10 times before moving on to the next

subsystem), and that each subsystem is visited, in turn, exactly once, leading to hig h

temporal locality, while the physical locality varies from low (top row of the table,
back edge of the graph) to high (bottom row of the table, front edge of the graph).

The graph was provided to help to visualize the data in the table. What the graph fails
to demonstrate, however, is how quickly the shuffling effects take hold before
reaching a horizontal asymptote (left to right), after which no additional performance

degradation is observed ; it turns out that the table makes this specific point much
more lucidly.

What the graph does clearly indicate, however, is that the adverse effect of shuffling

on memory access times is more pronounced for fewer, larger subsystems (e.g., |S|

= 10
6) than for many smaller ones (e.g., |S| = 10

3). For any given non -zero shuffle

factor, the data indicates that the deleterious effects due to memory diffusion over the

middle of the range of |S| are generally increasing with respect to increasing |S | ð

i.e., with decreasing physical locality (per subsystem).

Given a demons trably ample degree of memory òshuffleó (say, sf = 5), we next seek

to determine more precisely under what specific circumstances locality (logical as well

as physical) within subsystems most adversely affects the relative runtime of
accessing memory, and therefore fairly begs for a local allocator.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 33 of 57

So far, we have been able to fully characterize our system with just four parameters

(|G| , |S| , af , and sf). Recall from section 5, however, that locality is defined in

terms of three factors: number of instruc tions (I), size of memory involved (M), and
number of transitions away from the subsystem (T).

In order to model the difference between higher temporal locality (where I / T is

relatively large) and lower temporal locality (where I / T is relatively small), we need to

introduce a fifth parameter called the repeat factor, rf , that specifies the number of

times to traverse the vector of subsystems ð each time performing the appropriate

number of local accesses as governed by af . By keepin g the product of the local

accesses (af) and the subsystem iterations (rf) constant (e.g., af * rf = 256), we

can observe the relative effects of high versus low temporal locality for the same
number of total accesses. The repeat factor can also be used to increase the run time
of the relevant part of the experiment. Note that, for this first revision of the paper we

increased this product by an order of magnitude (i.e., to 2,560) in order to reduce
noise in the observed results (at the cost of literally we eks for dedicated run time).

If we are to make a fair comparison regarding the relative runtime overhead due to
diffuse (i.e., òshuffledó) memory, weõll need to do the same amount of work shuffling
memory either way. We will therefore hijack the sign of th e shuffle factor to imply

whether the access occurs before (-) or after (+) the indicated data access pattern:

 (|G| , |S| , af , sf , rf)

Try to remember that the sign of sf (-/ + -> before/after) applies to the access , and

not the shuffle . (This interface was clearly a horribly bad design, sorry.) One more
time: A negative shuffle factor, sf , implies the data access occurs before the

shuffle . (Another, somewhat less arbitrary, way to remember sf is that, in terms of

run time, negative should be less than positive .

For additional syntactic convenience, we will also assume that a negative global

physical size for |G| implies a positive binary exponent for both that value and the

subsequent subsystem size, |S| .

Using this notation, we can concisely characterize arbitrary runs of the program:

¶ - 20 18 32 - 3 8 : The global physical system size, |G | , is 2 20. The initial size of

each of the (fo ur) subsystems, |S| , is 2 18. The number of times the link -list

within a subsystem will be traversed (before proceeding to the next one), af , is

32. The number of shuffles that will occur after the data is accessed, sf , is 3.

The number of times the sequenc e of subsystems in the overall system, G, will

be traversed, rf , is 8.

¶ - 20 18 32 +3 8 : Same as above, except that the shuffling of data occurs

before accessing the data (i.e., the access comes after, and is typically slower).

¶ - 20 18 8 +3 32 : Same as above, except that the number of times each of the

subsystemsõ linked lists is traversed is decreased to only 8 times before moving

to the next subsystem, whereas the number of iterations over the sequence of

P0089R1 : On Quantifying Memory -Allocator Strategies Page 34 of 57

subsystems (comprised by G) is increased to 32, there by reducing temporal

locality, while keeping the overall number of memory accesses the same (i.e.,

256 * |G| = ς).

¶ - 21 18 8 +3 32 : Same as above, except the overall physical size of the

problem, |G| , has doubled, yielding eight (ς -ς) subsystems, each of size ς.

¶ - 21 19 8 +3 32 : Same as above, except the size of each individual subsystem,

|S| , has doubled (resulting in half as many subsystem, k = |G|/|S| = 4).

¶ - 21 19 8 +5 32 : Same as above, except the number of times each subsystem

is shuffled (before the data is accessed) has increased by two.

¶ - 21 19 0 +5 32 : Similar to the above in that there are again 32 traversals of

the (four) subsystems, however, no accesses are performed (this is how we
determine the combined shuffle and travers al runtime costs in calculations,

which are then subtracted from the total runtime).

¶ - 21 19 8 +5 0: Similar to the above except that there is no traversal of the

subsystems (what we could have used to determine just the shuffle, but not the
traversal costs , which would have somewhat less accurately reflected the
relative runtime costs of pure access).

In order to explore the entire space, we assumed (based on the previously

presented data) a constant shuffle factor, sf , of 5, and examined a sequence of

incr easingly large physical problems sizes, |G| , contrasting both physical and

temporal locality for each. From section 5.3, we conclude that physical locality is
proportional to the ratio of the number of instructions, I , executed within a

subsystem to the si ze of the subsystem, M ~|S |, holding the number of

transitions away from the subsystem, T , constant (all with respect to the duration
of interest), whereas temporal locality is proportional to I / T , holding M constant.

