
On unifying the coroutines and resumable
functions proposals

Revision 1

Document number: P0073R2
Date: 2016-05-30
Author: Torvald Riegel
Reply-to: Torvald Riegel <triegel@redhat.com>
Audience: EWG

1 The goals of this paper

I have argued in the past that there are commonalities between the different coroutine
proposals and that there are opportunities for a unified proposal. This paper is meant
to provide more detail about this.

So far, the proposals have been presented as separate vertical solutions, and it has
been claimed that there is no substantial common ground between them. However, I
believe we should be looking for commonalities, or we will both make future extensions
of the features presented in these proposals harder and will make all of them harder to
learn for programmers.

To me, the design of coroutines and resumable functions is not just in the space of
programming interfaces. A large part of it is also at the level of the abstract machine:
In particular, how we deal with concurrency beyond std::thread? While it’s easy for
programmers to use std::thread, they often don’t need a full-featured operating system
thread nor would want one because of additional, unnecessary overhead that might be
attached to it; a thread of execution from a thread pool, or something like a coroutine
would often be sufficient and better. I believe there is consensus in SG1 that we need
more kinds of threads of execution beyond those spawned by std::thread (see, for
example, the parallelism TS or P0072R0).

The main points I’m arguing for in this paper are:

• Executing coroutines, generators, etc. should be understood as representing threads
of execution, with certain execution properties. Note that I did not say that they
should be OS threads or similar to what std::thread spawns.

• Resumable functions enable a certain implementation of threads of execution, in
particular how the call stack is implemented. The so-called stackful coroutines use
a more traditional stack implementation.

• The compiler can bridge the gap between those two stack implementations un-
der certain conditions by providing the impression of a stackful implementation
(e.g., calling through normal non-resumable functions) but generating code that
is using resumable functions internally. The Transactional Memory TS is a prece-
dent for very similar compiler support, showing that it can be both specified and
implemented.

In this paper I will not discuss interfaces of programming abstractions, except for
design examples in Section 4. Personally, I am more concerned about the design at the
conceptual level than about details of a particular interface; my focus is on the internals,
both design-wise and how it affects implementations or enables certain ones.

2 Coroutines represent threads of execution

Let us first revisit what a thread of execution is according to the standard, and abbreviate
it with TOE instead of “thread” to avoid the confusion over what a “thread” is (e.g., an
operation system thread?). A TOE is defined in the standard as “a single flow of control
within a program” (see §1.10p1). sequenced-before is defined exactly for a TOE (see
§1.9p13). The standard seems not quite clear regarding whether a TOE is a static (e.g.,
a function) or dynamic entity (i.e., an instance of an execution of a single flow of control);
in this paper, I will assume the latter. See N4231 for a more detailed explanation of this
terminology (and of the existing terminology in the standard). N4231 and P0072R0 use
the term “execution agent” as name for TOEs that have specific execution properties
attached to them. The standard uses execution agents to describe lock ownership of
TOEs. P0072 argues for lighter-weight modes of execution provided through different
kinds of execution agents. “Execution context” was suggested as a different name instead
of execution agent, which might make it clearer that the intent is to model execution
properties and not primarily to describe the hardware or software resources used for
execution. Nonetheless, for simplicity, I will just use TOE in this paper, and associate
execution properties with TOEs.

I think that we should embrace parallelism and concurrency—not just by providing
programming abstractions in this area but also by being honest when and where par-
allelism or concurrency exist in a computation. We should not shy away from having
multiple TOEs exist at the same time in a running program. We do not need to be
afraid of this because we can still have simple forms of interleavings between TOEs;
not all forms of concurrency are of the hard-to-handle, low-level kind. Disjoint-access
parallelism (e.g., partitioning an array and processing the disjoint partitions in parallel)
is a good example of a case that has plenty of TOEs but is still easy to understand for
programmers. Another example is that for all of us, having a dialogue with another
person is a completely natural thing to do.

