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On Quantifying Memory-Allocation Strategies (Revision 2) 

Abstract 

Performance requirements drive many  of our most difficult design choices . In memory 

management,  such choices can have surprising and far -reaching  effect s. Although 
performance of global memory allocato rs has improved markedly in recent years, use 
of local  memory  allocators  can provide significant (sometimes even dramatic) benefits  

in commonly encountered circumstances we have tried to identify here .  

To make reasoned choices  on the use of local  memory allocators, we need to  
un derstand where and how the ir use may  affect runtime performance . We have 

identified several  measure s of how syste ms can stress  a global allocator, and may  
benefit by applying a well -chosen local allocator  in its place . If we are to choose wisely 

where and how to apply a local allocator, we need  objective  measurements . We have 
identified several usage patterns which we have  encoded into benchmarks t o identify 
precisely where local allocators do (and where they do not) provide substantial 

benefits . This paper presents our results  with  limited analysis to help  support  
informed discussion.  

Possibly the most significant result is that , where use of a local allocator does yield  
dramatic improvements, the number of operations are about  the same : The s low er 
benchmark run times for the global allocator are dominated by stalls waiting on 

cache interactions with main memory  (due to a severe la ck of  physical  and  temporal   
locality ); the ability to u se a local allocator empowers us to act to avoid such stalls.  

Implementation s of standard allocators (and others) are freely available today ð 
accompanied by copious usage examples  ð in Bloombergõs open-source distribution of 
the BDE library at <https://github.com/bloomberg/bde >. Benchmark  code and 

results , including those discussed in this paper , can be found in a fork of that 
repository, <https://github.com/bloomberg/bde -allocator -benchmarks >. In light of 
the data compiled here, there can be no remaining doubt about the industrial 

importanc e of providing program control over the  allocators used for C++ containers.  
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0 Changes from P0089R0 

The first version of t his paper appeared as N4468 .  In both that version and P0089R0 
the tables presented in Section 7 (Benchmark I) were laid out incorrectly: the 
columns for the monotonic allocator (AS3 -AS6) contained the data for the multipool 

allocator, and similarly the co lumns for the multipool allocator (AS7 -AS10) contained 
the data for the monotonic allocator.  The data in those tables ha s been re -arranged 
to be correct in this version, and the accompanying text revised accordingly.  

In addition, P0089R0 omitted the allocator categorization diagram that appears at the 
start of Section 2.  

This version of the paper also corrects typographical errors,  and  improves the 
wording of some difficult phrases.  

Finally, this version adds a reference to a  paper (P0213R0) being prepared 

concurrently with this paper by Graham Bleaney , which attempts to independently 
recreate the data presented in P0089R0.   Grahamõs work on P0213R0 led to the 

discovery of th e swapped column data in Benchmark I.  

1 Introduction 

Serious engineers appreciate C++  for enabling them  to fine -tune  code at  a low level  
when  needed. Resource management is a n important aspect of low -level control  ð 

particularly memory  management.  

Should we instrument the standard library for such  fine -tuning ? The arguments  

against are typically that fine -grained  memory management requires more up -front 
design effort , complicates interfaces,  and may actually degrade performance where no 
local allocator , or a  poorly chosen one , is su pplied . These are valid concerns  that can 

be addressed only with well -supported facts ; by employing careful measurement , we 
must  identify precisely how much performance benefit is available , and where . 

Nevertheless, a  library instrumented to exploit local allocators  enables benefits  other 

than just enhanced runtime performance : Allocators can aid testing , debugging,  and 
measurement . Not all memory is alike  ð some is faster for certain processors, some is 

shared, some m ay be write -protected , and we will need allocators to exploit such 
heterogeneous memory effectively.  

  



P0089R1 : On Quantifying Memory -Allocator Strategies   Page 4 of 57  

2 Use an allocator? Which One? 

Before exploring allocator -performance metrics, we should identify what we hope to 

learn. We need help deciding, first, whether injecting a local allocator will help or 
hurt performance. If supplying a local allocator wonõt help, we should use the 
system -wide (default) global allocator.  

If an allocator would be helpful, we would then need to determine whether one 
should be òbaked in ó as a type parameter at compile  time (e.g., with the intent  of 

squeezing  out the last bit of runtime performance) or passed as an abstract base 
class (thereby enabling e nhanced interoperability for non -template types) . Either way, 
we then need to  choose the allocator (or allocators ) to use . The rest of this paper 

addresses quantitatively the runtime  consequences  of th ese choices .  

 

It is worth noting that we investigated  alternative global allocators beside  the native 

ones on the various platforms , including tcmalloc  and jemalloc , and determined 

that the native allocator s (e.g., the one currently shipped with GCC on Lin ux) 

performed as well or better . In short, it isnõt about how good the global allocator is, 
but instead the relative benefits t o having local knowledge of the nature of how 
allocation will occur . In some cases, e.g., Benchmark II, an allocator õs runtime 

perfor mance is entirely irrelevant  compared to the physical locality of memory 
accesses it is able to preserve . 

No 

 Supply Alloca tor?  

Yes 

Use Global Allocator     Via Base Class ? 

No Yes 

Which Allocator?  

A B C . . . 
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3  Available Concrete Allocators: Monotonic and Multipool 

In t his paper, we have selected the two kinds of allocators from the current Library 

Fundament als TS : òmonotonicó and òmultipool ó. 

A monotonic  allocator  supplies memory from a contiguous block , sequentially , until 
the block is exhausted, and then  dynamically allocates new block s of geometrically 

increasing size , typi cally from the global allocator . Returning memory to a m onotonic 
allocator is a no -op: Any returned memory remains unavailable until t he monotonic -

allocator object itself is destroyed.  

A multipo ol allocator  is quite different . Each such allocator object consists of an array 
of (adaptive ) pools, one for each geometrically increasing request  size in a range  up  to 

some specified maximum . Each time memory is requested, the memory is provided 
from the most appropriately sized  pool , and freed memory is returned to that pool . 

When the pool has no free memory , the allocator delivers memory from  increasingly 
larger blocks  obtained from the backing allocator (possibly the global allocator),  up to 
some (emp iri cally  determined)  limit . Requests that exceed the maximum pool size 

pass directly through to the backing allocator . The combination of a multipool 
allocator backed by a monotonic allocator forms the third allocator candidate  that we 
consider in this paper . 

Both  monotonic  and  multipool allocator s are òmanagedó. A managed allocator  is an 

allocator that, in addition to its allocate  and deallocate  method s, has a release  

method  that can be used to summarily r eturn all of the memory it manages  to its 

backing allocator . The release  method is called implicitly upon destr uction of a 

managed allocator.  

For o bject s placed in  memory obtained from a  managed -allocator  instance , and 
managing no non -memory resource s themselves , we can avoid running the objectsõ 

destructors . Instead , they can be òwinked outó en mass e by releasing the memory 

they occu py,  along with all the memory they  manage , via the ir  allocator õs release  

method.  

The runtime benefits of bypassing individual destruction of each element in a 
container can be significant , as de-allocating memory  can  sometimes be more costly 

than allocating it . Note that this òwinking outó technique requires  new-ing the 

container object itself into the m anaged allocator it is to use,  so that (1) its  destr uctor 
is not called,  and (2) it s footprint is also released when the allocator goes out of 

scope. Also note that this behavior is fully defined in the  current standard , so long as 
no òwinked-outó object is subsequently accessed. 

4 Our Tool Chest of Allocation Strategies 

Before we start con sidering interesting benchmarks, we need to consider the  

availa ble allocation  strategies . Each memory -usage pattern  will have different 
properties, and therefore we can reasonably expect different allocation strategies to 

excel.  
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In this paper , we consider up to 14 different allocation strategies for  each of the 
benchm arks we will subsequently present . The first of these strategies will be the 

default global allocator ( std::allocator , bound at compile time) which will form the 

baseline for each successive compari son . (Supplying the default as a compile -time 
parameter produces the same  object code  as having it default , and so we have 

omi tted that as a separate category .) The second case is the new_delete  allocator 

supplied via an abstract base class, which (for the subset of popular compilers that 

do not yet  elide runti me dispatch where they clearly could) can be used to compare 
that additional runtime overhead . 

The remaining 12 allocation strategies can best be described by the following cross 
product:  

 

 

 

The first column represents the allocators themselves . The first entry is a monotonic 

allocator, the second is a multipool allocator, and the third is a multipool  allocator 
backed by a monotonic allocator . The second column indicates whether the allocator 
is invasively bound into the type of the container or is (non -invasively) passed via an  

abstract base class . The third column indicates whether the container was destroyed 
naturally or, instead, òwinked outó by virtue of letting the supplied managed allocator 

go out of scope.  

Monotonic  

Multipool  

Monotonic (Multipool)  

Type Parameter  

Abstract Base  

Normal Destruction  

(Magically) òWinked Outó 
 X  X 
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Label  Allocator type  Allocator  binding  Destruction of allocated 
objects  

AS1 Default Global 
Allocator  

Type Parameter  Normal Destruction  

AS2 New/Delete Allocator  Abstract Base  Normal Destruction  

    

AS3 Monotonic   Type Parameter  Normal Destruction  

AS4 Monotonic  Type Parameter  (magically) òWinked Outó 

AS5 Monotonic  Abstract Base  Normal Destruction  

AS6 Monotonic  Abstract Base  (magically) òWinked Outó 

    

AS7 Multipool  Type Parameter  Normal Destruction  

AS8 Multipool  Type Parameter  (magically) òWinked Outó 

AS9 Multipool  Abstract Base  Normal Destruction  

AS10  Multipool  Abstract  Base (magically) òWinked Outó 

    

AS11  Monotonic  (Multipool ) Type Parameter  Normal Destruction  

AS12  Monotonic  (Multipool ) Type Parameter  (magically) òWinked Outó 

AS13  Monotonic  (Multipool)  Abstract Base  Normal Destruction  

AS14  Monotonic  (Multipool ) Abstract Base  (magically) òWinked Outó 

Table 1: Allocation Strategies  

In each case, exactly one of these fourteen allocation strategies will be the best 
answer  from a purely runtime -performance perspective .  
 

It is worth noting that a Multipool allocator comes in two flavors: synchronized  and 
unsynchronized  (see the bd lma  package in < https://github.com/bloomberg/bde >). 

Throughout Benchmarks I and II, we used t he synchronized  version ð even though it 
was unnec essary to do so; in benchmarks III and IV used the unsynchronized  version  

(because we could, as there was just one allocator per thread) .  The ability to use a 

https://github.com/bloomberg/bde
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local allocator enables the additional choice of not forcing synchronization to be 
present where it is not needed.  D emonstrating the (perhaps considerable) runtime 

improvement for avoiding such synchronization where possible will ( for now) be left 
as an e xercise for the reader.  

5 Characterizing Memory-Allocator Usage Scenarios  

Knowing when to supply an allocator and which one to use is neither obvious nor is 
it typically taught in school  at any level . Rather, effective  use of local memory 
allocators is lear ned only from long real -world experience . In this paper, however, we 

attempt to begin to elucidate some of the important considerations that experts 
consi der when evaluating whether or not to take local control over an objectõs 

memory management . 

The first  step in characterizing a problem  such as this one is to identify its basic size 
parameters . Problems of vastly different sizes  are not usefully comparable . Problem 

size can be  roughly characterized in terms of two param eters:  

N the number of instructions  executed  

W the number of active threads  

The relationship between the number of instructions executed and the numbe r of 
active threads is not obvious , and a single number that combines the two does not 

seem useful . Clearly the number of available process ors, the size of L1 cache, and a 
host of other machine -specific physical parameters will affect the detailed analysis . 
For the scope of this paper, however, we will limit ourselves to characterizing the 

logical program  independently of physical hardwar e. 

Given this overall òsizeó characterization  (N, W), we now  introduce five dimensions 

that (we assert) span the space of memory -allocator usage:  

D  Density  of allocation operations  

V  Variation  in allocated memory sizes  

L   Locality  facilitating memory access/manipulation  

U  Utilization  of allocated memory  

C  Contention  due to concurrent memory allocations  

Each of these dimensions resides on a scale from 0 to 1, where 0 indicates the low -
end of the scale, an d 1 the high end . Note that none of these  scales is (necessarily) 
linear . It is also important to realize that each of these dimensions applies not to the 

overall program, but instead to just an individual targeted subsystem over some 
relevant subset of program execution . That i s, when considering these dimensions, 

we are looking to improve the performance of a particular  subsystem over a finite 
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duration  of execution , rather than that of the program as a whole . Supporting whole -
program allocation is  the remit of the global alloca tor . 

5.1 Density of allocation operations (D) 

The allocation density  is a measure of the relative number of allocation instructions  

(allocate  and deallocate ) to the total number of instructions executed . A density 

of zero would imply that no allocation operations are employed, while a density of one 
would indicate that every operation involves either allocation or deallocation . As an 

example, a std::vector<int>  is incapable of achieving a meaningfully high 

allocation densi ty as the number of allocation operations are  at most logarithmic in 

the number of mutating operations , and we sometimes even do a reserve  on vectors, 

thereby reducing the number of allocat ion s for this data structure to just 1 (e.g., 

Benchmark I, see sect ion 7). By contrast, a vector of (long) strings could be used in a 
way that admits a relatively high allocation density , as each mutating operation  

would involve a llocation or deallocation of the string -element õs memory . Node-based 
containers that ( unlike Bloombergõs bsl  https://github.com/bloomberg/bde/tree/master/groups/bsl ) do 

not  do internal pooling are similarly ca pable of achieving a very high allocation 

density . Even with a potentially high density for mutating operations, the overall 
density will depend on the proportion of mutating to non -mutating (i.e., accessing or 
other  non-allocation/deallocation -related ) operations.  

5.2 Variation in allocated memory sizes (V) 

The variation  in allocated memory sizes attempts to roughly  measure the extent to 
which allocated memory requests vary  over the region and duration of interest . A 

variat ion of 0 would mean that (at most) a single memory size is allocated, while a 
variat ion of 1 would suggest a much more diverse  (e.g., hyperbolic ) distribution  of 

memory allocation sizes. A low variation value  might (in theory) tend to suggest a 
pool -based allocato r, whereas a higher value (again in theory) could perhaps favor a 
coalescing allocator  (but see the actual data in Benchmark I) . Keep in mind that 

requests that are relatively close i n size might be  treated equivalently.  