When the size of a problem is sufficiently small, one might reasonably assume
that all relevant memory fits in high -speed cache, and there is no need for a local

memory allocator. The data we observed bears this hypothesis out. For physical

sizes, |G| , bel ow 2 18, there was no observable benefit for using local allocators on

any of the platforms on which we ran this benchmark. Once the problem size

exceeds a certain threshold, however, local memory allocators become relevant.

The results of two specific runs of this benchmark, the first of size |G| = 2
21 and

the second of size |G| = 2
25 follow. The shuffle factor, sf , as discussed above, is

held constant at 5, the product of the access factor, af , and the repeat factor, rf ,

are held constant at 256 * 10 = 2,560 (varying inversely by powers of 2) and

subsystem size, |S| , varies (also by powers of 2) from 1 to |G| .

P0089R1 : On Quantifying Memory -Allocator Strategies Page 35 of 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 36 of 57

ς ς ς ς ς ς ς ς ς

21 1 1.06 1.01 1.09 1.04 0.96 0.98 0.97 0.99

20 11.3 11.5 11.3 11.4 11.2 11.3 11.3 11 11.6

19 14.8 15 14.7 14.8 14.7 14.8 14.3 13.1 13.8

18 18 18 18 17.9 17.7 18.4 16.7 16.6 15.4

17 6.04 6.17 6.3 6.51 8.64 9.95 9.17 11.5 15

16 5.07 5.07 5.13 5.19 7.16 7.24 7.52 10.8 14.9

15 6.08 6.08 6.15 6.05 5.37 7.3 7.72 10.4 15.2

14 6.77 6.81 6.78 6.67 6.25 7.23 7.73 10.9 15.2

13 7.55 7.59 7.46 7.36 6.92 7.51 7.99 10.8 14.9

12 4.82 4.79 7.7 7.6 7.08 7.26 7.55 11.4 14.9

11 5.05 4.99 3.21 6.66 6.23 5.85 6.27 9.83 14.9

10 4.65 4.87 4.93 2.92 5.71 5.99 6.15 10.7 15

9 2.01 2.23 2.38 4.15 3.03 6.14 6.18 9.67 14.8

8 2.32 2.4 2.6 2.08 3.63 4.86 6.01 9.25 14.6

7 1.68 1.75 1.92 2.36 2.3 3.51 6.12 10.5 14.2

6 1.22 1.31 1.44 2.06 2.76 4.18 6.16 9.93 13.2

5 1.15 1.24 1.39 1.75 2.4 3.45 6.35 9.5 10.9

4 1.13 1.23 1.37 1.72 2.53 4.05 6.6 11 9.77

3 1.1 1.19 1.37 1.72 2.55 3.66 6.42 11.6 10.5

2 1.04 1.14 1.36 1.79 2.43 4.61 8.51 11.7 8.91

1 0.93 1.06 1.26 1.66 2.55 4.86 11.6 12.9 10

0 0.78 0.9 1.1 1.61 2.88 7.75 16.2 17.2 4.06

Table 16 : Problem size 2 21 , without allocators

P0089R1 : On Quantifying Memory -Allocator Strategies Page 37 of 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 38 of 57

ς ς ς ς ς ς ς ς ς

25 0.97 1.72 0.98 1.02 1.04 1.00 1.00 1.00 1.01

24 0.5 12.71 12.81 13.02 13.08 13.02 13.01 12.95 13.11

23 14.2 14.03 14.10 14.07 14.14 14.05 14.07 14.13 14.14

22 16.7 16.71 16.50 16.55 16.49 16.62 16.55 16.56 16.53

21 17.8 17.90 17.87 17.72 17.85 17.83 17.83 17.76 17.89

20 18.6 18.60 18.52 18.54 18.45 18.64 18.43 18.62 18.66

19 20.1 20.16 19.96 19.85 19.80 19.64 19.25 19.12 18.93

18 23.4 23.54 23.51 23.20 23.13 22.72 21.85 20.45 19.34

17 9.81 10.00 10.06 10.29 10.69 11.53 13.01 15.53 19.30

16 6.81 6.87 6.98 7.21 7.70 8.64 10.41 13.75 19.33

15 6.8 6.88 7.00 7.17 7.66 8.63 10.38 13.66 19.32

14 6.82 6.86 7.00 7.20 7.66 8.56 10.39 13.66 19.18

13 7.03 7.08 7.19 7.39 7.85 8.79 10.56 13.77 19.15

12 6.72 6.75 6.90 7.12 7.62 8.52 10.21 13.62 19.30

11 4.86 4.92 5.07 5.35 5.88 6.92 9.01 13.00 19.16

10 3.36 3.49 3.71 4.07 4.69 5.91 8.25 12.32 18.43

9 3.15 3.29 3.51 3.86 4.54 5.87 8.25 12.37 18.28

8 2.76 2.89 3.13 3.54 4.33 5.66 8.12 12.43 18.16

7 2.52 2.66 2.96 3.45 4.25 5.67 8.16 12.65 18.10

6 1.94 2.14 2.49 3.03 3.91 5.45 8.02 12.72 17.64

5 1.34 1.49 1.78 2.33 3.24 4.79 7.54 12.41 15.84

4 1.17 1.28 1.51 1.96 2.83 4.39 7.39 13.22 16.25

3 1.12 1.24 1.45 1.89 2.73 4.30 7.85 14.74 17.32

2 1.06 1.19 1.43 1.90 2.71 4.70 9.98 18.32 20.54

1 0.97 1.11 1.36 1.78 2.91 5.68 13.74 22.91 24.73

0 0.82 0.97 1.22 1.88 3.50 8.30 18.92 30.99 5.68

Table 17 : Problem size 2 25 , without allocators

Each of these two runs (above) clearly shows that the greatest opportunity for

effective use of local memory allocators occurs when subsystem size, |S| , is relatively

(but not maximally) large ð i.e., physical locality is low (as shown near the back of the
graph, top of the table), and quickly tapers off (towards the front, bottom,

respectively) with reduced subsystem size (i.e., increasing physical locality). On the
other hand, when temporal locality is minimal (right side), the opportunity for
significant performance improvement using local allocators spans a much wider

range of subsystem sizes as evidenced by the impressively high ratio values (~10x -
20x) observed near the extreme right of the graphs/tables.