P0073R2 2

Applied to coroutines, this means in my opinion that we need to understand coroutines
as TOEs. On the level of program logic, there is concurrency in the sense of that a
coroutine is an individual flow of control in the program, so matching the standard’s
definition of a TOE. I do not think that it is helpful to try to hide this fact by taking
the mutual exclusion property of a coroutine and its callers and use it as a reason to
merge the coroutine and the caller into one TOE.

Thus, when creating a coroutine and calling it for the first time, we conceptually
spawn a TOE that will execute the separate flow of control that the coroutine is meant
to represent (or that even is the coroutine). Constructing a std::thread will also
spawn a TOE, but a TOE of a different kind with different execution properties (e.g., it
is guaranteed to execute steps eventually irrespective of what other TOEs do, which is
not the case for coroutines).

Understanding coroutines as TOEs is important for three reasons. First, SG1 has
discussed many parallelism and concurrency abstractions that create TOEs: Parallel
algorithms from the Parallelism TS, executors, task regions, etc. Those TOEs have
execution properties that are often lighter-weight than threads, for example regarding
aspects such as forward progress guarantees, thread-specific state, or how call stacks
are implemented (see below for more details on these). Those potentially lighter-weight
properties can be common across TOEs spawned by very different high-level abstractions
(e.g., same weaker-than-std::thread forward progress guarantees for parallel-vector
loops and generators, see below for details).

Second, there often is no single right choice for what kind of TOE to spawn from a
higher-level abstraction. For example, which stack implementation does one really need
for a coroutine? Or which support for thread-local storage is required? This applies to
coroutines and generators as well.

Third, TOEs can be considered the basic entity of computation, when looking at the
implementation level and control over where something executes. The executor proposals
try to provide programmers with such control, and while it is not always obvious from
the programming interfaces, often this control happens by tuning or managing TOEs
(e.g., through thread pools). Thus, if coroutines are TOEs, it becomes cleaner to apply
executor features to them as well. Note that while often it may be most natural to
resume a coroutine using the same compute resource as the caller, this isn’t necessarily
always best: Imagine a generator that needs to access lots of data to provide a result;
this generator is most efficient to run on a CPU close to the accessed data in terms of
the memory hierarchy. A similar example can be made in the space of accelerators. Also
note that the basic scheme of interaction with the coroutine (e.g., the interleaving) is still
the same in this case, so where the coroutine’s TOE is executed is really an orthogonal
property.

Defining different kinds of TOEs thus gives us a foundation upon which higher-level
constructs can be specified and built, including constructs such as coroutines. Having
this common base makes it easier for us and easier to grasp for users.

Of course, coroutines are not just TOEs in the sense of the TOE being independent of
anything else. Like other abstractions such as parallel loops that spawn TOEs, coroutines
give additional guarantees such as mutual exclusion between the coroutine’s TOE and

P0073R2 3

the TOE represented by the caller of the coroutine.

2.1 Examples for specific properties of execution

Before looking at the stack implementation aspect in detail next, I want to give examples
using some of the other properties.

Forward progress guarantees of TOEs (or of execution agents) are discussed in P0072R0.
It is interesting to see that a lock-step execution of a vector-parallel loop and a typical
coroutine execution can both be characterized as non-preemptive, collaborative schedul-
ing. In terms of forward progress, the TOEs spawned by the loop and the TOE repre-
senting the coroutine all are weakly parallel TOEs as defined by P0072R0, with boost
blocking by either the TOE calling the loop or the coroutine. Thus, one set of properties
can describe the TOEs spawned from different abstractions.

Thread-specific state such as thread-local storage (TLS) or lock ownership are another
example: SG1 has been discussing how (and whether at all) TOEs used for parallelism
should support TLS (see P0072R0 for more background). There is no single right answer
because while TLS might not be easily supportable on an accelerator, it sometimes is
just required by code; yet seldomly does it seem necessary to run all TLS constructors
and destructors for such TOEs, as would be required by std::thread. Right now, the
coroutine proposals and the resumable function proposal make one specific choice, and
they state this rather implicitly (e.g., through stating that a thread used to execute code
could change, or just through leaving open which thread executes the code). It would be
better in my opinion to provide choice to programmers, so that they can pick the TLS
semantics they really need.