5.3  Locality facilitating memory access/manipulation (L) 

The definition of access locality  is complex, involving at least three factors:  

I  The number of instructions  executed in the subsystem over the duration  

M The size of the memory  footprin t of the subsystem accessed for the duration  

T The number of context transitions  out of the subsystem during  the duration  

https://github.com/bloomberg/bde/tree/master/groups/bsl
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The locality , L , corre lates directly to the instruction count , I , but inversely  to both the 
memory footprint  size, M , and the transition count , T . We can therefore argue that 

access locality, L , can be characterized  (to a zeroth -order approximation) as : 

╛
╘

╜ ╣z
 

 

In other words, the more instructions that flow through our subsystem  (over the 
duration of interest , the more access locality we have . On  the other hand, the bigger 
our subsystem õs footprint or the more context t ransitions that occur  away from it , the 

lower the access locality becomes . Physical locality  can be independently 
characterized by holding T  constant, whereas temporal locality  woul d be similarly 

characterized by holding M  constant . Note that a ccess locality ð both physical  and 
temporal  ð will turn out to play a  dominant role in some  long -running programs,  even 

when the allocation density is negligible  (e.g., Benchmark II, see sectio n 8). 

5.4  Utilization of allocated memory (U) 

Allocated memory utilization  is a measure of the relative a mount of allocated 

memory i n use at any one time ; it is defined as the maximum amount  of memory in 
use by a subsystem , during the durations of interest , divided by the total amount  of 
memory allocated by the subsystem over that period . A utilization of 1 means that , at 

some point , all of the memory ever  allocat ed by a subsystem  (over the duration of 
interest ) is actively in use . A utilization that approaches zero  implies a (typically long -

running ) sub system  in which the same memory is allocated and deallocated 
repeatedly . Subsystems exhibiting high utilization are often good candidates for 
monotonic allocators, whi le a long -running sub system having  low utilization is 

almost always much more suited to a multipool allocator , or perhaps  a multipool 
allocator backed by a monoto nic one  (but see the benchmarks below) . 

5.5 Contention due to concurrent memory allocations (C) 

Allocation co ntention  is a measure of the potential bottlenecks that could result 
from multiple threads attempting to access the same synchronized memory allocator . 
We define allocation contention as the expected number of concurrent memory 

allocatio n operations in any given instant of time, over  the duration of interest , 
divided by the number of active threads, W. A contention, C, of 0 indicates that W is 

1 (or the allocation density, D, for all but one thread is 0) . A contention of 1 would 
mean that W > 1 and each thread is always trying to allocate or deallocate memory  
on every instruction executed  (i.e., D per thread is 1) . Many modern global memory 

allocators are òthread aware ó and make heroic efforts to mitigate such contention . In 
doing so, however, they typically slow down subsystems in situations  that do not 

require synchronization , while ð compared to the use of local alloca tors  ð also 
degrad ing  performance in situations that do . Note that, because of the strong 
correlation between dimensions C and D, it will turn out to be difficult to observe 

variations in C independently of D (e.g., Benchmark IV, see section  10 ).  



P0089R1 : On Quantifying Memory -Allocator Strategies  Page 11  of 57  

 

 

DVLUC  
 

Remembering these five dimensions characterizing  memory  allocation is a challenge 
for anyone, includi ng us, so we offer  a mnemonic aid by wa y of a mascot: The mascot 
is a d uck, and his name is DVLUC . 

6 Designing Useful Benchmarks 

After identifying the dimensions of allocation space to explore, we wanted suitable 
benchmarks to elucidate how each of these dimensions affect s our design decisions . 

Our first thought was to create a single benchmark that spanned all five of the 
dimensions  ð the idea being to find the centroid, and then vary the arguments along 
each dimension separately in order to discover its effect on the best allocator -strategy 

choice . 

As it turns out, a single problem that encompasses all five dimensions is not at all 
easy to invent , as some dimensions are s trongly correlated with others ð e.g., 

Contention  (C), and Density  (D). Instead, we settled on four separate benchmarks, 
which together seem to cove r  this five -dimensional  space as well as enabling  each of 

the fourteen proposed allocat ion strategies (where appropriate) to have their fair shot . 

Separately, we tried not to assume the answers we expected, and hence strove to 
cover the entire design space  without prejudice . Hence, in our benchmarks we 

typically explore a wide range of problem sizes using successive powers of two . To 
better understand secondary effects, we will often choose  to trade off comparable 

parameters, such as the  subsystem size vers us the  number of subsystems ( physical 
locality ) or the number of consecutive accesses  of a subsystem vers us the number of 

subsystems visited ( temporal locality ) while holding othe r benchmark parameters 
constant.  

All the results presented here are from runs  on a server having dual Intel Xeon E5 -

2620v2 processors, each having 6 cores (for a total of 12 cores) and 15 MB of L3 
cache, running at a fixed clock rate of 2.1 GHz, with 16GB of DDR3 -1600 RAM  (with 

D = Density  of allocation operations  

V = Variation  in allocated memory sizes  

L  = Locality  facilitating memory access/manipulation  

U = Utilization  of allocated memory  

C = Contention  due to concurrent memory allocations  
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13G available to processes), and otherwise unused . Thi s particular processor has the 
òSandy Bridgeó architecture, from 2010, re-stepped (òv2ó) to a smaller die in 2013 

and called òIvy Bridge EPó (http://ark.intel.com/products/75789 ). Programs were all 

compil ed using gcc -5.1 , optimizing ò- O3 ïmarch= native ó, and run under Linux 

3.18 . All experiments  used only one core at a time  except for  Benchmark IV, which 

measure s Contention ( C) and  used more of the available cores.   

In addition, we ran the same programs on several other configurations and platforms , 

including versions built with clang -3.6 on the machine described above, and with gcc 
and clang on an IBM POWER7 under  Linux  3.10 , and with MSVC2015R1 on an Intel 
Haswell desktop machine under Windows 7.  Results of these runs can be found on 

the github site.  
 

Finally, a separate effort has recently been made to recreate our experiments in order 
to confirm these  results  (P0213 by Graham Bleaney) .  We anticipate that paper will 
appear at approximately the same time as this revision.  

7 Benchmark I: Creating/Destroying Isolated Basic Data Structures. 

In this expe riment, we look at the process of creating a variety of isolated composite  
data structures, using them  lightly  (i.e., writing to each element exactly once using 

memset via a pointer -to-volatile ), and then quickly destroying them . The set of data 

structures under test encompass es many of those we us e every day, and were chosen 
speci fically to explore  the first two  dimensions discusse d earlier ( section 5), namely 

Density  (D), and Variation  (V). Each standard container under consideration 

(std::vector  and std:: unordered _set ) will  ultimately consist of òleafó objects of 

either int  or st d::st rin g, where each string õs length  ð chosen randomly  over a 

uniform distribution  between 33  and 100 0 ð is deliberately outside the range where 
the sho rt -string optimization pertains . 

The container implementations are the native ones for the platform, using 

scoped_allocator_adaptor  to ensure that the same allocator is used for all parts of 

the data structure.  The monotonic and multipool allocators come from the BSL 

library.  

Twelve representative standard -library  data structures were chosen  ð the fifth 

throug h twelfth  being, respectively,  std::vector s and std::unordered_ set s of 

elements containing each of  the first  four  data structure types : 

http://ark.intel.com/products/75789
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DS1  vector<int>  

DS2  vector<string>  

DS3  unordered_set<int>  

DS4  unordered_set<string>  

 

DS5  vector<vector<int>>  

DS6  vector<vector<string>>  

DS7  vector<unordered_set<int>>  

DS8  vector<unordered_set<string>>  

DS9  unordered_set<vector<int>>  

DS10  unordered_set<vector<string>>  

DS11  unordered_set<unordered_set<int>>  

DS12  unordered_set<unordered_set<string>  

Table 2: Data Structures  

The runtim e results for executing these benchmark tests using each of the  12 data 
structures above, employing each of the 14 allocation strategies discussed in section  
4, for a wide variety of problem sizes on just one of the several popular platforms we 

tried  (section 6) are presented below . 

Unlike our previous  paper, however, all tabular numbers  for this benchmar k  are 
presented (as heat maps ) in terms  of absolute run time s in seconds (rather than 

percentages relative to the first column) . Moreover, the color coding of the maps 
applies to an entire chart, rather than each individual row ð this to help identify 

patter ns ð especially in allocation -strategies ( columns) ð that might otherwise be 
obfuscated . The first column , 26 through  216 , indicate s the size o f the data structure  
constructe d ð e.g., for data size 2 8, the outermost data structure is built up to  have 

28 = 256 elements before being destroyed . 

This process of creating and destroying each data structure  is repeated many times 
to allow for meaningful measurements . In order to allow for comparisons across data 

structu res of different sizes, the product of the data structureõs size (in terms leaf 
elements) and the number of iterations of creating  and destroy ing it will be held 

constant, which we have chosen (arbitrarily) to be  ς . That is, the data structure 
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associated with row ς of any of the first four data structures ( DS1-DS4) will be 

created and destroyed ς ς  times during the benchmark . Note that f or data 
structures DS5-DS12, where the number of leaf elements being con structed per 

immediate element is increased by a constant factor (e.g.,  ς), a corresponding drop in 
iterations occurs, thereby keeping the benchmarks roughly comparable in terms of 

total number of leaf elements created (see below).  

Although this benchmark  focuses , primarily,  on the dimensions of Density  (D) and 
Vari ation  (V), discussed in section 5, t he relatively short -lived nature of the objects in 

this benchmark ð along with their extremely high Utilization  (U) ð facilitate measuring 
the benefit of allocations strategies, such as AS4 , AS6, AS8,  AS10, AS12, and AS14, 
that  òwink-outó object memory. Finally note that, in each of the tables below,  Green  

indicates substantial ly shorter run  times whereas  yellow , orange , and especially  red 
indicate longer run times . 

 

7.1 DS1, vector<int> 

 

 
Ŷ global  Ÿ Ŷ Monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  

virtu
al 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 1.2 1.9 0.3 0.4 0.4 0.4 0.8 1.0 0.9 1.1 0.6 0.7 0.8 0.7 

2
7 0.9 1.6 0.3 0.4 0.4 0.4 0.5 0.7 0.6 0.7 0.5 0.5 0.6 0.5 

2
8 0.8 1.0 0.2 0.4 0.4 0.3 0.4 0.6 0.5 0.6 0.3 0.5 0.5 0.5 

2
9 0.8 1.0 0.2 0.4 0.4 0.4 0.3 0.5 0.5 0.5 0.3 0.4 0.4 0.4 

2
10 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
11 0.7 0.9 0.2 0.3 0.4 0.3 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
12 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
13 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
14 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
15 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
16 0.8 0.9 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

Table 3: DS1, vector<int>  

This first data structure  (DS1) corresponds to an std::vector<int>  ranging in size 

from ς (top row) to ς  (bottom row). Recall that AS1 is the default (global) allocator 
accessed directly, and that AS2 is the default allocator accessed via pure -virtual 
functions in an abstract base class. The following three large bloc ks (four columns 

each) correspond to the three local allocator mechanisms: monotonic  (AS3-AS6), 
multipool  (AS7-AS10), and monotonic  backing a multipool  (AS11-AS14). The first pair 
of columns within each block (AS3 -AS4, AS7 -AS8, and AS11 -AS12) correspond to  

direct access where the second pair (AS4 -AS5, AS9 -AS10, and AS13 -AS14) 
correspond to access via an abstract base class.   Finally, the first member of each 

pair (AS3, AS5, AS7, AS9, AS11, and AS13) corresponds to the normal destruction 
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process, whereas the  second member of each pair (AS4, AS6, AS8, AS10, AS12, and 
AS14) corresponds to òwinking outó the memory, bypassing normal destruction. 

 

Note that each std::vector  instance used in this benchmark is explici tly pre -sized 

(using reserve ) to have exactly the  needed capacity . H ence, the measurement data 

for  vector<int>  (DS1) involves only a single memory  allocation/deallocation . Hence,  

for this first data structure,  the allocation Density  (D) was vanishingly  small , and the 
requested memory -size Variation  (V) was nil . Although the data for DS1 (above)  is 

largely composed of test -apparatus artifacts, it  exhibits  recurring  patterns across the 
various alloca tion strategies  (columns)  consistent with what is seen below .   

 
The first observation is that direct acces s is superior to acce ss via a base class for  
global an d local allocators in essentially all cases.  For the global allocator  (AS1-AS2), 

this overhead ranged from ~20% -25% for larger vector sizes, but jumped sharply to 
~60% -70% for the two smallest ones shown (64 and 128  elements ).  The clear 

winning strategy for each of the three local allocators was direct access without  
òwinking outó memory (AS3, AS7, and AS11, respectively ).  Any attempt to deviate 
from typical usage dramatically reduced runtime performa nce (~50% -80%). (A 

plausible conjecture here would  be that the optimizer is tuned for the typical case.)   
 

When always òwinking  outó memory, accessing the allocator directly versus via a pure 
abstract base class  generally  made no statistical ly significant  difference.  Finally note 

that , except for the two smallest vectors  (corresponding to the rows labeled ς and 

ς), all of the local allocation strategies (AS3 -AS14) were ð at least ð close to twice as 
fast  as directly accessing the default allocator (AS1).  It will turn out that this 

surprising observation can b e repeated in each of the eleven remaining experiments 
in this benchmark, again in Benchmark  III  (except , of course , for the monotonic 
allocator alone (AS3 -AS6)), and yet again in Benchmark IV. Note that Benchmark II 

deals entirely with  locality of access , and therefore the runtime performance of the 
allocation  and deallocation operations themselves is not relevant . 
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7.2 DS2, vector<string> 

 

 
Ŷ global  Ÿ Ŷ Monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 68.9 67.3 12.9 12.8 13.3 12.9 18.1 17.8 18.2 17.7 15.5 14.8 15.6 14.8 

2
7 68.8 68.2 12.8 12.9 13.2 12.9 20.6 20.2 20.6 20.4 15.1 14.3 15 14.4 

2
8 70.8 68.9 13.2 12.8 13.6 12.9 30.8 30.4 30.7 30.3 15.3 14.6 15.4 14.7 

2
9 73.1 71.2 13.5 13.5 13.9 13.5 38.2 37.6 38 37.3 15.9 15.1 15.9 15.1 

2
10 75.4 74.3 13.6 13.5 14 13.7 41.1 40.3 41.6 40.9 16 15.1 15.9 15 

2
11 76.9 74.5 13.6 13.5 14.1 13.6 43.9 43.2 43.7 42.6 16 15 16 15.1 

2
12 76.1 74.8 13.7 13.5 14 13.6 41.2 38.8 40.6 39.4 15.9 14.9 15.8 15 

2
13 76.1 74.8 13.6 13.6 14 13.6 41.4 39.2 41.3 39.9 15.9 15 15.8 14.9 

2
14 78.3 76.5 13.6 13.6 14 13.6 45.8 42.3 44.8 44 16.1 15.2 16.2 15.4 

2
15 90.4 91 20.2 20.1 20.5 20.1 62.2 58.7 62.2 58.2 26 25 26 24.9 

2
16 103 103 21.5 21.3 21.8 21.3 66.5 59.2 65.1 59.9 27 25.3 27.1 25.2 

Table 4: DS2, vector<string>  

For DS2, vector<string> , we insert 2 n strings , where  n again rang es from 26 (top 

row) to 216  (bottom row) . E ach string is of randomly chosen, uniformly distributed 

length (in the range [33..1000] bytes),  its data is accessed (written  via memset), and 

then the entire vector  is destroyed , all of which is repeated  for a total of  227-n 
iterations . Because each mutating operation in this benchmark involves an allocation 

or deallocation  (and all other operations are few) , the Density  (D) is extremely high, 
and the Variation  (V), due to the randomly chosen string length s (greater than  32) is 
also quite high.  