The graphs based on data sets for system sizes o f 2 21 and 2 25 , using just the global
allocator (AS0), are reminiscent of the middle of the process of inflating a hot -air
balloon: The area of low temporal locality (towards the right) and low physical locality

(towards the back) is fully inflated, while t he area of higher temporal locality (towards

P0089R1 : On Quantifying Memory -Allocator Strategies Page 39 of 57

the left), and higher physica l locality (towards the front) is only partially so. We assert
that, the greater the value in the table (depicted as the vertical height of the surface),

the more opportunity there i s for a local allocator to be useful at improving runtime
performance by preserving access Locality (L).
We see, however, that there are some anomalies with the data that we are, so far,
unable to explain. In particular, the entire family of graphs we have looked at shows

an unexpected spike when the temporal and especially the physical locality are
pathologi cally low. In particular, we are unable to explain why the input parameters

|S| = 1 and rf = 2 0 produce such a disproportionately high result value, seen in

both runs, and then just one step to the right (lower locality) produces such an
unexpectedly low o ne. Given that this is a pathological òcorneró of the graph ð i.e., a

subsystem, S, consisting of just a single link accessed just twice before a context

switch to another subsystem vers us a similarly tiny subsystem accessed exactly once
ð we do not feel that these result s, although reliably repeatable, impact the validity of

our overall conclusions, but clearly they warrant further investigation.

Now, suspecting that (and where) there may be substantial opportunities for runtime
improvements, we re -ran be nchmark for the two example system configuration sizes

(221 and 2 25) above, but this time providing each subsystem, S, with its own local

multipool -based allocation strategy (AS7) used directly and without òwinking outó the
remaining data. The results are compelling: Providing a local allocator uniformly kept

degradation below a factor of three, and ð in almost all cases ð well below a factor of
two! Compare these results with degradations shown in the previous pair of graphs

(and corresponding tables) refl ecting the increased run times with no local allocator,
which often exceeded an order of magnitude!

P0089R1 : On Quantifying Memory -Allocator Strategies Page 40 of 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 41 of 57

ς ς ς ς ς ς ς ς ς

21 1.06 1.02 0.98 1.02 1.02 1.04 1 1.11 1.01

20 1.53 1.52 1.62 1.63 1.55 1.63 1.58 1.54 1.53

19 1.65 1.75 1.65 1.65 1.65 1.66 1.66 1.68 1.69

18 1.51 1.49 1.46 1.42 1.43 1.47 1.52 1.66 1.75

17 1.48 1.48 1.48 1.51 1.48 1.54 1.59 1.65 1.81

16 1.48 1.52 1.49 1.5 1.55 1.56 1.56 1.67 1.82

15 1.48 1.48 1.48 1.49 1.51 1.55 1.6 1.69 1.88

14 1.47 1.48 1.48 1.49 1.5 1.54 1.61 1.72 1.9

13 1.48 1.49 1.5 1.5 1.53 1.58 1.66 1.79 1.99

12 1.54 1.51 1.54 1.55 1.57 1.65 1.72 1.91 2.11

11 1.48 1.53 1.53 1.55 1.6 1.65 1.82 2 2.42

10 1.47 1.49 1.51 1.54 1.57 1.7 1.88 2.11 2.49

9 1.02 1.04 1.06 1.13 1.22 1.39 1.69 2.14 2.67

8 1.03 1.05 1.08 1.13 1.22 1.42 1.73 2.18 2.62

7 1.03 1.05 1.09 1.14 1.24 1.43 1.75 2.22 2.59

6 1.03 1.06 1.09 1.12 1.24 1.44 1.72 2.08 2.23

5 1.05 1.03 1.08 1.13 1.22 1.38 1.61 1.84 1.94

4 1.02 1.04 1.06 1.11 1.21 1.35 1.53 1.63 1.43

3 1.01 1.01 1.03 1.07 1.15 1.21 1.29 1.25 1.17

2 0.95 0.95 0.97 1.01 1 1.04 1.04 0.99 1.1

1 0.85 0.86 0.89 0.9 0.93 0.97 0.89 1.1 1.04

0 0.68 0.71 0.71 0.75 0.83 0.91 0.97 0.77 0.74

Table 18 : Problem size 2 21 , with allocators

P0089R1 : On Quantifying Memory -Allocator Strategies Page 42 of 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 43 of 57