Lock ownership is a similar example to TLS. Should a generator inherit and modify
the lock ownership of the TOE that called it most recently, or should it have it’s own
set of lock ownerships? There does not seem to be one right answer to this because it
really depends on what the program tries to accomplish.

3 Call stack implementations

The major points that characterize a TOE with non-preemptive suspension are:

1. What happens before and after suspension,

2. How hand-off or hand-shake happen between this TOE and other TOEs on cre-
ation, suspension, and termination of this TOE, and

3. Whether there are any constraints on the code that is running in this TOE.

Such a TOE is then used by, say, a coroutine with a specific interface. In the discussions
I had so far on this topic, I got the impression that for some people, the coroutine
interface is tied to a specific choice regarding the three points above and vice versa—
which seems to match with the separate vertical coroutine proposals that we currently
have on the table.

P0073R2 4

I do not think this has to be the case. While I can agree that some combinations might
be easier to implement and allow one to optimize this or that slightly, all a coroutine
basically needs is a non-preemptively suspendable TOE.

Furthermore, and as the discussions in the committee show, there are different use
cases for coroutines that evaluate the choices made regarding the three points above
differently. For example, in some use cases it is more important to not rely on inter-
procedural compiler transforms whereas in others it could be vital to call functions
without having to duplicate and modify them at the source code level.

Thus, I think it would be helpful to users if they would have choice regarding how
the call stack and suspension implementation used for a coroutine looks like; the more
flexibility we have in the coroutine building blocks, the better.

This would allow for unifying the coroutine proposals. To back up my claim that
this is possible, I will next outline how the call stack implementation can provide the
properties that the programmer is asking for and allow a programmer to combine them.
Stackful coroutines (e.g., N4232) allow the coroutine TOE to call arbitrary functions

and support suspension points in functions called by arbitrary functions. Thus, they
give the impression of a “normal” TOE that can just call any code. Suspension points
are transparent as far as the calleable code is concerned.1 Side stacks of various forms
or normal OS threads are valid implementations.
Resumable functions (e.g., N4499) are a lower-level mechanism because they require

suspension points to be treated specially in the calling code, including functions that
call other functions that may suspend. Thus, suspension is not transparent but requires
functions to be annotated and use the await keyword on all function calls that may result
in a suspension. The goal of this is to enable a specific call stack implementation, namely
one that compresses the space required for the stack by (1) keeping only the essential
live-variable information for each stack frame on the side, (2) rolling back all stack
frames before suspension (i.e., returning from those functions), and (3) reconstructing
stack frames after suspension using the live-variable information. Compiler support is
required, but only of the intra-procedural kind.

So, simplified, resumable functions have the advantage of a potential performance
improvement (depending upon use, however—they are not always faster), while stackful
coroutines have the advantage of minimizing impact on existing code and improving the
likelihood of code reuse.

4 Bridging the gap between stackful and resumable

Given that both options have their uses and advantages, it would be good if programmers
do not have to choose between those two extremes. We can make this happen through
relying on a bit more compiler support. In particular, we want the compiler to generate
code that uses the approach of resumable functions internally while putting as little
requirements on programmers as possible to actually change the source code.

1But they are not transparent regarding forward progress guarantees and thread-specific state, depend-
ing on which choices the specific coroutine feature makes regarding these execution properties.

P0073R2 5

The first step towards this is allowing the programmer to express the same intent
behind a resumable function, while keeping the annotations or changes required on code
small. When using a resumable function, the programmer is essentially asserting that:

• All blocking synchronization is compatible with the forward progress scheme of the
program (e.g., no deadlock due to blocking on a TOE that is not guaranteed to
make progress). This is very much program-specific; whereas one application may
care about millisecond latencies, another may just need eventual progress and thus
can allow blocking for I/O. Thus, what this entails is not specified by resumable
functions.