Looking at the data  for DS2  (above), we quickly observe that the choice of the 
underlying allocator mechanism used dominates . First we see that run  time of using 
the default allocator (AS1-AS2), which is roughly the same irrespective of how it is 
accessed , is dramatically more (~75%-575%) than that of any of the local -allocator -
based  strategies  (AS3-AS14). Next we observe that using ju st a monotonic allocator 

(AS3-AS6) works best with respect to the run time  of the global allocator (~20%, or 
5x), followed by a combination of monotonic and multipool  allocators (~25%, or 4 x), 

with a multipool allocator alone bringing up the rear ( ~60%, or  1.7 x.), yet all are still 
significantly and consistently faster than the  global allocator . We can also easily 
observe that t here is a n abrupt jump in run time  (across the board ) when the data 

structure size rises  beyond ς  string elements, yet the relati ve performance of  all of 

the allocat ion  strateg ies remain s roughly the same . Looking more closely, we can see 
that the effects of accessing each of the allocators directly , versus via a virtual -
function interface , makes little or no difference , although there is some slight 

recurring bias favoring direct access . Finally we note  that òwinking outó tends to 
somewhat reduce run time  (~1%-9%) ð the most pronounced being when a monotonic 
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allocator is involved and, secondarily when the allocator is a ccessed via a virtual  
function . 

7.3 DS3, unordered_set<int> 

 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 10.2 11 5.08 4.88 5.62 5.34 7.16 7.12 7.5 7.2 6.19 5.73 6.4 5.81 

2
7 12.5 13.3 5.04 4.81 5.68 5.24 6.37 6.22 6.71 6.31 5.8 5.46 6.08 5.5 

2
8 15.8 16.4 4.99 4.79 5.54 5.22 5.95 5.81 6.21 5.92 5.65 5.32 5.82 5.4 

2
9 18.3 19 5.01 4.8 5.53 5.18 5.78 5.56 6.01 5.7 5.56 5.2 5.76 5.21 

2
10 21.4 22.3 4.99 4.83 5.55 5.2 5.72 5.46 5.95 5.55 5.52 5.27 5.68 5.24 

2
11 25.5 26.1 4.98 4.81 5.56 5.16 5.67 5.44 5.86 5.65 5.53 5.23 5.69 5.26 

2
12 27.1 28 5.02 4.81 5.55 5.2 6.42 6.1 6.57 6.25 5.51 5.12 5.68 5.27 

2
13 27.9 28.8 5.03 4.81 5.59 5.21 7.34 6.91 7.46 7.03 5.61 5.16 5.71 5.24 

2
14 28.5 29 5.03 4.8 5.58 5.26 7.03 6.59 7.18 6.68 5.64 5.19 5.8 5.34 

2
15 28.3 29.2 5.03 4.78 5.56 5.28 7.11 6.65 7.2 6.83 5.68 5.17 5.78 5.24 

2
16 31.6 31.8 5.02 4.76 5.6 5.22 6.79 6.37 6.93 6.46 5.68 5.17 5.79 5.24 

Table 5: DS3, unordered_set<int>  

For DS3, unordered_map<int> , we repeated the initial experiment, DS1, on elements 

of type int , but this time substituting unordered_map  for vector  as the container  

type . Although the appended data does  not  itself involve memory allocation, creating 
each container node to hold it (absent bsl -style internal pooling, which was the case 
on this platform)  does; h ence, Density  (D) for this data set is high, while Variation  (V) 

is nil.  

Our first observation  with respect to the DS3  data (above) is that run  time  using the 

global allocator (A S1-AS2) is always the largest, and grows substantially with  
(physical) data -structure size, while such growth doesnõt appear for any of the (local ) 
allocation strategies (A S3-AS14). For this data structure , there is indication that 

access via a virtual  function call (AS2, A S5-AS6, A S9-AS10, A S13-AS14) is typically 
somewhat slower (~1%-10%) than direct access  (AS1, A S3-AS4, A S7-AS8, and AS11-

AS12); however, t he DS3 data  shows consistently that the òwinking -outó feature (AS4, 
AS6, A S8, A S10, A S12, A S14) is a clear win (5% -10%) everywhere that it can b e done . 
Finally , we note that monotonic (alone) A S3-AS6 is the best allocator choice, with 

direct access and òwinking  outó (AS4) being the overall best  allocation strategy : We  
observe a runtime improvement  (over the global allocator)  approaching 7 00% for 
larger data stru ctures (e.g., 2 16  nodes).  
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7.4 DS4, unordered_set<string>  

 
 
 
 

Ŷ global Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 103 120 52.2 51.9 52.4 51.2 58.4 57.6 59.7 58.9 55.1 54.1 56.9 55.3 

2
7 103 122 52.5 52.1 52.9 51.8 63.3 61.9 64.4 63.8 55.3 54 56.8 55.7 

2
8 109 128 53.6 53 53.7 52.6 76.3 74.7 77.4 75.9 56.5 54.9 57.9 56.7 

2
9 113 134 54.5 53.4 54.9 53 83.1 81.7 82.8 81.4 57.3 56.7 58 56.4 

2
10 119 143 56.6 54.9 56.9 54.6 87.6 85.9 88.1 86.5 58.8 56.9 59.2 57.3 

2
11 122 144 57 55.3 57.7 54.9 90.7 89.2 90.7 88.4 59.4 57.6 60 57.8 

2
12 122 146 57.9 55.9 58.4 55.7 93.2 90.7 93.2 90.7 60.5 58.3 60.7 58.4 

2
13 124 148 58.2 56.3 58.5 55.9 95.1 91.5 94.3 92 60.5 58.2 60.7 58.7 

2
14 139 166 59.1 57.3 59.6 56.8 98.5 94.1 97.8 95.8 61.8 59.6 62.2 60 

2
15 176 211 66 62.7 66.2 62.4 121 115 122 115 76.5 73.3 76.8 74 

2
16 196 232 78.5 72 79.1 71 137 127 136 127 87.1 82.4 87.8 82.9 

Table 6: DS4, unordered_set<string>  

Next,  we again used an unordered_set  as our container, but this time, like DS2, 

used, as elements, strings of uniformly distributed random length (again in the range 

of 33 to 1000 to thwart the short -string optimization). This time we have a high 
Density  (D) with moderately high (unimodal) Vari ation  (V).  
 

The DS4  results largely mirror those of DS3 , but with  some notable  differences . The 
run  time for the global allocator (AS1-AS2) is again substantially larger than that of 

any local allocator, and grows aggressively with increasing data structure size . On the 
other hand, that  same relative gro wth is this time reflected in each of the other (local) 
allocation strategies  (AS3-AS12). There is some tendency for access via a virtual -

function interface  to be slower than direct access, but much less so : ~1% for all local 
alloca tors compared to ~20% for the global one . For this data structure, we agai n see 
that the monotonic allocator ( AS3-AS6) is clearly optimal , and that òwinking  outó is a 

consistent win (~1%-10%) across all (local) allocators, the relative runtime benefit of 
which tend s to grow quickly with increasing data structure size . Finally,  using a 

monotonic allocator  (alone)  and employing òwinking outó (AS4 and AS 6) were fastest 
at roughly 2 x better than the default global allocator (AS1  and AS2 ).  Note that  access 
via a virtual  function (AS6) consistently won out (~2%-4%) over direct access  (AS4). 

For the remaining eight benchmark scenarios  (DS5 ð DS8  and DS9  ð DS12) , each of 
the ( composite ) elements correspond, respectively, to the  four preceding 
configurations  (DS1  ð DS4), and were chosen (arbitrarily) to have  27 =128 leaf  

elements  (of type either int  or std::string ). Each outer container again has  2n 

(composite ) elements  (each of those having 128 leaf  elements),  and is constructed 

and destroyed  227-7-n times, for a total of 2 27  leaf -element  insertions, as was the case 
for DS1 -DS4 . In this way , we keep t he total number of operations involving  leaf  
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objects across all 12 distinct data structures (DS1  ð DS12) in this benchmark 
comparable  (section 6). 

7.5 DS5, vector<vector<int>> 

 
 Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 0.97 1.00 0.19 0.13 0.20 0.17 0.24 0.20 0.20 0.21 0.21 0.19 0.20 0.21 

2
7 0.96 0.96 0.22 0.16 0.18 0.14 0.21 0.20 0.19 0.20 0.16 0.20 0.21 0.19 

2
8 0.99 1.00 0.19 0.13 0.18 0.17 0.27 0.30 0.27 0.29 0.19 0.19 0.20 0.21 

2
9 0.99 1.02 0.19 0.13 0.18 0.14 0.36 0.33 0.33 0.36 0.19 0.15 0.20 0.20 

2
10 1.01 1.04 0.19 0.18 0.19 0.14 0.37 0.36 0.36 0.38 0.22 0.19 0.20 0.22 

2
11 1.02 1.05 0.19 0.13 0.19 0.14 0.36 0.35 0.36 0.36 0.20 0.15 0.20 0.22 

2
12 1.03 1.05 0.19 0.19 0.22 0.18 0.33 0.36 0.32 0.32 0.20 0.21 0.20 0.19 

2
13 1.02 1.05 0.19 0.13 0.22 0.19 0.35 0.35 0.34 0.33 0.20 0.21 0.22 0.19 

2
14 1.05 1.10 0.19 0.17 0.19 0.16 0.38 0.36 0.38 0.37 0.17 0.19 0.20 0.19 

2
15 1.13 1.18 0.22 0.19 0.19 0.16 0.50 0.45 0.47 0.45 0.21 0.21 0.17 0.18 

2
16 1.29 1.32 0.22 0.19 0.20 0.17 0.54 0.47 0.52 0.50 0.22 0.21 0.22 0.21 

Table 7: DS5 , vector<vector<int>>  

This first composite data structure, vector<vector<int> > (DS5) has a low 

allocation Density  (D) and a nil requested memory -size Variation  (V). 

The data for DS5  suggest that (1) every local allocator strategy considered is far, far 
better (~300% -700%) than the global one  (AS1-AS2), (2) any runtime differences 

between virtual -function interface  versus  direct access are  not statistically 
significant, (3) òwinking outó this data structure is typically a relative win  (~10%-
30%), especially for the most runtime -performant allocator  in these tests , namely 

monotonic (AS3-AS6).  In passing, we also observe a n ac ross -the -board òplat form 
boundary ó in the form of an òelbowó to increasing run time as the size of the outer 
vector exceeds 2 14 composite elements  (last two rows).   Note that this increase is per 
leaf element inserted as precisely the same number of lea f element s are inserted  for 
each row of each table corresponding to each of the twelve experiment s in this 

benchmark.  
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7.6 DS6, vector<vector<string>> 

 
 Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 72.6 72.7 9.06 9.06 9.36 8.98 41.7 40 41.2 39.2 11.2 10.3 11.2 10.3 

2
7 74.9 76 8.92 8.98 9.29 8.89 46.5 44.8 46 43 11.4 11 12.7 10.3 

2
8 85.5 85.2 17.1 17.4 17.3 16.9 62.9 58.4 61.3 58.4 22.8 22.5 23.3 22 

2
9 96.4 96.3 18.4 18.7 19 18.4 66.2 59 64.7 59.3 24.2 22.7 24.5 22.3 

2
10 102 102 18.7 18.6 19.1 18.6 67 59.6 65.9 59 24.8 22.5 24.8 22.5 

2
11 102 101 18.4 18.7 19.2 18.2 62.4 55 61.3 54.2 24.8 22.6 25.1 22.3 

2
12 104 103 18.5 18.7 19.4 18.3 61.6 54.2 60.5 53.4 24.9 22.7 25.1 22.3 

2
13 103 104 18.8 18.4 19 18.6 61.8 53.4 59.9 53.5 25.3 22.6 25.1 22.6 

2
14 97.1 96.3 19.2 19.6 20.1 19.2 60.6 53.7 60.2 52.9 29 26.7 29.2 26.3 

2
15 88.1 88.7 23.4 23.2 23.7 23.4 62.6 54.4 60.9 53.9 33.4 30.6 33.2 30.7 

2
16 76.7 76.7 25 25.3 25.8 25 63.4 54.8 62.9 54.3 35 32.8 35.5 32.4 

Table 8: DS6, vector<vector<string>>  

Next we consider vector<vector<string >> (DS6), which has  both a  high  allocation  

Density  (D) and a high Variation  (V). 

The data for DS6 (above) suggests that the default global allocator (AS1-AS2) is the 
least performant choic e, and that direct versus virtual -function access make s no 

significant difference . The monotonic alloca tor (AS3-AS6) again proves to be the best 
allocator choice , but  òwinking outó doesnõt seem to have much of a (consist ent)  effect 

for this al locator .  Yet òwinking outó clearly does exhibit a significant improvement  
(~5%-15%) when the monotonic  allocator is used to back a m ultipool allocator  (AS11-
AS14), and especiall y when used alone  (AS3-AS6). We also note that the global 

allocator (unlike  all local allocators) exibited a reduction  in run time  as the outer 

data -structure size increased beyo nd  ς  composit e (vector<string> ) elements .  