ς ς ς ς ς ς ς ς ς

25 1.00 0.97 1.01 1.00 1.00 1.01 1.04 0.99 1.01

24 1.00 1.54 1.57 1.55 1.55 1.53 1.55 1.56 1.53

23 1.71 1.67 1.70 1.69 1.68 1.68 1.68 1.69 1.67

22 1.75 1.75 1.76 1.76 1.75 1.72 1.76 1.76 1.83

21 1.79 1.78 1.78 1.80 1.79 1.74 1.80 1.80 1.80

20 1.80 1.80 1.80 1.81 1.81 1.82 1.81 1.81 1.82

19 1.79 1.78 1.79 1.80 1.79 1.80 1.80 1.82 1.82

18 1.47 1.47 1.47 1.49 1.50 1.53 1.58 1.67 1.83

17 1.49 1.49 1.49 1.50 1.51 1.54 1.59 1.67 1.84

16 1.50 1.50 1.53 1.51 1.53 1.55 1.61 1.70 1.88

15 1.51 1.51 1.51 1.52 1.53 1.56 1.63 1.74 1.92

14 1.51 1.51 1.52 1.52 1.54 1.58 1.65 1.78 1.97

13 1.51 1.52 1.52 1.53 1.55 1.60 1.67 1.82 2.05

12 1.53 1.54 1.54 1.56 1.59 1.64 1.74 1.92 2.20

11 1.54 1.54 1.55 1.57 1.60 1.67 1.84 2.08 2.43

10 1.54 1.55 1.56 1.58 1.61 1.74 1.93 2.25 2.63

9 1.07 1.08 1.11 1.16 1.26 1.44 1.87 2.22 2.76

8 1.06 1.10 1.12 1.18 1.27 1.47 1.85 2.29 2.80

7 1.07 1.06 1.12 1.17 1.28 1.48 1.82 2.32 2.67

6 1.07 1.08 1.10 1.16 1.26 1.46 1.75 2.13 2.31

5 1.05 1.06 1.09 1.14 1.23 1.40 1.62 1.86 1.93

4 1.04 1.05 1.07 1.12 1.22 1.38 1.54 1.65 1.44

3 1.02 1.03 1.05 1.08 1.15 1.23 1.30 1.29 1.20

2 0.96 0.97 0.99 1.02 1.02 1.04 1.05 1.00 1.12

1 0.85 0.86 0.89 0.90 0.94 0.99 0.90 1.08 1.06

0 0.69 0.70 0.72 0.75 0.84 0.92 0.98 0.79 0.74

Table 19 : Problem size 2 25 , with allocators

Letõs stop for a moment and take a closer look at the data presented in the graphs

and tables above. The first thing to note is that the shape of the graphs is striking ly

similar across the family of experiments based on overall system size |G| , leading us

to believe that the remarkable salutary effects of local allocators to preserve locality

are both robust and systemic. Whether or not we have local allocators, we observ e
that runtime performance degrades (albeit much more slowly) with decreasing
temporal locality, but with allocators, seems to be more pronounced at the upper -mid

ranges (low -mid rows) of physical locality, rather than the lower -mid range (upper -
mid rows) without them.

It bears repeating that weõve run these benchmarks on a variety of popular platforms
(hardware and compilers) for a substantial range of problems sizes, and the results

for this benchmark are astonishingly consistent. We conjecture that this consistent
(dramatic) loss in runtime performance occurs because the efficiency with which the

P0089R1 : On Quantifying Memory -Allocator Strategies Page 44 of 57

allocator yields memory along with underlying processor speeds are entirely
inconsequential when compared to the latency resulting from a profound lack of

access Locality (L).

Finally, we would like to provide a road map identifying where the use of local (arena)
allocators is most indicated. To that end, we plotted, for each (temporal, physical)
coordinate in the proceeding graphs , the ratios corresponding to a subsystem that

does not employ a local allocator to one that does. The larger the value, the more
relative benefit there is to having a local allocator. Even a cursory inspection of the
data below shows the spectacular opportunities to recover lost ru ntime performance

due to the dif fusion of memory across subsystems over time.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 45 of 57