• Any attempt to suspend a coroutine in a stackless manner is from a call stack
consisting of just resumable functions; for a coroutine TOE, this means that all
suspension points must be reachable only through resumable functions, starting at
the initial function for the coroutine.

The latter point is partially enforced in resumable functions because (1) such functions
are entities isolated from their callers2 and (2) await is only allowed in a resumable
function. This isolates these functions from the context their are called in, translating
any suspend operation into a non-ready state of the futures that must be returned from
resumable functions. This is only a partial enforcement because nothing is stopping a
resumable function from blocking on a future returned from a call to another resumable
function (i.e., not using await but, for example, calling another non-resumable function
that blocks until another resumable function produces it’s final result; at the least this
prevents stack frame rollback).

Thus, having to return a future is not inherent to a stackless TOE implementation nor
required by what the programmer intends or has to assert. Instead, it is an artefact of a
specific implementation—which is just one among other possible implementations. This
also applies to how the await keyword is designed, which is a combination of the suspend
action and this future-based implementation. The general combination of suspending
and telling the scheduler what one is waiting for is of course useful—but this does not
mean that it has to be applied at the function call level within a coroutine.

These implementation artefacts are what is primarily preventing code reuse: There
is no way to just call through an existing function without having to write a resumable
version of it that applies the future-return-type approach and uses await at each call
that may lead to a suspend action.

4.1 Suspendable functions

We know we need different code for resumable than for normal code that doesn’t sus-
pend3, but we can let the compiler take care of that if the programmer annotates the

2Resumable functions have to use a future-based interface that makes each function call within a
coroutine look similar to blocking on another coroutine.

3We need different code that rolls back and restores stack frames to be able to suspend stackless;
remember that resumable functions are an enabler for a certain optimization.

P0073R2 6

affected functions with a suspendable4 keyword. The programmer adds this annotation
on each function that she or he would write as a resumable function when using the re-
sumable function proposal. No change to the function body or return type is required,
and the annotation just replaces the resumable annotation required otherwise5. To avoid
confusion with resumable functions, let us call such functions suspendable (and likewise
for suspendable coroutines and suspend operations)—but note that the goal is still to
be very similar in functionality to resumable functions. The programmer-supplied anno-
tations must ensure that each suspendable suspension point is only reachable from the
initial function of a suspendable coroutine through functions annotated as suspendable;
otherwise, the program is incorrect.

Functions annotated this way can execute both normally and in a suspendable mode.
One possible implementation of this is to, for each suspendable function, generate normal
code for such a function as well as a clone of the function that is compiled differently and,
for example, has a different mangled name.6 The suspendable mode is only accessible
when using a suspendable coroutine (see below). This is very similar to the approach
used in the Transactional Memory TS, where we have normal code and clones of such
code instrumented for use in a transaction, and where only transactions will ever cause
execution of the transactional clones. This is just one precedent currently but we will
likely have to use this approach more often if we ever want to support hardware hetero-
geneity fully (e.g., different ISAs for both host and accelerator CPUs) without relying
on JIT compilation. Some of the vectorization proposals discussed in SG1 also propose
support for requesting different clones of functions that only differ in which hardware
vector extensions are targeted.

Because it matters that only the suspendable clones are executed when in suspendable
mode and because we want to take care of as much as possible of this at compile time,
we need to cover indirect calls too. Fortunately, that is almost the same problem as for
transaction-safe functions in the Transactional Memory TS; thus, we can just copy this
TS’s approach, which has already been approved by the committee and implemented in
GCC. In a nutshell, the suspendable annotation becomes part of the type system, and
a call to a suspendable function in suspendable mode (either through a pointer or to a
function known at compile time) will call the target function in suspendable mode too
(e.g., call the suspendable clone of the function). See the Transactional Memory TS for
details. Different to transaction-safe functions, suspendable functions are allowed to call
non-suspendable ones, same as resumable functions are allowed to call non-resumable
ones.