   

Note that there appears to be an across -the -board  òplatform boundaryó when the 

number of (composite) elements increases from ς to ς where all allocation times  ð  
especially the local ones, and particularly those involving a multipool ð jump abruptly 

(~12%-100%). A second òplatform boundaryó occurs for  just the global  allocator ( AS1-

AS2) when the number of (composit e) elements increases from ς to ς , where the 

(per-element) runtime cost plat eaus (see rows ς-ς ). Yet a third òplatform boundaryó 
occurs for the  12  local  allocator st rategies ( AS3-AS14) when  the number  of composit e 

elements increases from ς  and ς , where the (per -element)  cost begins to 
accelerate,  and ð at the same time ð the (per-element) global allocator run  times  also 

begin to decrease sharply (see rows ς -ς ). 
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7.7 DS7, vector<unordered_set<int>> 

 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 28.8 28.7 2.97 2.69 3.43 2.98 4.89 4.37 5.33 4.73 3.21 2.65 3.64 3.05 

2
7 28.3 28.5 2.97 2.66 3.36 2.95 4.99 4.44 5.43 4.91 3.2 2.62 3.61 2.97 

2
8 28.2 28.1 2.94 2.62 3.33 2.92 5.02 4.53 5.53 4.97 3.23 2.6 3.6 3.01 

2
9 31.8 31.7 2.92 2.61 3.33 2.93 5.08 4.54 5.52 4.92 3.16 2.58 3.58 2.96 

2
10 46.6 47.2 2.92 2.61 3.33 2.89 5.07 4.49 5.48 4.93 3.15 2.58 3.57 2.98 

2
11 54.3 54.1 2.92 2.61 3.33 2.89 5.63 4.75 5.88 5.37 3.16 2.6 3.61 2.98 

2
12 54.7 54.8 2.96 2.66 3.34 2.91 6.9 5.79 7.28 6.23 4.15 3.05 4.58 3.4 

2
13 55.1 56 3.51 2.95 3.77 3.21 7.01 6.03 7.47 6.35 4.27 3.08 4.65 3.48 

2
14 51 50.9 3.53 2.99 3.81 3.25 7.08 6 7.47 6.46 4.29 3.14 4.71 3.47 

2
15 44.8 45.4 3.58 3.01 3.83 3.26 7.07 6.04 7.55 6.52 4.35 3.14 4.75 3.53 

2
16 38.2 38.2 3.58 3.06 3.86 3.3 7.14 6.11 7.58 6.47 4.37 3.18 4.8 3.54 

Table 9: DS7, vector<unordered_set<int>>  

Then we have vector<unordered_set<int >> (DS7), which has a fairly high 

allocation Density  (D) and nil Variation  (V). 

The data for DS7 (above) shows that the default global allocator (AS1-AS2) is again, 
this time by far, the least performant choic e, and that direct versus  virtual -function 

access makes no significant difference  for the glo bal allocator, but does have a 
noticable effect for all local allocators  (~5%-15%). The best allocator choice in this 

scenario is again the monotonic al locator  (AS3-AS6) but this time  by a factor of 
almost 20x over the default . The second most striking observation in this data is the 
across -the -board  imp rovement (~5% -35%) (for local allocators) of òwinking outó the 

data structure, especially for larger physical sizes , with the larg est percentage  benefit 
ð by fa r ð coming from the composite  allocator ( AS11-AS14).  Notice that, just like 

DS6,  the global allocator õs (per-leaf element) run times pe ak and then recede, 

where as the local allocator times tend to grow monotonically and, except between ς  

to ς , very slowly.  
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7.8 DS8, vector<unordered_set<string>> 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 114 116 26 23.8 26.3 24 56.2 54.7 56.9 54.6 27.5 25.8 27.9 26 

2
7 123 130 26.5 24.4 25.7 23.5 62.7 60.1 62.7 60.5 27.5 26.3 28.2 26.1 

2
8 162 171 31.7 27.3 32.2 27.8 78 74.2 79.2 73.9 35 32 35.5 32.5 

2
9 175 181 36.8 28 38.1 28 81.7 74.1 81.2 74.9 36.3 32.1 37.2 32.1 

2
10 176 183 40 28.9 37.4 28.2 82.1 74.5 82.1 74.7 36.9 32 37.4 32.2 

2
11 176 183 39.3 28 37.3 28 81.4 74.4 82 74.3 36.9 32.1 37.8 32.1 

2
12 179 185 39.4 28 37.1 28 81.8 74.1 81.6 74.4 37 32 37.8 32.2 

2
13 173 178 39.6 27.9 36.9 28.2 81.8 73.6 81.5 74.3 37.2 32 37.8 32.4 

2
14 157 160 41 29.9 38.8 29.9 81.5 74.1 82.2 74 44 39.3 45.1 39.2 

2
15 122 131 47.6 35.8 44.8 36.2 85.2 75.5 83.7 76.1 50.5 45.2 51 45.5 

2
16 95.4 106 51.4 40.5 48.1 38.9 84.8 76.2 88.7 75.9 53.1 48.5 54.8 48.2 

Table 10 : DS8, vector<unordered_set<string>>  

Now we consider  the final data structure in this second set of four  employing 

std::vector  as the outermost container , vector<unordered_set<string >> (DS8), 

which has a high allocation Density  (D) and a moderately high (unimodal) memory -
size Variation  (V). 

 
The above data for DS8 again shows that the global allocator (AS1-AS2) is the least 
performant, and that t he monotonic allocator by itself  (AS3-AS6) is the best choice . 

Access via a virtual -function -based  interface (when compared to direct access) seems 
to have a consistant overhead for the global allocator (~1 0%), but not nearly so for 
the local allocators , especially the monoto nic allocator ( AS3-AS6), for which run time  

using a pure abstract base class for data structures having ς  or more ( composite ) 
elements was consistently better ( ~5-7%). òWinking outó is agai n a relative win (~5 %-
25%) across all local allocators . Note that the global -alloca tor  times (AS1-AS2), much 

like DS6 and DS7 , peak and then rec ede with data structure size, where as all of the 

local -allocator times (AS3-AS14) above ς elements are largely monotonically non -

decreasing.  
 

We pause here briefly to mention that the  detailed raw  data present ed throughout 
this paper reflects execution  on just a single platform. In preparations for th e first 
revision of this paper  (P0089R0) , however,  we ran these benchmarks using multiple  

compilers on multiple machine types.  An interesting result , the details of which can 
be viewed online, is that, for the Clang compiler  (only) , the runtime overhead of 
accessing via an abstract base class on the hardwar e platforms we tested was two to 

three times that of  using an allocat or directly, but only for the  previous four (out of 

twelve) data structures ( DS5 -DS8), which have  an std::vector  at the top -level.  
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We now turn to consider the t hird and  final set of four data structures, each having 

instead an  std:: unordered _set  as the outer -most container.  

 

7.9 DS9, unordered_set<vector<int>> 

 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 

AS1
1 AS12 AS13 AS14 

2
6 0.97 0.94 0.23 0.19 0.24 0.21 0.26 0.27 0.30 0.26 0.25 0.26 0.25 0.24 

2
7 1.40 1.43 0.22 0.21 0.22 0.19 0.24 0.26 0.25 0.27 0.24 0.26 0.24 0.24 

2
8 1.35 1.39 0.25 0.22 0.24 0.23 0.30 0.35 0.34 0.33 0.24 0.23 0.25 0.24 

2
9 1.29 1.32 0.22 0.18 0.22 0.17 0.37 0.38 0.37 0.36 0.23 0.22 0.19 0.22 

2
10 1.32 1.38 0.24 0.22 0.22 0.19 0.41 0.39 0.42 0.39 0.23 0.24 0.23 0.22 

2
11 1.34 1.36 0.23 0.21 0.22 0.17 0.44 0.42 0.43 0.41 0.23 0.23 0.25 0.22 

2
12 1.34 1.41 0.22 0.20 0.22 0.16 0.46 0.42 0.45 0.43 0.23 0.17 0.27 0.22 

2
13 1.46 1.54 0.22 0.18 0.22 0.16 0.48 0.49 0.49 0.48 0.23 0.21 0.25 0.21 

2
14 1.53 1.61 0.22 0.17 0.22 0.18 0.43 0.42 0.45 0.41 0.24 0.22 0.24 0.22 

2
15 1.61 1.76 0.25 0.21 0.24 0.19 0.50 0.49 0.50 0.49 0.24 0.18 0.23 0.21 

2
16 1.79 1.92 0.28 0.25 0.29 0.24 0.55 0.51 0.56 0.55 0.30 0.23 0.32 0.24 

Table 11 : DS9, unordered_set<vector<int>>  

 

The first data structure in our final group of four, unordered_set<vector<int >>,  

has a high allocation Density  (D), and a nil Variation  (V). 

The data for DS9 (above) again suggest that the global allocator is clearly the least 

effective choice  (~300% -~900%) , and that the relative overhead of access via a virtual -
function interface (compared to direct acc ess) is quite small ( ~1%-5%) for the global 

allocator, and non-existent  for all local allocators . For this data structure, the best 
allocator choice again appears to be monotonic (AS3-AS6), however the composite 
allocator  ð i.e. a multipool backed by a monotonic allocator ( AS11-AS14) is a very 

close second . Note that the substantial  (per-leaf -element) increase in run time (with  
respect to increasing data -structure size) for the global allocator (AS1-AS2) is not 

refl ected in local allocators employing a monotonic allocator (AS3-6, AS11 -AS14).  For 
larger data -structure sizes, t here was also a consistent benefit to òwinking outó local 
memory  (~2%-30%), especially  where a monotonic  allocator was involved . 
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7.10 DS10, unordered_set<vector<string>> 

 
 

Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  virtual   Ŷ virtual Ÿ   Ŷ virtual Ÿ   Ŷ virtual Ÿ 

    (wink)  (wink)  (wink)  (wink)  (wink)  (wink) 
data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 

AS1
3 AS14 

2
6 73 73.2 9.41 9.39 9.34 8.97 41.7 39.7 41.1 39.3 11.2 10.4 11.2 10.3 

2
7 74.7 75.3 9.32 9.34 9.24 8.87 46.2 43.7 45.3 44.2 12.7 10.6 11.4 10.8 

2
8 83.1 85.4 18 17.3 16.9 17.2 62.2 58.9 61.9 57.6 23.2 22.3 23.1 22.4 

2
9 91.4 94.9 19 19 18.8 18.6 65 59.9 64.4 58.9 24.3 22.6 24.1 22.6 

2
10 98.2 101 19.2 18.9 19.1 18.6 66.5 59.7 65.4 59.1 24.8 22.6 24.6 22.7 

2
11 99.5 101 19 19.1 19.3 18.4 66.9 59.5 66.1 58.7 24.9 22.7 25.1 22.5 

2
12 102 105 19.4 19 19.2 18.8 67 58.9 65.8 59.4 25.3 22.6 25.1 22.7 

2
13 103 104 19 19.2 19.4 18.4 66.7 59.2 66.2 58.2 25.3 22.9 25.5 22.6 

2
14 95.8 97.2 19.8 20 20.3 19.3 62.8 55.6 61.9 54.3 29.2 26.8 29.6 26.5 

2
15 87.1 89.8 24 23.7 24 23.5 64.3 55 61.9 54.9 33.6 30.8 33.5 31 

2
16 77.1 78.2 25.6 25.7 26 25.1 63.9 55.5 63.3 54.5 35.3 33 35.7 32.6 

Table 12 : DS10, unordered_set<vector<string>>  

Next we consider unordered_set<vector<string >> (DS10), which has a high 

allocation Density  (D) and a moderately high (unimodal) memory -size Variation  (V). 

The results for DS10 , unordered_set<vec t or<st r ing >> (above) are, unsurprisingly,  

not dissimilar for those of DS8 , ve ctor<unordered_set<string>> . The global 

allocator is yet again the least efficient choice , and the best choice  yet  again appears 
to be the monotonic allocator alone  (~300% -600%) , with the overhead of non -direct 
access minimal : ~1%-3% for the global allocator  (AS1-AS2), and non -existent for all  

local allocators  (AS3-AS14). The technique of òwinking outó the data structure is not 
as consistant a win fo r the monotonic allocator alone ( AS3-AS6) as it was i n DS8 , but 

con tinues to be so for the other two (less runtime performant ) local allocator 
mechanisms  (AS7-AS14).  
 

Interestingly, a s with DS8, there appears  to be a n across -the -board  òplatform 

boundary ó (i.e., where run time s differ sharply ) for data structures between ς and ς 
(composit e) elements , and another on e, more closely tied to the monotonic allocators 

(AS3-AS6, AS11 -AS14) between ς  and ς  elements . Global alloca tor times (AS1-
AS2) again pe ak and then reced e, whereas all local a ll ocator times (AS3-AS14), for 

systems  above ς composit e elements , are again ð for the most part ð monotonically 
increasing . 
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7.11 DS11, unordered_set<unordered_set<int>> 

 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 

AS1
3 AS14 

2
6 28.7 29.1 3.06 2.75 3.55 3.14 4.96 4.4 5.41 4.84 3.24 2.73 3.73 3.15 

2
7 29.1 29 3.02 2.71 3.47 3.06 5.03 4.52 5.49 4.89 3.23 2.66 3.68 3.08 

2
8 28.8 29.1 3 2.68 3.45 3.04 5.18 4.55 5.57 4.98 3.24 2.66 3.65 3.06 

2
9 31.8 32.3 2.99 2.64 3.43 2.98 5.12 4.54 5.55 4.95 3.22 2.6 3.65 2.99 

2
10 46.5 47.1 2.95 2.65 3.4 2.99 5.13 4.57 5.62 4.96 3.21 2.58 3.62 2.97 

2
11 53.3 53.5 2.94 2.64 3.43 2.96 5.58 4.84 5.75 5.39 3.2 2.63 3.67 3.01 

2
12 54.6 55 3.02 2.66 3.43 2.98 6.47 5.94 6.99 6.28 3.83 3 4.21 3.38 

2
13 56.5 56.5 3.38 2.98 3.72 3.26 7.04 6.04 7.48 6.45 4.15 3.03 4.58 3.39 

2
14 52.1 52.2 3.5 2.99 3.88 3.25 7.35 6.07 7.83 6.59 4.33 3.05 4.76 3.38 

2
15 45.7 46.2 3.62 2.99 3.95 3.27 7.7 6.39 8.11 6.83 4.43 3.06 4.81 3.44 

2
16 39.3 39.3 3.72 3.05 4.03 3.31 7.57 6.3 8.09 6.61 4.52 3.1 4.92 3.45 

Table 13 : DS11, unordered_set< unordered_set<int>>  

We next consider unordered_set<unordered_set<int >> (DS11), which has a high 

allocation Density  (D) and a fairly low (entirely bimodal) memory -size Variation  (V). 

The data for DS11 (above) strongly suggest ð even more so than any other data set  
considered in this benchmark ð that the global allocator is by far  the least effective 

choice : ~10x-20x slower when compared to the best one s, which in this case is either  
a monotonic allocator alone (AS3-AS6), or possibly one backing  a m ultipool  allocator  

(AS11-AS14), that òwinks outó allocated memory , and  provides direct access to the 
allocator, as opposed to via a base class ( i.e., AS4 or AS12). The relative overhead of 
access via a virtual -function interface  (compared to direct access) is negli gible  (~0%-

1%) for the global allocator  (AS1-AS2), and somewhat  larger (~5%-10%) for all the 
local allocators  (AS3-AS14) ð at least on a percentage basis ; the maximum absolute 

runtime overhead , however, remains roughly  the same  at  ~0.5s . The multipool 
allo cator alone ( AS7-AS10) was again less effective (~2x) than the other local allocator  
strategie s (AS7-AS14), but still a considerable improvement (~5x-10x) over the global 

one (AS1-AS2). The relative advantage of òwinking outó memory was significant 
across the board (~10% -45%), especially when a monotonic allocator was involved, 
and the composite allocator (AS11 -AS14) in particular.  