ς ς ς ς ς ς ς ς ς

21 0.95 1.03 1.03 1.07 1.02 0.92 0.97 0.87 0.98

20 7.4 7.56 6.97 6.96 7.27 6.94 7.15 7.1 7.56

19 9.02 8.56 8.95 8.99 8.92 8.92 8.61 7.82 8.17

18 11.9 12.1 12.3 12.6 12.4 12.5 10.9 10 8.8

17 4.07 4.16 4.26 4.31 5.85 6.48 5.78 6.97 8.27

16 3.43 3.34 3.45 3.45 4.61 4.63 4.82 6.49 8.19

15 4.11 4.11 4.16 4.06 3.56 4.71 4.84 6.14 8.09

14 4.59 4.61 4.59 4.47 4.15 4.69 4.81 6.34 8.02

13 5.11 5.08 4.96 4.9 4.52 4.76 4.82 6.03 7.47

12 3.12 3.16 5.01 4.89 4.51 4.41 4.4 5.96 7.08

11 3.41 3.27 2.09 4.31 3.9 3.54 3.45 4.91 6.15

10 3.16 3.26 3.27 1.89 3.63 3.53 3.28 5.08 6.04

9 1.98 2.15 2.24 3.68 2.48 4.43 3.66 4.51 5.56

8 2.24 2.29 2.42 1.83 2.97 3.43 3.48 4.24 5.59

7 1.64 1.67 1.77 2.07 1.85 2.45 3.49 4.7 5.49

6 1.19 1.24 1.32 1.83 2.23 2.91 3.59 4.78 5.91

5 1.1 1.2 1.29 1.55 1.97 2.5 3.96 5.17 5.61

4 1.11 1.18 1.3 1.55 2.09 3 4.31 6.73 6.82

3 1.09 1.18 1.33 1.6 2.23 3.02 4.99 9.3 9.03

2 1.1 1.21 1.4 1.76 2.42 4.43 8.19 11.8 8.09

1 1.09 1.24 1.41 1.85 2.73 5 13 11.7 9.7

0 1.14 1.26 1.56 2.14 3.47 8.54 16.7 22.4 5.46

Table 20 : Problem size 2 21 , Ratio

P0089R1 : On Quantifying Memory -Allocator Strategies Page 46 of 57

P0089R1 : On Quantifying Memory -Allocator Strategies Page 47 of 57

ς ς ς ς ς ς ς ς ς

25 0.97 1.77 0.97 1.02 1.04 0.99 0.96 1.01 1

24 0.5 8.26 8.17 8.38 8.43 8.52 8.4 8.3 8.57

23 8.3 8.41 8.3 8.35 8.4 8.36 8.36 8.37 8.44

22 9.53 9.57 9.4 9.43 9.41 9.65 9.42 9.41 9.04

21 9.99 10 10 9.87 9.98 10.2 9.9 9.88 9.93

20 10.4 10.3 10.3 10.2 10.2 10.2 10.2 10.3 10.3

19 11.2 11.3 11.2 11 11 10.9 10.7 10.5 10.4

18 15.9 16 16 15.6 15.4 14.8 13.9 12.3 10.6

17 6.58 6.7 6.73 6.87 7.06 7.5 8.19 9.3 10.5

16 4.53 4.57 4.56 4.76 5.04 5.56 6.47 8.11 10.3

15 4.51 4.56 4.62 4.73 4.99 5.52 6.38 7.86 10.1

14 4.51 4.54 4.62 4.72 4.98 5.43 6.28 7.7 9.75

13 4.64 4.67 4.73 4.82 5.07 5.49 6.31 7.56 9.34

12 4.38 4.38 4.48 4.58 4.8 5.18 5.86 7.1 8.78

11 3.16 3.19 3.27 3.42 3.67 4.15 4.9 6.25 7.88

10 2.18 2.25 2.37 2.58 2.91 3.39 4.28 5.48 7

9 2.95 3.04 3.17 3.32 3.59 4.08 4.42 5.57 6.63

8 2.6 2.62 2.8 3 3.4 3.84 4.4 5.42 6.5

7 2.36 2.51 2.65 2.95 3.31 3.83 4.49 5.45 6.79

6 1.82 1.99 2.26 2.62 3.1 3.74 4.59 5.97 7.62

5 1.27 1.4 1.64 2.05 2.64 3.42 4.65 6.67 8.21

4 1.13 1.22 1.42 1.76 2.32 3.18 4.79 8.02 11.3

3 1.09 1.21 1.39 1.75 2.37 3.49 6.03 11.4 14.5

2 1.11 1.22 1.45 1.86 2.66 4.51 9.49 18.3 18.4

1 1.14 1.29 1.54 1.98 3.1 5.76 15.3 21.2 23.4

0 1.19 1.38 1.7 2.5 4.18 8.99 19.3 39.2 7.66

Table 21 : Problem size 2 25 , Ratio

The graphs and tables above help to illustrate where the òsweet spotsó for local

allocator usage in this benchmark reside. This data confirms that the use of local
allocators is not particularly indicated when both the physical and temporal locality is
hig h, but are especially effective when either the physical locality is low (but not

completely minimal) or whenever the temporal locality is low (especially minimal), yet
both graphs indicate that there is bit of a lull in opportunity for the lower -mid -range

of subsystem size, |S| , in the presence of low temporal locality .

For practically relevant scenarios (e.g., where the subsystem size, |S| , is at least,

say, 2 12), the improvement factor is almost always at least ~4 x-8x, sometimes ~8 x-

12x, and occasionally even ~12 x-16x or more. This data, we argue, provides
compelling evidence that local allocators make a substantial difference in important

practical use cases.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 48 of 57

9 Benchmark III: Variation in Utilization

This benchmark was designed to demonstrate t he effect of memory Utilization (U) ð

that is, the maximum fraction of the òtotaló amount of allocated memory òactivelyó in
use at any one time (section 5.4) ð on runtime performance. To that end, memory was

allocated in chunks, of size S, until a first th reshold was reached ð the amount of

active memory, A, to use at one time. Then, a chunk was deallocated and another one

allocated until the desired total amount of allocated memory, T, was reached. After

every allocation, the value at the first byte of the allocated memory was incremented

(to deliberately access it). The data collected represents a wide variety of values for

A/ T ð the definition of Utilization (U). Note that, since almost no other work is done,

the Density (D) of this benchmarkõs allocations (section 5.1) is extremely high, and

the memory -size Variation (V) is nil.

The three size parameters T, A, and S are measured in bytes. The results in each row

are normalized to the result for AS1. Specifically, the results in the AS1 column are

times i n seconds, and the values in the columns for the other allocator strategies
tested ð namely AS2, AS3, AS5, AS7, AS9, AS11, and AS13 ð each represent a

percentage of the AS1 value, where 100 would imply the same run time as that for
AS1, and lower values im ply shorter ones.

Total Allocated Memory (T) = 2 30

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

30 15 10 0.063s 103 440 435 46 43 46 47

30 16 10 0.069s 102 401 395 42 42 41 45

30 17 10 0.064s 110 435 428 46 44 47 46

30 18 10 0.063s 102 440 434 46 39 54 47

30 19 10 0.063s 104 439 434 51 46 47 47

30 20 10 0.064s 110 433 430 46 42 46 52

30 20 11 0.035s 125 758 747 54 37 49 37

30 20 12 0.022s 101 1216 1206 51 31 52 32

30 20 13 0.013s 60 1985 1961 110 67 1996 1979

30 20 14 0.008s 77 3356 3304 110 58 3276 3314

30 20 15 0.004s 74 5985 6288 60 111 6016 6057

In order to better understand the data provided by this benchmark, letõs take a closer

look at the table above. The total amount of memory allocated (T), for each row in this

table, is ς bytes. In the first row, the maximum amount of memory allocated at once

P0089R1 : On Quantifying Memory -Allocator Strategies Page 49 of 57

(A) was chosen to be ς bytes, and the size of each allocated block (S) to be ς bytes.

What this means is that ς blocks (each ς bytes) will be allocated initially (bringing

the initially allocated memory to ς bytes; then, a block of the same size (S) will be

deallocated and then immediately reallocated (ς ð ς)/ς times . Fin ally, all of the ς

remaining allocated blocks (each of size ς bytes) will be deallocated (individually).

Using the default allocator (AS1) on this platform caused the operations indicated

above to run in 0.063 seconds. Allocating using the same new -delete allocator via an
abstract base class (AS2) took 3% longer than when that same allocator was used
directly (AS1).