4This is a placeholder name; resumabler was also considered.
5P0057R0 does not yet require it, but several people in the committee seemed to want to require that

all resumable functions are explicitly annotated as that when declared.
6Unused clones (or normal functions) can of course be removed by the compiler/linker in the same way

as other dead code can be removed.

P0073R2 7

4.2 Suspending and executing suspendable functions

The implementation can generate any code it sees fit for suspendable functions, but we
still need to expose two features to programmers: Executing a suspendable coroutine,
and suspending a coroutine.

First, starting to execute a suspendable function basically involves setting up what-
ever the implementation needs to communicate about the state of the coroutine (e.g.,
constructing a future) and then calling the code created for suspendable mode (e.g., the
suspendable clone of the top-level function of the coroutine). Resuming a suspendable
coroutine is similar but will use the coroutine state to restore from the proper point.
The details of all of this are internal to the implementation (e.g., in a combination of
the generated code and potentially special support in futures or a scheduler).

All we really need to minimally expose to the user is a spawn-like call that let’s the
program request that a new coroutine TOE is started that uses suspendable mode. For
example (a keyword or other forms would be possible too):

template <typename F> std : : future<void> run suspendable (F&& f) ;

This expects that the passed function is suspendable, and it will execute it in sus-
pendable mode. Higher-level abstractions can make common use cases more convenient.

Second, suspending is minimally just a suspendable function that is called to suspend:

void suspend () suspendable ;

This is possible because the stackless implementation is hidden behind the suspendable
annotation, so the implementation can just do whatever is required in the suspendable
implementation of this function.

It can of course be useful to communicate to a scheduler why a coroutine would want to
suspend (e.g., because a generator has just produced a value, or in an await-like blocking
operation). But this is orthogonal to the stackless aspect and can be implemented in
higher-level abstractions that use this suspend function internally. Also see the definition
of suspend-resume-point in P0057R0, which is similar.

4.3 Unification with stackful coroutines

The constructs laid out so far can be implemented so that they use resumable functions
internally: suspendable functions can be transformed into resumable functions by the
compiler, run suspendable calls such a resumable function, and suspend can do parts
of await. There are details in the implementation that depend on how the higher-
level abstractions are designed (e.g., how much can be communicated to a scheduler),
but I think it should be clear that the implementation possibilities are comparable to
what the resumable function proposal offers. Most importantly, the primary goals of a
stackless implementation and low space overhead are achievable, while requiring much
less invasive changes to existing code or specialization of new code.

Furthermore, a correct implementation of suspendable functions is a stackful implementation—
any potential7 space overhead differences are a quality-of-implementation aspect. The

7Note that the space overhead for the stack pages of a stackful implementation might not exist in less

P0073R2 8

normal code (i.e., not the suspendable execution mode) is sufficient because stack frames
do not need to be rolled back in a stackful implementation. run suspendable could also
be used to spawn stackful coroutines, which also allows the implementation to make a
choice (e.g., depending on what’s most efficient or possible on the host or accelerator
CPU).

The semantics of the suspend function are the same irrespective of whether it is
a suspendable or stackful coroutine. Because it is simply a suspendable function, its
implementation can do the right thing depending on whether it is called in suspendable
execution mode or not. If it is called from a TOE that is not a coroutine, it could
either simply block this TOE or result in a runtime error. The former is most useful
when combined with information from a higher-level construct regarding why the TOE is
suspended (e.g., an await-like construct could use a traditional blocking synchronization
operation automatically (i.e., without non-preemptive suspension), as has been suggested
by Chris Kohlhoff). This possibility is not a new case to be considered for resumable
functions, because nothing prevents those from using a, say, condition variable to block
on some condition.

4.4 Allowing for more code reuse

Only needing to use the suspendable annotation on function declarations is already
a big improvement compared to having to write or rewrite a function as a resumable
function specifically. It is not ideal though because (1) it still requires changes in the code
and (2) it does not allow reuse of a function in a suspendable context whose declaration
cannot be changed by the programmer.