 
We not e that the global allocator (AS1 -AS2) seemed to hi t a  òplatform boundary ó 

between ς and ς  (composite) elements , where the (per -leaf -element) run time  

increased dramatically  (~50%), before eventually receding  (see rows ς -ς ).  This 
anomaly  did not appear to be reflected in any of the local allocators  (AS3-AS14), 
although  there did appear to a  fairly abrupt increase in run time (~1 0%-%25) for all 

local allocators, when the data size increased from  ς  to  ς  (composite) elements.  
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7.12 DS12, unordered_set<unordered_set<string>> 

 

 
Ŷ global  Ÿ Ŷ monotonic Ÿ Ŷ multipool Ÿ Ŷ mono + multi Ÿ 

  
virtual 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

  
Ŷ virtual Ÿ 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 121 125 25.9 23.7 26.1 23.9 56.3 54.5 56.7 54.7 27.4 25.8 27.8 26 

2
7 141 145 26.4 24.3 25.6 23.4 62.1 59.6 62.5 60 27.9 25.8 28.3 25.8 

2
8 165 173 31.5 27.3 32.2 27.7 77.4 73.7 77.8 74.2 34.8 31.9 35.6 32.2 

2
9 171 178 35.9 27.6 34.4 27.8 80 73.7 79.7 74.6 35.7 32 36.5 31.9 

2
10 177 182 38.7 28.6 35.6 27.9 81.1 74.3 81.3 74.3 36.7 31.8 37.1 32 

2
11 177 183 38.2 27.6 36.2 27.7 81.3 74.3 82.2 74.1 37 32 37.8 31.9 

2
12 179 186 39.1 27.7 36.5 28 81.6 73.5 81.5 74.1 37.3 31.8 37.9 32.1 

2
13 165 169 39 27.8 36.7 27.8 81.3 73.9 82.8 73.5 37.3 32.1 38.3 32.1 

2
14 153 156 40.9 29.6 38.7 29.6 81.5 74.1 82.4 73.7 44.4 39.2 45.4 39.1 

2
15 122 131 47.6 35.7 44.8 36.1 85.7 75.2 83.9 75.4 51 45.1 51.4 45.5 

2
16 100 111 51.4 40.4 48 38.8 85.1 75.5 86.2 75.6 53.6 48.4 54.6 48.2 

Table 14 : DS12, unordered_set<unordered_set<string>>  

In this final data structure , we consider unordered_set<unordered_set<string >> 

(DS12), which has a very high allocation Density  (D) and a moderately low (bimodal) 
Variation  (V). 

The data for DS12 (above) again suggests that the global allocator (AS1-AS2) is the 

least runtime performant choice  (~300 % to 500%) compared with the most 
performant one, m onotonic  (AS3-AS6), but not nearly as much so as in the preceding 

data structure, DS 11 , where the leaf component was instead of type int . There 

seems to be a òplatform boundaryó between ς and ς (composite) elements, where 
run time  jumps abruptly (~15%-25%) for all allocators . The overhead of accessing 
through a n abstract  base class (ver sus direct ly ) for the global allocator (AS1 -AS2) was 

generally minimal (~1 %-3%), but increased (to ~10%) above an other  apparent across -

the -board òplatform boundaryó between ς  to ς  (composite ) elements, in which the 

run time  of the global allocator decreased  by ~20%, while the run time s of all local 
allocators increased  by roughly the same percentage . This unusual trend continued 

between ς  to ς  elements .  

 
The overhead for accessing local allocators via a base c lass varied, sometimes more, 
someti mes less, but, for the m onotonic  allocator alone ( AS3-AS6) for data structure s 

having at least ς elements, the òoverheadó was consistently negative  (~5%-10%) ð 
that is, access via a  virtual function was typically faster than direct access.  Finally 

we not e that, for all local allocators, òwinking outó for this particular data structure  
was a lways a  very significant win : ~10%-40%.  (Due to unexpected result s observed 
for this specific data structure, we nominate it ð in particular ð as a prime candidate 

for  further study.)  
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The DS9 -DS12 experiments show similar relative performance to DS5 -DS8 for the 
corresponding allocation strategies. Again, multipool  allocators perform significantly 

better when the leaf -most element type is int  rather than string , while t he 

monotonic  allocator retains most of its gains in such cases.  

We now make several general empirical observations deliberately avoiding any (naïve) 

attempts at trying to explain their underlying causes. The most obvious result, 
looking at the heat -mapped charts, is that monotonic  allocators are always a big win, 

generally giving a speedup in the range of 4x -20x. The relative cost of direct vers us 
abstract -base-class access to allocators (where it exists at all) appears to be mostly in 
the ~2%-10% range. Th e multipool  allocator appears to provide much less of a gain, 

although still observable, which is generally in the ~20%-100% range.  Note, however, 
that the multipool  allocator seems competitive with the m onotonic allocator for the 

data structures incorpor ating unordered_set<int>  (DS7 and DS11 ), generally 

offering more than a 5x speedup.  

Similarly, the òwink -out ó strategy generally offers a modest , but predictable win in 

most cases, with a particular affinity for combining  some form of  monotonic allocator 

with containers incorporating the composite element unordered_set <T>.  When the 

type of T is string , best performance is achieved with a simple monotonic allocator, 

but when the type of T is int , best performance is achieved with a monotonic 

allocator backing a multipool allocator .  In the two cases of  data structure s 

incorporating the composite element  vector<string>  (DS6 and DS 10) with a simple 

monotonic allocator (AS3-AS6), however, the òwink -out ó strategy seems to have no 
effect, neither positive nor negative . 

As previously stated (section 7.8), l ooking at additional data (available online ) from 

runs using  a variety of compilers, operating systems, and hardware platf orms, there 

is an odd effect for  Clang specific to data structures DS 5-DS8, vector s of containers. 

The time taken to run the benchmark for allocation via an abstract base class is two 

to three times that of using an allocator directly, although the monotonic  allocator 
dispatched through an abstract base class still handily outperforms the standard 

(default) allocator by around a factor of 5x -10x (rather than by a factor of x20). N.B., 
we speculate that the likely effect is that other compilers are doi ng a better job at 
devirtualization in these examples. We also note that, at the time these experiments 

were conducted , devirtualization was an active topic on the Clang development lists.  

A second outlier is the Microsoft platform, which shows a much lowe r benefit than 

the Unix platforms from applying custom allocation strategies (AS 3-AS14), rarely 
showing more than a doubling of performance. Similarly, data structures featuring 

containers of int  appear to pay a runtime cost of ~50%-100% for allocating thr ough 

an abstract base class compared to using an allocator directly, while data structures 

of containers of string  show a runtime overhead of around 5%.  Comparing the run  

time for Microsoft Visual C++ 2015 with the Linux -Intel results, the (containers -of-

)containers -of-string  experiments complete in a similar time, while the (containers -

of-)containers -of- int  experiments complete in around ~10%-25% of the time when 

run on Windows.  The final oddity on Windows is that , for  the largest experiment 
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sizes, unles s a monotonic  allocator is used, the last 3 or 4 rows of many of the tables 
either fail to complete, or suddenly become excessively expensive, such as taking an 

hour to run rather than <30 seconds . 

Comparing across platforms, the Linux/Power7 results show similar (relative) 

performance across the benchmarks when using the same compiler.  However, the 
gcc results for the standard (default) allocator are substantially (3x -4x) slower for 

vector<int>  and containers of vector<int>  (DS1, DS5, and DS9) .  This specific 

result is not observed when using  Clang.  However, the poor results for  Clang when  
allocat ing  via a virtual -function interface are even more pronounced on the Power7 
platform.  

8 Benchmark II: Variation in Locality (Long Running) 

Perhaps the most valuable aspects of local (òarenaó) allocators is that, besides 
speeding up short -running programs, as demonstrated in the previous benchmark, 

they keep long ðrunning ones from slowing down over time. All global allocators 
eventually exhibi t diffusion  ð i.e., memory initially dispensed and therefore 

(coincidentally) accessed contiguously, over time, ceases to remain so, hence runtime 
performance invariably degrades. This form of degradation has little to do with the 
runtime performance of th e allocator used, but rather is endemic to the program 

itself as well as the underlying computer platform, which invariably thrives on locality 
of reference . 

 
N.B., diffusion  should not be confused with fragmentation  ð an entirely different 

phenomenon pert aining solely to (òcoalescingó) allocators (not covered in this paper) 
where initially large chunks of contiguous memory decay into many smaller (non -
adjacent) ones, thereby precluding larger ones from subsequently being allocated ð 

even though there is su fficient total memory available to accommodate the request. 
Substituting a pooling allocator, such as the  one used in this benchmark (AS7 ), is a 

well -known solution to the fragmentation  problems that might otherwise threaten 
long -running mission -critical s ystems.  
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To demonstrate this common degradation phenomenon resulting from memory 

dif fusion  across subsystems  over time, we created a simple program that acts like a 
long -running time -multiplexed system , similar in nature to one employing 

Boost. Asio . Given that this experiment is all about access  Locality  (L) in a long -

running program, the allocation Density  (D) approaches (is effectively) zero, and the 
memory -size Variation  (V), though entirely irrelevant here, happens to be nil as well. 

The overall system, G, will consist of an std::vector<Subsystem *>  of size k , where 

each subsystem, S, is modeled as an std::l ist<int > initially having |S|  links; 

hence,  |G | = k * |S|, and the number of subsystems, k , will be the (integral) 

ratio |G|/|S| . At the start of the program, each subsystem, S, is new-ed in turn, and, 

when constructed, populates itself with the specified |S|  links. The system, G, is now 

in its initial state . 

The first experiment is geared towards identifying opportunities  for the use of 
allocators ð specifically a multipool -allocator -based strategy (e.g., AS7 or AS9) ð 

before actually plugging one in. To that end, we want to contrast the runtime 
performance of subsystems where memory has been allocated contiguously and then 
accessed immediately, and where it has been first òshuffledó (which inevitably occurs 

over time in practice) to be less so, and then similarly accessed. We therefore define a 

parameter, sf , that represents the shuffle factor .  

Specifying a shuffle factor of 0 leaves the system in its initial sate. A shuffl e factor of 

one (s f = 1 )  means that each S (linked list) is visited (in turn) and popped exactly 

once (from the front), immediately after which a new value is pushed onto (the back 

of) the list in some randomly chosen S in G. After each S has been visited,  this 

traversal process is repeated until each element in each list has been popped exactly 

once ð i.e., a total of s f *  |G| = 1 * |G|  pop/push operation pairs has occurred. A 

shuffle factor of two means that the process is repeated until s f * |G| = 2 * |G |  

pop/push operation pairs have been executed (though there is no longer any 

 

   G:  

S S S S S S S . . . S 

Physical System Size | G| = k * |S|  

k 
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assurance that all of the lists still have the same length that they had initially). The 
larger the shuffle factor, the more non -contiguous and òrandomó the memory 

associated with  each subsystem becomes.  

In order to determine the extent to which local memory allocators might be useful ð 

prior to actually installing them ð we wanted to measure the effect on memory access 
times within each subsystem as we vary the amount of shuffling . To do that, we will 
want to iterate through the linked list in each subsystem some number of times, 

accessing each integer datum in turn, before moving to the next subsystem. An 

access factor , af , of two denotes two complete passes through a subsystemõs linked 

list before moving to the next one in the vector of subsystems comprised by G. While 

we are at it, we will also want to vary the number subsystems, k , and, inversely, 

subsystem -size, |S| , so as to keep the overall physical system size, |G| , constant . 

Keep in mind that this first experiment was done entirely using the default (global) 

allocator (AS0).  
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0 1 2 3 4 5 6 7 8 9 

ρπ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

ρπ 1.0 11.4 15.6 16.2 16.0 15.8 15.6 15.8 15.7 16.2 

ρπ 1.0 7.7 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2 

ρπ 1.0 8.0 8.1 8.1 8.1 7.9 8.2 8.2 8.3 8.2 

ρπ 1.0 5.4 5.4 5.4 5.4 5.7 5.3 5.4 5.3 5.4 

ρπ 1.0 3.8 4.0 4.1 4.2 4.1 4.2 4.3 4.2 4.2 

ρπ 1.0 3.4 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.6 

ρπ 1.0 4.7 5.7 5.8 5.7 5.8 5.8 5.7 5.5 5.6 

Table 15 : Shuffle Effects  



P0089R1 : On Quantifying Memory -Allocator Strategies  Page 32  of 57  

The graph and corresponding table (above) illustrate the effect of shuffling on an 
overall problem size of 10 7 links. Each row (back to front in the graph) corresponds to 

a different system size, where ρπ (top row ) represents a single subsystem of size ρπ 
links, and ρπ (bottom row) represents ρπsubsystems, each having (on average) just 
a single link. The columns (left to right in the graph) represent the number of times 

each linked list (on average) was shuffled .  

The element values in the table ð and corresponding height of the graph at the 

various (shuffle factor and subsystem size) coordinates, represents the ratio of access 
times ð after shuffle / before shuffle ð once the shuffle times themselves (which 
shou ld be the same for both) have been, respectively, subtracted. For this initial 

experiment, the access factor, af , was held constant at 10 . Again, keep in mind that 

all memory accesses so far in this benchmark are via the default allocator (AS0). It 
will tu rn out (below) that whatõs important is whether the memory is accessed  before 

(-) or after ( +) it is òshuffledó. 

Each entry in every row of the table is scaled to the run without prior shuffling (sf = 

0); hence, column 0 is (by definition) identically 1.0  for each subsystem size |S|  in 

the range [ ρπ.. ρπ]  (shown, top to bottom, on successive rows in the table). 

Similarly, when the subsystem size |S|  is the same as the overall systemõs size |G | 

(top row), there is no distinction between a local and a glob al allocator; hence , each of 

the entries in the top row of the table, corresponding to a single subsystem S of size 

|S| = |G| = ρπ is naturally expected to be 1.0  as well.  

Recall that the physical size of each overall system |G|  is held constant at 10 7 (links), 

and that the access factor is maintained throughout at 10 (i.e., each linked list of a 

subsystem, S, is accessed sequentially 10 times before moving on to the next 

subsystem), and that each subsystem is visited, in turn, exactly once, leading to hig h 

temporal  locality, while the physical  locality varies from low (top row of the table, 
back edge of the graph) to high (bottom row of the table, front edge of the graph).  

The graph was provided to help to visualize the data in the table. What the graph fails 
to demonstrate, however, is how quickly the shuffling effects take hold before 
reaching a horizontal  asymptote  (left to right), after which no additional performance 

degradation  is observed ; it turns out that the table makes this specific point much 
more lucidly.  