Next we tried using a monotonic allocator directly (AS3), and it took 440% of the time
that the baseline allocator strategy (AS1) took (or 0 .277s). Recall that a monotonic

allocator doesnõt release freed memory back to the system, and thus is easily
demonstrated as being ill -suited to this kind of usage scenario.

We have chosen not to consider allocation strategies AS4, AS6, AS8, AS10, AS12, a nd

AS14 because the òwinking outó aspect, which each of the aforementioned strategies
incorporates, when eventually applied to the comparatively small amount of

remaining memory (A) out of a total (T) ð even if it makes the release cost absolutely

free ð could not possibly (i.e., mathematically) make any meaningful difference in
overall run time.

Then we employed allocation strategy AS5, which uses the same (monotonic)
allocator used in AS3, but this time accessed via an abstract base class. The runtime
cost is 435% of the reference allocation strategy (AS1), which happens to be just a tad

less than direct use of the monotonic allocator (perhaps suggesting that ð on this
platform, at least ð the use of virtual functions to perform the allocations were
succes sfully elided by the compiler).

Next we used allocation strategy AS7, which employs a mulitpool allocator directly.
Here we see that the runtime cost drops precipitously to just 46% of what the default

allocator affords. AS9, the indirect use of this same allocator (via an abstract base
class) is comparable at 43% (again suggesting that there is no penalty here for non -
direct access).

Then we applied allocation strategy AS11, which employs a multipool allocator
(accessed directly), backed by a monotonic all ocator. The cost, relative to the baseline

(AS1), shakes out at 46% and, when accessed indirectly (AS13), 47% ð again no
apparent statistically significant overhead with virtual -function -based access.

In subsequent rows, we first increased the size of (A) from ς to ς , and then (S)

from ς to ς . The data speaks for itself, but we will make just a few observations:

(1) We believe the behavior of the AS1 column makes sense in that the runtime work

done while we are increasing the allocation limit (A) remains fairly constant, while the

work done as we increase the block -size (S) decreases proportionally.

(2) The AS2 column tends to indicate that there seems to be no systemic penalty for
accessing the allocator via an abstract base class.

P0089R1 : On Quantifying Memory -Allocator Strategies Page 50 of 57

(3) AS3, AS5, AS11, and AS13 confirm that any use of a monotonic allocator where
Utilization (U) is low, and problem size is not tiny, is typically suboptimal, if not a

genuinely a bad idea. The reason for the abrupt change near (S) = ς is due to the

internal boundari es within the multipool allocatorõs implementation, which provides

for large allocations (larger than ς) to pass through to the backing allocator.

(4) AS7 and AS9 are clearly the winning allocation strategies until the block -size (S)

exceeds the maximum size that can be accommodated internally by an adaptive pool

(ς), at which point there is a modest overhead (at most a few percent) to forward the
allocation through to the backing allocator.

Subsequent tables present experiments involving increasing tot al allocated memory

(T) with similar results, reinforcing the preliminary conclusions presented above. As

memory demands increase, it is possible that the performance degradation for

strategies AS3 and AS5 (and, as we will see, even AS11 and AS13) may deteriorate to
outright failure.