At the beginning of Section 4, I listed the two assertions that a programmer is making
when using resumable functions. The first one is about blocking synchronization gen-
erally, and while the compiler could help with that, it is hard because program-specific
constraints will vary a lot. However, the compiler can help with the second assertion:
ensuring that any attempt to suspend in a stackless manner is done in the suspendable
execution mode (i.e., on a call stack consisting of just suspendable functions).

To achieve the latter, we can introduce an autosuspendable annotation that a pro-
grammer can put on a function. An auto-suspendable function is always a suspendable
function, but it additionally requires the compiler to treat all callees of this function
that are not annotated as suspendable functions as if they were marked by the pro-
grammer as auto-suspendable. This ensures that all callees, transitively, will either have
been explicitly taken care of by the programmer (i.e., if the programmer asserts they are
suspendable), or will be conservatively considered to be suspendable (i.e., treated as if
marked as auto-suspendable).

Consider the example in Figure 1, which runs a suspendable coroutine with mini-
mal annotations required, and reuses the code for a second coroutine that cannot be
made suspendable: If using the resumable functions proposal, produce and coroutine1

would have to be written differently, and external for each would have to accept

typical hardware implementations, for example on accelerators; in these cases, a stackless implemen-
tation might not yield any gains or might even be a little slower if call stacks are deep.

P0073R2 9

void produce () {
// Do something , produce a r e s u l t t h a t can be consumed :
// [. . .]
// And suspend :
suspend () ;

}

void compute () {
// Just do a b i t o f math here . . .

}

void co rout ine1 () autosuspendable {
compute () ;
produce () ;

}

void co rout ine2 () {
// Third−par ty code t ha t w i l l c a l l the c a l l b a c k (produce)
e x t e r n a l f o r e a c h (data , produce) ;

}

void runner () {
auto f 1 = run suspendable (co rout ine1) ;
auto f 2 = r u n s t a c k f u l (co rout ine2) ;

}

Figure 1: Example of code reuse between suspendable and stackful coroutines.

P0073R2 10

callbacks that have the interface of resumable functions. In contrast, with the unified
approach outlined in this paper, this example just works because the compiler will make
coroutine1 and produce suspendable functions, and suspend will work in suspend-
able mode and also in stackful mode when called through third-party code that’s just
available as binary (external for each via coroutine2).

This does not mean that the compiler has to create special code for callees that will
never suspend (e.g., compute in Figure 1); if the compiler has checked that there is no
way to call suspend, it can just use normal code.8 However, it requires a compiler to
be able to analyze the code, which it might not be able to do across compilation units;
in such a case, a compiler is allowed to produce a compile-time error. Programmers can
then use the autosuspendable or suspendable annotation to make this work across
translation units.

Note that, again, suspendable can also be used to assert that a function will never
attempt to suspend in the suspendable execution mode. However, this could result in
more suspendable clones being created than necessary, so we might want to consider
adding another annotation to cover this use case specifically (e.g., nosuspendable).

For the compiler implementation, this requires analysis of the call graph of each
autosuspendable function. This extends the intra-procedural analysis that is already
required for resumable functions9 to an inter-procedural analysis. Such compiler support
needs to be implemented, but is not magic either. The Transactional Memory TS is a
precedent for requiring such support, so if a compiler implements or wants to implement
this TS, it does or will have to do something very similar already.

There are difficulties with inter-procedural analyses, such as when crossing into differ-
ent translation units. Nonetheless, these are easier to solve for an implementation than
in the case of the analysis required by the Transactional Memory TS because strictly
speaking, using the suspendable execution mode is an optimization—the implementation
can always use a stackful implementation if it cannot analyze a part of the call graph
(and it can warn about this at compile time). This highlights why it can be useful to
not expose the implementation details of coroutines to a program.