What the graph does clearly indicate, however, is that the adverse effect of shuffling 

on memory access times is more pronounced for fewer, larger subsystems (e.g., |S| 

= 10
6) than for many smaller ones (e.g., |S| = 10

3). For any given non -zero shuffle 

factor, the data indicates that the deleterious effects due to memory diffusion  over the 

middle of the range of |S|  are generally increasing with respect to increasing |S |  ð 

i.e., with decreasing  physical  locality (per subsystem).  

Given a demons trably ample degree of memory òshuffleó (say, sf = 5 ), we next seek 

to determine more precisely under what specific circumstances locality ( logical  as well 

as physical ) within subsystems most adversely affects the relative runtime of 
accessing memory, and therefore fairly begs for a local allocator.  
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So far, we have been able to fully characterize our system with just four parameters 

(|G| , |S| , af , and sf ). Recall from section 5, however, that locality is defined in 

terms of three factors: number of instruc tions ( I ), size of memory involved ( M), and 
number of transitions away from the subsystem ( T). 

In order to model the difference between higher temporal locality (where I / T  is 

relatively large) and lower temporal locality (where I / T  is relatively small), we need to 

introduce a fifth parameter called the repeat factor, rf , that specifies the number of 

times to traverse the vector of subsystems ð each time performing the appropriate 

number of local accesses as governed by af . By keepin g the product of the local 

accesses (af ) and the subsystem iterations ( rf ) constant (e.g., af * rf = 256 ), we 

can observe the relative effects of high versus low temporal locality  for the same 
number of total accesses. The repeat factor can also be used to  increase the run  time 
of the relevant part of the experiment. Note that, for this first revision of the paper we 

increased this product by an order of magnitude (i.e., to 2,560) in order to reduce 
noise in the observed results (at the cost of literally we eks for dedicated run  time).  

If we are to make a fair comparison regarding the relative runtime overhead due to 
diffuse (i.e., òshuffledó) memory, weõll need to do the same amount of work shuffling 
memory either way. We will therefore hijack the sign of th e shuffle factor to imply 

whether the access occurs before ( -) or after ( +) the indicated data access pattern:  

                                             ( |G| ,  |S| ,  af ,  sf ,  rf  ) 

Try to remember that the sign of sf  (-/ + -> before/after) applies to the access , and 

not the shuffle . (This interface was clearly a horribly bad design, sorry.) One more 
time: A negative  shuffle factor, sf , implies  the data access  occurs before  the 

shuffle . (Another, somewhat less arbitrary, way to  remember sf  is that, in terms of 

run  time, negative  should be less than positive . 

For additional syntactic convenience, we will also assume that a negative  global 

physical size for |G|  implies a positive  binary exponent for both that value and the 

subsequent subsystem size, |S| . 

Using this notation, we can concisely characterize arbitrary runs of the program:  

¶ - 20 18 32 - 3 8 : The global physical system size, |G | , is 2 20. The initial size of 

each of the (fo ur) subsystems, |S| , is 2 18. The number of times the link -list 

within a subsystem will be traversed (before proceeding to the next one), af , is 

32. The number of shuffles that will occur after  the data is accessed, sf , is 3. 

The number of times the sequenc e of subsystems in the overall system, G, will 

be traversed, rf , is 8.  

¶ - 20 18 32 +3 8 : Same as above, except that the shuffling of data occurs 

before  accessing the data (i.e., the access comes after, and is typically slower).  

¶ - 20 18 8  +3 32 : Same as above,  except that the number of times each of the 

subsystemsõ linked lists is traversed is decreased to only 8 times before moving 

to the next subsystem, whereas the number of iterations over the sequence of 
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subsystems (comprised by G)  is increased to 32, there by reducing temporal 

locality, while keeping the overall number of memory accesses the same (i.e., 

256 * |G|  = ς ). 

¶ - 21 18 8  +3 32 : Same as above, except the overall physical size of the 

problem, |G| , has doubled, yielding eight ( ς -ς) subsystems, each of size ς. 

¶ - 21 19 8 +3 32 : Same as above, except the size of each individual subsystem, 

|S| , has doubled (resulting in half as many subsystem, k = |G|/|S|  = 4 ). 

¶ - 21 19 8 +5  32 : Same as above, except the number of times each subsystem 

is shuffled (before the data is accessed) has increased by two.  

¶ - 21 19 0  +5 32 : Similar to the above in that there are again 32 traversals of 

the (four) subsystems, however, no accesses are performed (this is how we 
determine the combined shuffle and travers al runtime costs in calculations, 

which are then subtracted from the total runtime).  

¶ - 21 19 8 +5  0: Similar to the above except that there is no traversal of the 

subsystems (what we could have used to determine just the shuffle, but not the 
traversal costs , which would have somewhat less accurately reflected the 
relative runtime costs of pure access).  

In order to explore the entire space, we assumed (based on the previously 

presented data) a constant shuffle factor, sf , of 5, and examined a sequence of 

incr easingly large physical problems sizes, |G| , contrasting both physical and 

temporal locality for each. From section 5.3, we conclude that  physical locality  is 
proportional to the ratio of the number of instructions, I , executed within a 

subsystem to the si ze of the subsystem, M  ~|S |, holding the number of 

transitions away from the subsystem, T , constant (all with respect to the duration 
of interest), whereas temporal locality  is proportional to I / T , holding M  constant.  

When the size of a problem is sufficiently small, one might reasonably assume 
that all relevant memory fits in high -speed cache, and there is no need for a local 

memory allocator. The data we observed bears this hypothesis out. For physical 

sizes, |G| , bel ow 2 18, there was no observable benefit for using  local  allocators on 

any of the platforms on which we ran this benchmark. Once the problem size 

exceeds a certain threshold, however, local memory allocators become relevant.  

The results of two specific runs  of this benchmark, the first of size |G|  = 2
21 and 

the second of size |G|  = 2
25 follow. The shuffle factor, sf , as discussed above, is 

held constant at 5, the product of the access factor, af , and the repeat factor, rf , 

are held constant at 256 * 10 = 2,560  (varying inversely by powers of 2) and 

subsystem size, |S| , varies (also by powers of 2) from 1 to |G| .  
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ς  ς  ς  ς  ς  ς  ς  ς  ς  

21 1 1.06 1.01 1.09 1.04 0.96 0.98 0.97 0.99 

20 11.3 11.5 11.3 11.4 11.2 11.3 11.3 11 11.6 

19 14.8 15 14.7 14.8 14.7 14.8 14.3 13.1 13.8 

18 18 18 18 17.9 17.7 18.4 16.7 16.6 15.4 

17 6.04 6.17 6.3 6.51 8.64 9.95 9.17 11.5 15 

16 5.07 5.07 5.13 5.19 7.16 7.24 7.52 10.8 14.9 

15 6.08 6.08 6.15 6.05 5.37 7.3 7.72 10.4 15.2 

14 6.77 6.81 6.78 6.67 6.25 7.23 7.73 10.9 15.2 

13 7.55 7.59 7.46 7.36 6.92 7.51 7.99 10.8 14.9 

12 4.82 4.79 7.7 7.6 7.08 7.26 7.55 11.4 14.9 

11 5.05 4.99 3.21 6.66 6.23 5.85 6.27 9.83 14.9 

10 4.65 4.87 4.93 2.92 5.71 5.99 6.15 10.7 15 

9 2.01 2.23 2.38 4.15 3.03 6.14 6.18 9.67 14.8 

8 2.32 2.4 2.6 2.08 3.63 4.86 6.01 9.25 14.6 

7 1.68 1.75 1.92 2.36 2.3 3.51 6.12 10.5 14.2 

6 1.22 1.31 1.44 2.06 2.76 4.18 6.16 9.93 13.2 

5 1.15 1.24 1.39 1.75 2.4 3.45 6.35 9.5 10.9 

4 1.13 1.23 1.37 1.72 2.53 4.05 6.6 11 9.77 

3 1.1 1.19 1.37 1.72 2.55 3.66 6.42 11.6 10.5 

2 1.04 1.14 1.36 1.79 2.43 4.61 8.51 11.7 8.91 

1 0.93 1.06 1.26 1.66 2.55 4.86 11.6 12.9 10 

0 0.78 0.9 1.1 1.61 2.88 7.75 16.2 17.2 4.06 

Table 16 : Problem size 2 21 , without allocators  
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ς  ς  ς  ς  ς  ς  ς  ς  ς  

25 0.97 1.72 0.98 1.02 1.04 1.00 1.00 1.00 1.01 

24 0.5 12.71 12.81 13.02 13.08 13.02 13.01 12.95 13.11 

23 14.2 14.03 14.10 14.07 14.14 14.05 14.07 14.13 14.14 

22 16.7 16.71 16.50 16.55 16.49 16.62 16.55 16.56 16.53 

21 17.8 17.90 17.87 17.72 17.85 17.83 17.83 17.76 17.89 

20 18.6 18.60 18.52 18.54 18.45 18.64 18.43 18.62 18.66 

19 20.1 20.16 19.96 19.85 19.80 19.64 19.25 19.12 18.93 

18 23.4 23.54 23.51 23.20 23.13 22.72 21.85 20.45 19.34 

17 9.81 10.00 10.06 10.29 10.69 11.53 13.01 15.53 19.30 

16 6.81 6.87 6.98 7.21 7.70 8.64 10.41 13.75 19.33 

15 6.8 6.88 7.00 7.17 7.66 8.63 10.38 13.66 19.32 

14 6.82 6.86 7.00 7.20 7.66 8.56 10.39 13.66 19.18 

13 7.03 7.08 7.19 7.39 7.85 8.79 10.56 13.77 19.15 

12 6.72 6.75 6.90 7.12 7.62 8.52 10.21 13.62 19.30 

11 4.86 4.92 5.07 5.35 5.88 6.92 9.01 13.00 19.16 

10 3.36 3.49 3.71 4.07 4.69 5.91 8.25 12.32 18.43 

9 3.15 3.29 3.51 3.86 4.54 5.87 8.25 12.37 18.28 

8 2.76 2.89 3.13 3.54 4.33 5.66 8.12 12.43 18.16 

7 2.52 2.66 2.96 3.45 4.25 5.67 8.16 12.65 18.10 

6 1.94 2.14 2.49 3.03 3.91 5.45 8.02 12.72 17.64 

5 1.34 1.49 1.78 2.33 3.24 4.79 7.54 12.41 15.84 

4 1.17 1.28 1.51 1.96 2.83 4.39 7.39 13.22 16.25 

3 1.12 1.24 1.45 1.89 2.73 4.30 7.85 14.74 17.32 

2 1.06 1.19 1.43 1.90 2.71 4.70 9.98 18.32 20.54 

1 0.97 1.11 1.36 1.78 2.91 5.68 13.74 22.91 24.73 

0 0.82 0.97 1.22 1.88 3.50 8.30 18.92 30.99 5.68 

Table 17 : Problem size 2 25 , without allocators  

 

Each of these two runs (above) clearly shows that the greatest opportunity for 

effective use of local memory allocators occurs when subsystem size, |S| , is relatively 

(but not maximally) large ð i.e., physical locality is low (as shown near the back of the  
graph, top of the table), and quickly tapers off (towards the front, bottom, 

respectively) with reduced subsystem size (i.e., increasing physical locality). On the 
other hand, when temporal locality is minimal (right side), the opportunity for 
significant  performance improvement using local allocators spans a much wider 

range of subsystem sizes as evidenced by the impressively high ratio values (~10x -
20x) observed near the extreme right of the graphs/tables.  

The graphs based on data sets for system sizes o f 2 21  and 2 25 , using just the global 
allocator (AS0), are reminiscent of the middle of the process of inflating a hot -air 
balloon: The area of low temporal  locality (towards the right) and low physical  locality 

(towards the back) is fully inflated, while t he area of higher temporal  locality (towards 
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the left), and higher physica l locality (towards the front) is only partially so. We assert 
that, the greater the value in the table (depicted as the vertical height of the surface), 

the more opportunity there i s for a local  allocator to be useful at improving runtime 
performance by preserving access  Locality ( L).  
We see, however, that there are some anomalies with the data that we are, so far, 
unable to explain. In particular, the entire family of graphs we have looked at shows 

an unexpected spike when the temporal and especially the physical locality are 
pathologi cally low. In particular, we are unable to explain why the input parameters 

|S| = 1 and rf = 2 0 produce such a disproportionately high result value, seen in 

both runs, and then just one step to the right (lower locality) produces such an 
unexpectedly low o ne. Given that this is a pathological òcorneró of the graph ð i.e., a 

subsystem, S, consisting of just a single link accessed just twice before a context 

switch to another subsystem vers us a similarly tiny subsystem accessed exactly once  
ð we do not feel that these result s, although reliably repeatable, impact the validity of 

our overall conclusions, but clearly they warrant further investigation.  

Now, suspecting that (and where) there may be substantial opportunities for runtime 
improvements, we re -ran be nchmark for the two example system configuration sizes 

(221  and 2 25) above, but this time providing each subsystem, S, with its own local 

multipool -based allocation strategy (AS7) used directly and without òwinking outó the 
remaining data. The results are compelling: Providing a local allocator uniformly kept 

degradation below a factor of three, and ð in almost all cases ð well below a factor of 
two! Compare these results with degradations shown in the previous pair of graphs 

(and corresponding tables) refl ecting the increased run times with no local allocator, 
which often exceeded an order of magnitude!  