Total Allocated Memory (T) = 2 31

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

31 15 10 0.127s 104 428 434 39 38 39 41

31 16 10 0.123s 102 442 446 42 42 41 40

31 17 10 0.124s 102 439 442 45 45 42 45

31 18 10 0.123s 102 442 447 47 46 41 42

31 19 10 0.123s 107 441 446 42 41 46 43

31 20 10 0.127s 99 431 434 44 42 41 41

31 20 11 0.064s 102 815 824 48 40 52 48

31 20 12 0.038s 93 1369 1387 57 51 47 54

31 20 13 0.021s 102 2368 2392 108 80 2376 2401

31 20 14 0.013s 61 3787 3833 109 67 3797 3844

31 20 15 0.007s 54 6621 6706 112 59 6651 6708

P0089R1 : On Quantifying Memory -Allocator Strategies Page 51 of 57

Total Allocated Memory (T) = 2 32

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

32 15 10 0.248s 103 fail fail 38 39 38 41

32 16 10 0.248s 102 fail fail 38 41 38 39

32 17 10 0.246s 102 fail fail 40 39 39 39

32 18 10 0.246s 102 fail fail 40 40 39 40

32 19 10 0.246s 102 fail fail 40 42 40 40

32 20 10 0.246s 102 fail fail 40 41 41 41

32 20 11 0.124s 102 fail fail 46 44 41 47

32 20 12 0.062s 102 fail fail 44 45 46 56

32 20 13 0.034s 108 fail fail 127 110 fail fail

32 20 14 0.022s 72 fail fail 105 78 fail fail

32 20 15 0.015s 87 fail fail 99 60 fail fail

P0089R1 : On Quantifying Memory -Allocator Strategies Page 52 of 57

Total Allocated Memory (T) = 2 33

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

33 15 10 0.495s 102 fail fail 41 39 39 39

33 16 10 0.493s 102 fail fail 38 39 38 41

33 17 10 0.492s 102 fail fail 38 41 38 40

33 18 10 0.492s 102 fail fail 40 41 39 40

33 19 10 0.492s 102 fail fail 40 41 40 41

33 20 10 0.492s 102 fail fail 40 40 40 41

33 20 11 0.248s 102 fail fail 42 43 41 42

33 20 12 0.122s 101 fail fail 43 47 45 47

33 20 13 0.062s 102 fail fail 112 112 fail fail

33 20 14 0.040s 89 fail fail 96 88 fail fail

33 20 15 0.022s 102 fail fail 107 80 fail fail

Total Allocated Memory (T) = 2 34

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

34 15 10 0.990s 103 fail fail 41 39 41 39

34 16 10 0.986s 102 fail fail 38 39 38 40

34 17 10 0.985s 102 fail fail 38 39 39 40

34 18 10 0.984s 102 fail fail 40 40 39 40

34 19 10 0.983s 102 fail fail 40 41 40 40

34 20 10 0.984s 102 fail fail 40 41 40 41

34 20 11 0.494s 102 fail fail 42 42 41 42

34 20 12 0.241s 102 fail fail 43 42 47 44

34 20 13 0.120s 107 fail fail 114 113 fail fail

34 20 14 0.064s 102 fail fail 117 112 fail fail

34 20 15 0.038s 96 fail fail 103 95 fail fail

P0089R1 : On Quantifying Memory -Allocator Strategies Page 53 of 57

Total Allocated Memory (T) = 2 35

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

35 15 10 1.981s 102 fail fail 38 41 39 39

35 16 10 1.975s 102 fail fail 39 40 38 39

35 17 10 1.970s 102 fail fail 39 40 39 40

35 18 10 1.967s 102 fail fail 39 39 39 40

35 19 10 1.967s 102 fail fail 39 41 40 41

35 20 10 1.968s 102 fail fail 40 41 40 40

35 20 11 0.988s 102 fail fail 41 42 41 41

35 20 12 0.481s 102 fail fail 42 42 44 44

35 20 13 0.240s 102 fail fail 113 113 fail fail

35 20 14 0.125s 102 fail fail 113 112 fail fail

35 20 15 0.070s 94 fail fail 103 110 fail fail

A striking result in this benchmark is that some of the tests failed to run to
completion, because the systemõs memory was exhausted. Clearly, when we choose
an allocator, the need for re -use of deallocated memory is a critical factor.

The results for the largest three values for (S) in all of these Benchmark III tables

expose the effect of an implementation detail of the used multipool allocator:

Allocations larger than an implementation -defined size ð specifically 2 12 bytes (as per

code inspection) ð will be passed directly to the underlying a llocator. As such, for S >

212 , there is noticeable performance degradation for the multipool allocators and the

creation of failure scenarios even for AS11 and AS13.

This utilization -focused experiment was purposefully simplistic. We reasoned that
variati ons in allocated size were unlikely to affect either a monotonic or multipool

allocator (this variation may have been of greater interes t had a coalescing allocator
been under consideration). Furthermore, altering the deallocation strategy from least

recen tly allocated to some other (e.g., pseudo -random) one may have provided
add itional insight, but at the cost of conflating the effects of Locality (L) with those of
Utilization (U).

10 Benchmark IV: Variation in Contention

This fourth and final benchmark was designed to demonstrate the effects of

Contention (C) ð i.e., the expected number of concurrent memory -allocation

P0089R1 : On Quantifying Memory -Allocator Strategies Page 54 of 57

operations in any given instant of time, over the duration of interest, divided by the
number of active threads (W) ð on runtime performance. In this experiment, a set of

threads was created and used to repeatedly allocate and deallocate a chunk of
memory. To emphasize the runtime cost of contention, every function called by a

thread had an instance of an allocator. For the default global alloca tor, AS1, and the
new/delete allocator, AS2, all of the threads contended for the same allocator. For the
other (local) allocation strategies considered (AS3, AS5, AS7, AS9, AS11, and AS13),

each thread had access to its own private unsynchronized allocato r; hence, there is
no contention except for when these allocators must make a request to their backing

allocators. After every allocation the value at the first byte of the memory was
incremented. Note that the allocation Density (D) of this experiment is extremely
high.

The chunk -size parameter, S, for this experiment is measured in bytes. The other

parameters for this experiment are the number of iterations (N), and, from section 5,

the number of active threads (W). The results of this experiment are norm alized to the

respect ive results for of AS1 in each row. Specifically, the results under AS1 are times
in seconds, and the values under the other allocation strategies ð AS2, AS3, AS5,
AS7, AS9, AS11, and AS13 ð are represented as percentages of the AS1 va lue, where,

again, lower percentage values imply shorter run times.

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 6

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

15 6 1 0.041s 91 40 39 26 26 24 24

15 6 2 0.037s 100 42 43 27 26 26 29

15 6 3 0.038s 105 41 43 15 16 17 16

15 6 4 0.032s 93 56 58 31 32 25 24

15 6 5 0.032s 91 46 52 26 23 22 24

15 6 6 0.030s 95 51 53 24 27 26 27

15 6 7 0.033s 96 47 49 23 28 21 26

15 6 8 0.029s 96 71 63 33 30 31 25

Each of the runs represented in this first table (above) consist of ς repetitions ð per

thread ð of allocating and then immediately deallocating a chunk of memory of size ς
bytes. The first row depicts a run in which the main program spawns just a single
thread (W = 1). The runtime using the default allocator (AS1) is shown under the AS1

column as 0.022 seconds. Using the same allocator via an abstract base class (AS2),
we observed a runtime that was 174% of this reference time, considerably more than

for direct access When we used a local monotonic allocator directly (AS3), the
relative cost was just 71% of that of using AS1. Accessing that same allocator via an
abstract ba se (AS5), also yielded 71%. Switching to a multipool allocator ð used

directly and via an abstract base class ð resulted in relative runtimes of 32% and
36%, respectively. Finally when the combination of a multipool allocator backed by a

P0089R1 : On Quantifying Memory -Allocator Strategies Page 55 of 57

monotonic one was employed directly, the runtime was measured at 35% and, when
accessed via a base class, 34%.

In each successive row, we increase the number of spawned threads by 1, each

executing the function performing ς iterations of allocating and then immediately

deallocating a block of ς bytes. Note that the hardware used had more available
processo rs than the maximum number of threads (W = 8) considered.