 

 



P0089R1 : On Quantifying Memory -Allocator Strategies  Page 40  of 57  

 



P0089R1 : On Quantifying Memory -Allocator Strategies  Page 41  of 57  

 
ς  ς  ς  ς  ς  ς  ς  ς  ς  

21 1.06 1.02 0.98 1.02 1.02 1.04 1 1.11 1.01 

20 1.53 1.52 1.62 1.63 1.55 1.63 1.58 1.54 1.53 

19 1.65 1.75 1.65 1.65 1.65 1.66 1.66 1.68 1.69 

18 1.51 1.49 1.46 1.42 1.43 1.47 1.52 1.66 1.75 

17 1.48 1.48 1.48 1.51 1.48 1.54 1.59 1.65 1.81 

16 1.48 1.52 1.49 1.5 1.55 1.56 1.56 1.67 1.82 

15 1.48 1.48 1.48 1.49 1.51 1.55 1.6 1.69 1.88 

14 1.47 1.48 1.48 1.49 1.5 1.54 1.61 1.72 1.9 

13 1.48 1.49 1.5 1.5 1.53 1.58 1.66 1.79 1.99 

12 1.54 1.51 1.54 1.55 1.57 1.65 1.72 1.91 2.11 

11 1.48 1.53 1.53 1.55 1.6 1.65 1.82 2 2.42 

10 1.47 1.49 1.51 1.54 1.57 1.7 1.88 2.11 2.49 

9 1.02 1.04 1.06 1.13 1.22 1.39 1.69 2.14 2.67 

8 1.03 1.05 1.08 1.13 1.22 1.42 1.73 2.18 2.62 

7 1.03 1.05 1.09 1.14 1.24 1.43 1.75 2.22 2.59 

6 1.03 1.06 1.09 1.12 1.24 1.44 1.72 2.08 2.23 

5 1.05 1.03 1.08 1.13 1.22 1.38 1.61 1.84 1.94 

4 1.02 1.04 1.06 1.11 1.21 1.35 1.53 1.63 1.43 

3 1.01 1.01 1.03 1.07 1.15 1.21 1.29 1.25 1.17 

2 0.95 0.95 0.97 1.01 1 1.04 1.04 0.99 1.1 

1 0.85 0.86 0.89 0.9 0.93 0.97 0.89 1.1 1.04 

0 0.68 0.71 0.71 0.75 0.83 0.91 0.97 0.77 0.74 

Table 18 : Problem size 2 21 , with allocators  
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ς  ς  ς  ς  ς  ς  ς  ς  ς  

25 1.00 0.97 1.01 1.00 1.00 1.01 1.04 0.99 1.01 

24 1.00 1.54 1.57 1.55 1.55 1.53 1.55 1.56 1.53 

23 1.71 1.67 1.70 1.69 1.68 1.68 1.68 1.69 1.67 

22 1.75 1.75 1.76 1.76 1.75 1.72 1.76 1.76 1.83 

21 1.79 1.78 1.78 1.80 1.79 1.74 1.80 1.80 1.80 

20 1.80 1.80 1.80 1.81 1.81 1.82 1.81 1.81 1.82 

19 1.79 1.78 1.79 1.80 1.79 1.80 1.80 1.82 1.82 

18 1.47 1.47 1.47 1.49 1.50 1.53 1.58 1.67 1.83 

17 1.49 1.49 1.49 1.50 1.51 1.54 1.59 1.67 1.84 

16 1.50 1.50 1.53 1.51 1.53 1.55 1.61 1.70 1.88 

15 1.51 1.51 1.51 1.52 1.53 1.56 1.63 1.74 1.92 

14 1.51 1.51 1.52 1.52 1.54 1.58 1.65 1.78 1.97 

13 1.51 1.52 1.52 1.53 1.55 1.60 1.67 1.82 2.05 

12 1.53 1.54 1.54 1.56 1.59 1.64 1.74 1.92 2.20 

11 1.54 1.54 1.55 1.57 1.60 1.67 1.84 2.08 2.43 

10 1.54 1.55 1.56 1.58 1.61 1.74 1.93 2.25 2.63 

9 1.07 1.08 1.11 1.16 1.26 1.44 1.87 2.22 2.76 

8 1.06 1.10 1.12 1.18 1.27 1.47 1.85 2.29 2.80 

7 1.07 1.06 1.12 1.17 1.28 1.48 1.82 2.32 2.67 

6 1.07 1.08 1.10 1.16 1.26 1.46 1.75 2.13 2.31 

5 1.05 1.06 1.09 1.14 1.23 1.40 1.62 1.86 1.93 

4 1.04 1.05 1.07 1.12 1.22 1.38 1.54 1.65 1.44 

3 1.02 1.03 1.05 1.08 1.15 1.23 1.30 1.29 1.20 

2 0.96 0.97 0.99 1.02 1.02 1.04 1.05 1.00 1.12 

1 0.85 0.86 0.89 0.90 0.94 0.99 0.90 1.08 1.06 

0 0.69 0.70 0.72 0.75 0.84 0.92 0.98 0.79 0.74 

Table 19 : Problem size 2 25 , with allocators  

 
Letõs stop for a moment and take a closer look at the data presented in the graphs 

and tables above.  The first thing to note is that the shape of the graphs is striking ly  

similar across the family of experiments based on overall system size |G| , leading us 

to believe that the remarkable salutary effects of local allocators to preserve locality 

are both robust and systemic. Whether or not we have local allocators, we observ e 
that runtime performance degrades (albeit much more slowly) with decreasing 
temporal locality, but with allocators, seems to be more pronounced at the upper -mid 

ranges (low -mid rows) of physical locality, rather than the lower -mid range (upper -
mid rows) without them.  

 
It bears repeating that weõve run these benchmarks on a variety of popular platforms 
(hardware and compilers) for a substantial range of problems sizes, and the results 

for this benchmark are astonishingly consistent. We conjecture that this  consistent  
(dramatic) loss in runtime performance occurs because the efficiency with which the 
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allocator yields memory along with underlying processor speeds are entirely 
inconsequential when compared to the latency resulting from a profound lack of 

access Locality ( L). 
 

Finally, we would like to provide a road map identifying where the use of local (arena) 
allocators is most indicated.  To that end, we plotted, for each (temporal, physical) 
coordinate in the proceeding graphs , the ratios corresponding to  a subsystem that 

does not employ a local allocator to one that does.  The larger the value, the more 
relative benefit there is to having a local allocator.  Even a cursory inspection of the 
data below shows the spectacular opportunities to recover lost ru ntime performance 

due to the dif fusion  of memory across subsystems over time.  
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ς  ς  ς  ς  ς  ς  ς  ς  ς  

21 0.95 1.03 1.03 1.07 1.02 0.92 0.97 0.87 0.98 

20 7.4 7.56 6.97 6.96 7.27 6.94 7.15 7.1 7.56 

19 9.02 8.56 8.95 8.99 8.92 8.92 8.61 7.82 8.17 

18 11.9 12.1 12.3 12.6 12.4 12.5 10.9 10 8.8 

17 4.07 4.16 4.26 4.31 5.85 6.48 5.78 6.97 8.27 

16 3.43 3.34 3.45 3.45 4.61 4.63 4.82 6.49 8.19 

15 4.11 4.11 4.16 4.06 3.56 4.71 4.84 6.14 8.09 

14 4.59 4.61 4.59 4.47 4.15 4.69 4.81 6.34 8.02 

13 5.11 5.08 4.96 4.9 4.52 4.76 4.82 6.03 7.47 

12 3.12 3.16 5.01 4.89 4.51 4.41 4.4 5.96 7.08 

11 3.41 3.27 2.09 4.31 3.9 3.54 3.45 4.91 6.15 

10 3.16 3.26 3.27 1.89 3.63 3.53 3.28 5.08 6.04 

9 1.98 2.15 2.24 3.68 2.48 4.43 3.66 4.51 5.56 

8 2.24 2.29 2.42 1.83 2.97 3.43 3.48 4.24 5.59 

7 1.64 1.67 1.77 2.07 1.85 2.45 3.49 4.7 5.49 

6 1.19 1.24 1.32 1.83 2.23 2.91 3.59 4.78 5.91 

5 1.1 1.2 1.29 1.55 1.97 2.5 3.96 5.17 5.61 

4 1.11 1.18 1.3 1.55 2.09 3 4.31 6.73 6.82 

3 1.09 1.18 1.33 1.6 2.23 3.02 4.99 9.3 9.03 

2 1.1 1.21 1.4 1.76 2.42 4.43 8.19 11.8 8.09 

1 1.09 1.24 1.41 1.85 2.73 5 13 11.7 9.7 

0 1.14 1.26 1.56 2.14 3.47 8.54 16.7 22.4 5.46 

Table 20 : Problem size 2 21 , Ratio  
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ς  ς  ς  ς  ς  ς  ς  ς  ς  

25 0.97 1.77 0.97 1.02 1.04 0.99 0.96 1.01 1 

24 0.5 8.26 8.17 8.38 8.43 8.52 8.4 8.3 8.57 

23 8.3 8.41 8.3 8.35 8.4 8.36 8.36 8.37 8.44 

22 9.53 9.57 9.4 9.43 9.41 9.65 9.42 9.41 9.04 

21 9.99 10 10 9.87 9.98 10.2 9.9 9.88 9.93 

20 10.4 10.3 10.3 10.2 10.2 10.2 10.2 10.3 10.3 

19 11.2 11.3 11.2 11 11 10.9 10.7 10.5 10.4 

18 15.9 16 16 15.6 15.4 14.8 13.9 12.3 10.6 

17 6.58 6.7 6.73 6.87 7.06 7.5 8.19 9.3 10.5 

16 4.53 4.57 4.56 4.76 5.04 5.56 6.47 8.11 10.3 

15 4.51 4.56 4.62 4.73 4.99 5.52 6.38 7.86 10.1 

14 4.51 4.54 4.62 4.72 4.98 5.43 6.28 7.7 9.75 

13 4.64 4.67 4.73 4.82 5.07 5.49 6.31 7.56 9.34 

12 4.38 4.38 4.48 4.58 4.8 5.18 5.86 7.1 8.78 

11 3.16 3.19 3.27 3.42 3.67 4.15 4.9 6.25 7.88 

10 2.18 2.25 2.37 2.58 2.91 3.39 4.28 5.48 7 

9 2.95 3.04 3.17 3.32 3.59 4.08 4.42 5.57 6.63 

8 2.6 2.62 2.8 3 3.4 3.84 4.4 5.42 6.5 

7 2.36 2.51 2.65 2.95 3.31 3.83 4.49 5.45 6.79 

6 1.82 1.99 2.26 2.62 3.1 3.74 4.59 5.97 7.62 

5 1.27 1.4 1.64 2.05 2.64 3.42 4.65 6.67 8.21 

4 1.13 1.22 1.42 1.76 2.32 3.18 4.79 8.02 11.3 

3 1.09 1.21 1.39 1.75 2.37 3.49 6.03 11.4 14.5 

2 1.11 1.22 1.45 1.86 2.66 4.51 9.49 18.3 18.4 

1 1.14 1.29 1.54 1.98 3.1 5.76 15.3 21.2 23.4 

0 1.19 1.38 1.7 2.5 4.18 8.99 19.3 39.2 7.66 

Table 21 : Problem size 2 25 , Ratio  

  
The graphs and tables above help to illustrate where the òsweet spotsó for local 

allocator usage in this benchmark reside. This data confirms that the use of local 
allocators is not  particularly indicated when both the physical  and temporal  locality is 
hig h, but are especially effective when either the physical locality is low (but not 

completely minimal) or whenever the temporal locality  is low (especially minimal), yet 
both graphs indicate that there is bit of a lull in opportunity for the lower -mid -range  

of subsystem size, |S| , in the presence of low temporal locality .  

For practically relevant scenarios (e.g., where the subsystem size, |S| , is at least, 

say, 2 12),  the improvement factor is almost always at least ~4 x-8x, sometimes ~8 x-

12x, and occasionally even ~12 x-16x or more. This data, we argue, provides 
compelling evidence that local allocators make a substantial difference in important 

practical use cases.  
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9 Benchmark III: Variation in Utilization 

This benchmark was designed to demonstrate t he effect of memory Utilization ( U) ð 

that is, the maximum fraction of the òtotaló amount of allocated memory òactivelyó in 
use at any one time (section 5.4) ð on runtime performance. To that end, memory was 

allocated in chunks, of size S, until a first th reshold was reached ð the amount of 

active memory, A, to use at one time. Then, a chunk was deallocated and another one 

allocated until the desired total amount of allocated memory, T, was reached. After 

every allocation, the value at the first byte of the  allocated memory was incremented 

(to deliberately access it). The data collected represents a wide variety of  values for 

A/ T ð the definition of Utilization ( U). Note that, since almost no other work is done, 

the Density ( D) of this benchmarkõs allocations (section 5.1) is extremely high, and 

the memory -size Variation ( V) is nil.  

The three size parameters T, A, and S are measured in bytes. The results in each row 

are normalized to the result for AS1. Specifically, the results in the AS1 column are 

times i n seconds, and the values in the columns for the other allocator strategies 
tested ð namely AS2, AS3, AS5, AS7, AS9, AS11, and AS13 ð each represent a 

percentage of the AS1 value, where 100 would imply the same run time as that for 
AS1, and lower values im ply shorter ones.  

Total Allocated Memory (T) = 2 30  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

30 15 10 0.063s 103 440 435 46 43 46 47 

30 16 10 0.069s 102 401 395 42 42 41 45 

30 17 10 0.064s 110 435 428 46 44 47 46 

30 18 10 0.063s 102 440 434 46 39 54 47 

30 19 10 0.063s 104 439 434 51 46 47 47 

30 20 10 0.064s 110 433 430 46 42 46 52 

30 20 11 0.035s 125 758 747 54 37 49 37 

30 20 12 0.022s 101 1216 1206 51 31 52 32 

30 20 13 0.013s 60 1985 1961 110 67 1996 1979 

30 20 14 0.008s 77 3356 3304 110 58 3276 3314 

30 20 15 0.004s 74 5985 6288 60 111 6016 6057 

 

In order to better understand the data provided by this benchmark, letõs take a closer 

look at the table above. The total amount of memory allocated ( T), for each row in this 

table, is ς  bytes. In the first row, the maximum amount of memory allocated at once 
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(A) was chosen to be ς  bytes, and the size of each allocated block ( S) to be ς  bytes. 

What this means is that ς blocks (each ς  bytes) will be allocated initially (bringing 

the initially allocated memory to ς  bytes; then, a block of the same size ( S) will be 

deallocated and then immediately reallocated  (ς  ð ς )/ς  times . Fin ally, all of the ς 

remaining allocated blocks (each of size ς  bytes) will be deallocated (individually).  

Using the default allocator (AS1) on this platform caused the operations indicated 

above to run in 0.063 seconds. Allocating using the same new -delete allocator via an 
abstract base class (AS2) took 3% longer than when that same allocator was used 
directly (AS1).  

Next we tried using a monotonic allocator directly (AS3), and it took 440% of the time 
that the baseline allocator strategy (AS1) took (or 0 .277s). Recall that a monotonic 

allocator doesnõt release freed memory back to the system, and thus is easily 
demonstrated as being ill -suited to this kind of usage scenario.  

We have chosen not to consider allocation strategies AS4, AS6, AS8, AS10, AS12, a nd 

AS14 because the òwinking outó aspect, which each of the aforementioned strategies 
incorporates, when eventually applied to the comparatively small amount of 

remaining memory ( A) out of a total ( T) ð even if it makes the release cost absolutely 

free ð could not possibly (i.e., mathematically) make any meaningful difference in 
overall run  time.  

Then we employed allocation strategy AS5, which uses the same (monotonic) 
allocator used in AS3, but this time accessed via an abstract base class. The runtime 
cost is 435% of the reference allocation strategy (AS1), which happens to be just a tad 

less than direct use of the monotonic allocator (perhaps suggesting that ð on this 
platform, at least ð the use of virtual functions to perform the allocations were 
succes sfully elided by the compiler).  

Next we used allocation strategy AS7, which employs a mulitpool allocator directly. 
Here we see that the runtime cost drops precipitously to just 46% of what the default 

allocator affords. AS9, the indirect use of this same allocator (via an abstract base 
class) is comparable at 43% (again suggesting that there is no penalty here for non -
direct access).  