A quick look at the tables below show that the global allocator (AS1 -AS2) along with
the monotonic one (AS3 and AS5) are poor candidates for this usage scenario.
Incorporating addition al threads did not generally increase the runtime cost of either

of the global allocators, nor of any of the local ones. An early, fairly consistent pattern
emerges, suggesting that t here is fixed proportional speedup depending on the local
allocator provided, with AS7 being the most consistent winner, yet any strategy that

makes use of a multipool (AS7, AS9, AS11, and A13) is clearly preferable to the
default (AS1) by a sizable factor (~4x).

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 7

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

15 7 1 0.023s 100 114 116 44 47 47 48

15 7 2 0.043s 101 46 69 26 26 26 26

15 7 3 0.041s 103 51 68 25 25 22 25

15 7 4 0.033s 121 78 95 26 19 20 23

15 7 5 0.031s 102 81 86 20 26 26 25

15 7 6 0.032s 99 84 84 18 23 19 25

15 7 7 0.029s 114 111 110 23 27 21 31

15 7 8 0.029s 117 114 120 27 35 31 29

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 8

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

15 8 1 0.043s 101 87 89 23 23 22 23

15 8 2 0.042s 102 61 59 23 23 27 26

15 8 3 0.046s 90 85 111 23 25 24 25

15 8 4 0.040s 84 100 98 18 18 19 22

15 8 5 0.028s 136 190 200 30 30 30 38

15 8 6 0.024s 125 209 201 33 33 31 29

15 8 7 0.033s 108 162 162 24 29 26 26

15 8 8 0.031s 114 184 188 34 33 36 42

P0089R1 : On Quantifying Memory -Allocator Strategies Page 56 of 57

Number of Iterations (N) = 216 , Size of Allocation (S) = 2 8

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

16 8 1 0.085s 97 109 107 23 23 23 23

16 8 2 0.091s 101 104 106 22 21 22 21

16 8 3 0.093s 100 105 104 22 21 21 21

16 8 4 0.097s 94 93 121 20 20 18 17

16 8 5 0.078s 118 108 130 24 18 17 18

16 8 6 0.059s 87 138 136 21 26 22 26

16 8 7 0.063s 93 137 135 17 27 21 20

16 8 8 0.057s 109 162 164 29 28 28 26

Number of Iterations (N) = 2 17 , Size of Allocation (S) = 2 8

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

17 8 1 0.090s 100 206 206 45 42 42 42

17 8 2 0.179s 101 107 106 22 22 22 22

17 8 3 0.179s 101 104 104 22 23 22 22

17 8 4 0.209s 109 89 70 16 15 11 11

17 8 5 0.177s 100 85 78 12 15 15 15

17 8 6 0.108s 142 147 178 27 28 25 25

17 8 7 0.140s 85 116 132 24 22 22 22

17 8 8 0.118s 100 142 150 22 21 25 26

Number of Iterations (N) = 2 18 , Size of Allocation (S) = 28

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

18 8 1 0.177s 109 177 177 45 45 45 46

18 8 2 0.339s 100 95 95 24 24 24 24

18 8 3 0.333s 102 99 95 24 25 24 25

18 8 4 0.304s 98 93 93 24 21 26 21

18 8 5 0.311s 94 97 86 22 24 25 20

18 8 6 0.276s 95 118 122 16 17 18 17

18 8 7 0.297s 79 109 108 18 18 21 18

18 8 8 0.219s 114 176 186 26 21 21 23

P0089R1 : On Quantifying Memory -Allocator Strategies Page 57 of 57

Number of Iterations (N) = 2 19 , Size of Allocation (S) = 2 8

 global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ

 virtual virtual virtual virtual

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13

19 8 1 0.421s 89 134 134 28 23 21 25

19 8 2 0.615s 101 93 93 25 26 26 26

19 8 3 0.631s 99 93 93 25 25 25 25

19 8 4 0.565s 107 95 103 28 28 29 28

19 8 5 0.575s 119 106 101 27 28 27 27

19 8 6 0.499s 114 126 113 17 25 28 22

19 8 7 0.558s 100 113 115 18 18 15 16

19 8 8 0.460s 105 149 148 19 21 18 21

Since modern default global allocators were designed with threading as a concern,
the results are not jaw -dropping. This benchmark demonstrates, again, the relative

efficiency of the allocators; the default global allocator must pay a premium to handle
multiple threads concurrently. Interestingly, the monotonic allocators performed
more and more poorly as the total amou nt of memory allocated increased (perhaps

due to a dearth of physical locality within the monotonic allocatorõs buffer itself).

11 Conclusion

Object -level control over memory allocation is intrinsic to C++, and must always be so

if we hope to maintain this languageõs supremacy as the best-performing high -level
òsystemsó language. Supporting object-specific memory allocation is admittedly an
added burden ð exacerbated by an initially difficult -to-use model ð which is finally

being addressed by N3916: Polymor ph ic Memory Resources . Any future incarnation of
STL should incorporate the lessons elucidated here.

12 References

[1] The Bloomberg BDE Library open source distribution ,
https://github.com/bloomberg/bde

[2] John Lakos, Large Scale C++ Software Design , Addison -Wesley, 1996.

[3] Pablo Halpern, N3916: Polymorphic Memory Resources .

[4] Memory Allocator Benchmark Data , https://github.com/bloomberg/bde -

allocator -benchmarks

[5] Graham Bleaney, P0213R0: Reexamining the Performance of Memory -
Allocation Strategies .

https://github.com/bloomberg/bde
https://github.com/bloomberg/bde
https://github.com/bloomberg/bde-allocator-benchmarks/tree/master/benchmarks/allocators
https://github.com/bloomberg/bde-allocator-benchmarks
https://github.com/bloomberg/bde-allocator-benchmarks