Then we applied allocation strategy AS11, which employs a multipool allocator 
(accessed directly), backed by a monotonic all ocator. The cost, relative to the baseline 

(AS1), shakes out at 46% and, when accessed indirectly (AS13), 47% ð again no 
apparent statistically significant overhead with virtual -function -based access.  

In subsequent rows, we first increased the size of ( A) from ς  to ς , and then ( S) 

from ς  to ς . The data speaks for itself, but we will make just a few observations:  

(1 ) We believe the behavior of the AS1 column makes sense in that the runtime work 

done while we are increasing the allocation limit ( A) remains fairly constant, while the 

work done as we increase the block -size (S) decreases proportionally.  

(2 ) The AS2 column tends to indicate that there seems to be no systemic penalty for 
accessing the allocator via an abstract base class.  
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(3 ) AS3, AS5, AS11, and AS13 confirm that any use of a monotonic allocator where 
Utilization ( U) is low, and problem size is not tiny, is typically suboptimal, if not a 

genuinely a bad idea. The reason for the abrupt change near ( S) = ς  is due to the 

internal boundari es within the multipool allocatorõs implementation, which provides 

for large allocations (larger than ς ) to pass through to the backing allocator.  

(4 ) AS7 and AS9 are clearly the winning allocation strategies until the block -size (S) 

exceeds the maximum size that can be accommodated internally by an adaptive pool 

(ς ), at which point there is a modest overhead (at most a few percent) to forward the 
allocation through to the backing allocator.  

Subsequent tables present experiments involving increasing tot al allocated memory 

(T) with similar results, reinforcing the preliminary conclusions presented above. As 

memory demands increase, it is possible that the performance degradation for 

strategies AS3 and AS5 (and, as we will see, even AS11 and AS13) may deteriorate to 
outright failure.  

Total Allocated Memory (T) = 2 31  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

31 15 10 0.127s 104 428 434 39 38 39 41 

31 16 10 0.123s 102 442 446 42 42 41 40 

31 17 10 0.124s 102 439 442 45 45 42 45 

31 18 10 0.123s 102 442 447 47 46 41 42 

31 19 10 0.123s 107 441 446 42 41 46 43 

31 20 10 0.127s 99 431 434 44 42 41 41 

31 20 11 0.064s 102 815 824 48 40 52 48 

31 20 12 0.038s 93 1369 1387 57 51 47 54 

31 20 13 0.021s 102 2368 2392 108 80 2376 2401 

31 20 14 0.013s 61 3787 3833 109 67 3797 3844 

31 20 15 0.007s 54 6621 6706 112 59 6651 6708 
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Total Allocated Memory (T) = 2 32  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

32 15 10 0.248s 103 fail fail 38 39 38 41 

32 16 10 0.248s 102 fail fail 38 41 38 39 

32 17 10 0.246s 102 fail fail 40 39 39 39 

32 18 10 0.246s 102 fail fail 40 40 39 40 

32 19 10 0.246s 102 fail fail 40 42 40 40 

32 20 10 0.246s 102 fail fail 40 41 41 41 

32 20 11 0.124s 102 fail fail 46 44 41 47 

32 20 12 0.062s 102 fail fail 44 45 46 56 

32 20 13 0.034s 108 fail fail 127 110 fail fail 

32 20 14 0.022s 72 fail fail 105 78 fail fail 

32 20 15 0.015s 87 fail fail 99 60 fail fail 
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Total Allocated Memory (T) = 2 33  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

33 15 10 0.495s 102 fail fail 41 39 39 39 

33 16 10 0.493s 102 fail fail 38 39 38 41 

33 17 10 0.492s 102 fail fail 38 41 38 40 

33 18 10 0.492s 102 fail fail 40 41 39 40 

33 19 10 0.492s 102 fail fail 40 41 40 41 

33 20 10 0.492s 102 fail fail 40 40 40 41 

33 20 11 0.248s 102 fail fail 42 43 41 42 

33 20 12 0.122s 101 fail fail 43 47 45 47 

33 20 13 0.062s 102 fail fail 112 112 fail fail 

33 20 14 0.040s 89 fail fail 96 88 fail fail 

33 20 15 0.022s 102 fail fail 107 80 fail fail 

 

Total Allocated Memory (T) = 2 34  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

34 15 10 0.990s 103 fail fail 41 39 41 39 

34 16 10 0.986s 102 fail fail 38 39 38 40 

34 17 10 0.985s 102 fail fail 38 39 39 40 

34 18 10 0.984s 102 fail fail 40 40 39 40 

34 19 10 0.983s 102 fail fail 40 41 40 40 

34 20 10 0.984s 102 fail fail 40 41 40 41 

34 20 11 0.494s 102 fail fail 42 42 41 42 

34 20 12 0.241s 102 fail fail 43 42 47 44 

34 20 13 0.120s 107 fail fail 114 113 fail fail 

34 20 14 0.064s 102 fail fail 117 112 fail fail 

34 20 15 0.038s 96 fail fail 103 95 fail fail 
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Total Allocated Memory (T) = 2 35  

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

35 15 10 1.981s 102 fail fail 38 41 39 39 

35 16 10 1.975s 102 fail fail 39 40 38 39 

35 17 10 1.970s 102 fail fail 39 40 39 40 

35 18 10 1.967s 102 fail fail 39 39 39 40 

35 19 10 1.967s 102 fail fail 39 41 40 41 

35 20 10 1.968s 102 fail fail 40 41 40 40 

35 20 11 0.988s 102 fail fail 41 42 41 41 

35 20 12 0.481s 102 fail fail 42 42 44 44 

35 20 13 0.240s 102 fail fail 113 113 fail fail 

35 20 14 0.125s 102 fail fail 113 112 fail fail 

35 20 15 0.070s 94 fail fail 103 110 fail fail 

 

A striking result in this benchmark is that some of the tests failed to run to 
completion, because the systemõs memory was exhausted. Clearly, when we choose 
an allocator, the need for re -use of deallocated memory is a critical factor.  

The results for the largest three values for ( S) in all of these Benchmark III tables 

expose the effect of an implementation detail of the used multipool allocator: 

Allocations larger than an implementation -defined size ð specifically 2 12  bytes  (as per 

code inspection) ð will be passed directly to the underlying a llocator. As such, for S > 

212 , there is noticeable performance degradation for the multipool allocators and the 

creation of failure scenarios even for AS11 and AS13.  

This  utilization -focused  experiment was purposefully simplistic.  We reasoned that 
variati ons in allocated size were unlikely to affect either a monotonic or multipool 

allocator (this variation may have been of greater interes t had a coalescing allocator 
been under consideration).  Furthermore, altering the deallocation strategy from least 

recen tly allocated to some other (e.g., pseudo -random) one may have provided 
add itional insight, but at the cost of conflating the effects of Locality ( L) with those of 
Utilization  (U). 

 

10 Benchmark IV: Variation in Contention 

This fourth and final benchmark was designed to demonstrate the effects of 

Contention ( C) ð i.e., the expected number of concurrent memory -allocation 
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operations in any given instant of time, over the duration of interest, divided by the 
number of active threads ( W) ð on runtime performance. In this experiment, a set of 

threads was created and used to repeatedly allocate and deallocate a chunk of 
memory. To emphasize the runtime cost of contention, every function called by a 

thread had an instance of an allocator. For the default global alloca tor, AS1, and the 
new/delete allocator, AS2, all of the threads contended for the same allocator. For the 
other (local) allocation strategies considered (AS3, AS5, AS7, AS9, AS11, and AS13), 

each thread had access to its own private unsynchronized  allocato r; hence, there is 
no contention except for when these allocators must make a request to their backing 

allocators. After every allocation the value at the first byte of the memory was 
incremented. Note that the allocation Density ( D) of this experiment is extremely 
high.  

The chunk -size parameter, S, for this experiment is measured in bytes. The other 

parameters for this experiment are the number of iterations ( N), and, from section 5, 

the number of active threads ( W). The results of this experiment are norm alized to the 

respect ive results for of AS1 in each row. Specifically, the results under AS1 are times 
in seconds, and the values under the other allocation strategies ð AS2, AS3, AS5, 
AS7, AS9, AS11, and AS13 ð are represented as percentages of the AS1 va lue, where, 

again, lower percentage values imply shorter run  times.  
  

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 6 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 6 1 0.041s 91 40 39 26 26 24 24 

15 6 2 0.037s 100 42 43 27 26 26 29 

15 6 3 0.038s 105 41 43 15 16 17 16 

15 6 4 0.032s 93 56 58 31 32 25 24 

15 6 5 0.032s 91 46 52 26 23 22 24 

15 6 6 0.030s 95 51 53 24 27 26 27 

15 6 7 0.033s 96 47 49 23 28 21 26 

15 6 8 0.029s 96 71 63 33 30 31 25 

Each of the runs represented in this first table (above) consist of ς  repetitions ð per 

thread ð of allocating and then immediately deallocating a chunk of memory of size ς 
bytes. The first row depicts a run in which the main program spawns just a single 
thread ( W = 1). The runtime using the default allocator (AS1) is shown under the AS1 

column as 0.022 seconds. Using the same allocator via an abstract base class (AS2), 
we observed a runtime that was 174% of this reference time, considerably more than 

for direct access  When we used a local monotonic allocator directly (AS3), the 
relative cost was just 71% of that of using AS1. Accessing that same allocator via an 
abstract ba se (AS5), also yielded 71%. Switching to a multipool allocator ð used 

directly and via an abstract base class ð resulted in relative runtimes of 32% and 
36%, respectively. Finally when the combination of a multipool allocator backed by a 
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monotonic one was employed directly, the runtime was measured at 35% and, when 
accessed via a base class, 34%.  

In each successive row, we increase the number of spawned threads by 1, each 

executing the function performing ς  iterations of allocating and then immediately 

deallocating a block of ς bytes. Note that the hardware used had more available 
processo rs than the maximum number of threads ( W = 8) considered.  

A quick look at the tables below show that the global allocator (AS1 -AS2) along with 
the monotonic one (AS3 and  AS5) are poor candidates for this usage scenario. 
Incorporating addition al  threads did not generally increase the runtime cost of either 

of the global allocators, nor of any of the local ones. An early, fairly consistent pattern 
emerges, suggesting that t here is fixed proportional speedup depending on the local 
allocator provided, with AS7 being the most consistent winner, yet any strategy that 

makes use of a multipool (AS7, AS9, AS11, and A13) is clearly preferable to the 
default (AS1) by a sizable factor  (~4x).  

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 7 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 7 1 0.023s 100 114 116 44 47 47 48 

15 7 2 0.043s 101 46 69 26 26 26 26 

15 7 3 0.041s 103 51 68 25 25 22 25 

15 7 4 0.033s 121 78 95 26 19 20 23 

15 7 5 0.031s 102 81 86 20 26 26 25 

15 7 6 0.032s 99 84 84 18 23 19 25 

15 7 7 0.029s 114 111 110 23 27 21 31 

15 7 8 0.029s 117 114 120 27 35 31 29 

 

Number of Iterations (N) = 2 15 , Size of Allocation (S) = 2 8 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 8 1 0.043s 101 87 89 23 23 22 23 

15 8 2 0.042s 102 61 59 23 23 27 26 

15 8 3 0.046s 90 85 111 23 25 24 25 

15 8 4 0.040s 84 100 98 18 18 19 22 

15 8 5 0.028s 136 190 200 30 30 30 38 

15 8 6 0.024s 125 209 201 33 33 31 29 

15 8 7 0.033s 108 162 162 24 29 26 26 

15 8 8 0.031s 114 184 188 34 33 36 42 
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Number of Iterations (N) = 216 , Size of Allocation (S) = 2 8 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

16 8 1 0.085s 97 109 107 23 23 23 23 

16 8 2 0.091s 101 104 106 22 21 22 21 

16 8 3 0.093s 100 105 104 22 21 21 21 

16 8 4 0.097s 94 93 121 20 20 18 17 

16 8 5 0.078s 118 108 130 24 18 17 18 

16 8 6 0.059s 87 138 136 21 26 22 26 

16 8 7 0.063s 93 137 135 17 27 21 20 

16 8 8 0.057s 109 162 164 29 28 28 26 

 

Number of Iterations (N) = 2 17 , Size of  Allocation (S) = 2 8 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

17 8 1 0.090s 100 206 206 45 42 42 42 

17 8 2 0.179s 101 107 106 22 22 22 22 

17 8 3 0.179s 101 104 104 22 23 22 22 

17 8 4 0.209s 109 89 70 16 15 11 11 

17 8 5 0.177s 100 85 78 12 15 15 15 

17 8 6 0.108s 142 147 178 27 28 25 25 

17 8 7 0.140s 85 116 132 24 22 22 22 

17 8 8 0.118s 100 142 150 22 21 25 26 

 

Number of Iterations (N) = 2 18 , Size of Allocation (S) = 28 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

18 8 1 0.177s 109 177 177 45 45 45 46 

18 8 2 0.339s 100 95 95 24 24 24 24 

18 8 3 0.333s 102 99 95 24 25 24 25 

18 8 4 0.304s 98 93 93 24 21 26 21 

18 8 5 0.311s 94 97 86 22 24 25 20 

18 8 6 0.276s 95 118 122 16 17 18 17 

18 8 7 0.297s 79 109 108 18 18 21 18 

18 8 8 0.219s 114 176 186 26 21 21 23 
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Number of Iterations (N) = 2 19 , Size of Allocation (S) = 2 8 

    global ŶmonotonicŸ ŶmultipoolŸ Ŷmono+multiŸ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

19 8 1 0.421s 89 134 134 28 23 21 25 

19 8 2 0.615s 101 93 93 25 26 26 26 

19 8 3 0.631s 99 93 93 25 25 25 25 

19 8 4 0.565s 107 95 103 28 28 29 28 

19 8 5 0.575s 119 106 101 27 28 27 27 

19 8 6 0.499s 114 126 113 17 25 28 22 

19 8 7 0.558s 100 113 115 18 18 15 16 

19 8 8 0.460s 105 149 148 19 21 18 21 

 

Since modern default global allocators were designed with threading as a concern, 
the results are not jaw -dropping. This benchmark demonstrates, again, the relative 

efficiency of the allocators; the default global allocator must pay a premium to handle 
multiple threads concurrently. Interestingly, the monotonic allocators performed 
more and  more poorly as the total amou nt of memory allocated increased  (perhaps 

due to a dearth of physical locality within the monotonic allocatorõs buffer itself).  

11 Conclusion 

Object -level control over memory allocation is intrinsic to C++, and must always be so 

if we hope to maintain this languageõs supremacy as the best-performing high -level 
òsystemsó language. Supporting object-specific memory allocation is admittedly an 
added burden ð exacerbated by an initially difficult -to-use model ð which is finally 

being addressed by N3916:  Polymor ph ic Memory Resources . Any future incarnation of 
STL should incorporate the lessons elucidated here.  
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