5 Making executors aware of blocking

Previously, I have shown that both stackful and stackless coroutines can use the same
code, including the places where they get suspended. This is important but in order to
run them efficiently, their scheduler, for example the executor whose resources they run
on, needs to know when it is allowed and necessary to resume execution after suspension.
Therefore, we need to make the executor aware of blocking relationships and conditions
of coroutines.10

8Of course this assumes a correct program, including a correct use of the suspendable annotation.
9Note that this depends on whether functions that contain await need to be annotated or not; in the

discussion of resumable functions in Lenexa, some people wanted the annotations whereas others
thought they were unnecessary.

10A std::thread TOE’s scheduler doesn’t need to be made aware explicitly to the same extent, because
of the stronger forward progress guarantees and because blocking is visible to it through OS-level

P0073R2 11

Next, I will outline possible low-level support for this, constrained to what is necessary
to implement a generator. Other variants of such support are possible too – the focus
of what follows is on things the executor and implementation need to know or need for
performance, and not on what is the most convenient and polished design for users.
In other words, the target audience is library implementers. Higher-level interfaces for
this would be what we would expose to the average user. Note that what follows has
similarities to await and synchronous coroutines, which is futher indication that those
are compatible with suspendable functions and can be unified.

One requirement for the low-level support is that it is usable from different TOEs (i.e.,
std::thread as well as stackful and stackless coroutines). This is why it is based on
blocking, which they all can do. Note that the blocking I’m referring to here is of the
program-logic kind: A TOE cannot continue to do the things it wants to do until some
condition is met (see P0296R1 for a clarified definition of blocking in the standard).

Blocking is important for an implementation because when blocked, resources of the
TOE can often be used elsewhere:

• a spin-waiting TOE can slow down or pause for a while and thus let adjacent CPU
cores run more cycles,

• an OS thread / std::thread can be descheduled (e.g., what might happen on a
FUTEX WAIT system call on Linux, when a condition variable implementation
blocks),

• a stackful coroutine can suspend and allow for its OS thread to be used to execute
another stackful coroutine, or

• a stackless coroutine can suspend and thus let both its OS thread and stack space
be used for another coroutine.

The other aspect of blocking that is important is what condition a TOE is blocked on
and which TOE(s) can satisfy this condition. If an implementation is aware of this, it
can schedule accordingly. Therefore, the support outlined next follows a pull-style model
that makes the TOE that another TOE is blocked on known a priori to the executor.

This allows for convenient handling of forward progress by specifying that blocking
(i.e., the pull operation) always has blocking-with-forward-progress-delegation seman-
tics (see P0229R0). Other models would be possible too, but then we need to handle
forward progress differently (e.g., execute all coroutines on an executor until none can
run anymore or some coroutine satisfies the blocking condition).

We can use a simple event class to model an event that a TOE can wait for. For
simplicity, and to avoid synchronization overheads, let us assume that this is a single-
sender single-waiter event, and that the waiter is responsible for destruction:

class event
{

void s i g n a l () ;
}

blocking mechanisms such as futexes on Linux.

P0073R2 12

An event is always associated with the TOE that constructed it, and the signal

member function must only be called by this TOE. This makes executors aware of which
TOE can satisfy an event, and thus must execute to unblock another TOE blocked on
this event.

Next, we provide two blocking functions:

void block (event u n t i l) ;
void block and unblock (event& unt i l , event& s i g n a l) ;

block blocks the calling TOE until the event has been signaled. Coroutines (stackful
and stackless) may always suspend during this call, even when the condition is satisfied
(this gives the executor more leeway to schedule—remember that we schedule coopera-
tively). Also, when we block, the calling TOE delegates its forward progress guarantees
and thus potentially strengthens the forward progress of the TOE it depends on. We
assume that the scheduler takes care of synchronization, as explained below; we could
provide events that allow for more concurrent execution but this isn’t necessary for what
I want to show here.
block and unblock is a specialized version of block in that it both blocks and signals

another event in one indivisible step. This captures what a “call” operation would do
in a model of synchronous coroutines. For simplicity, we require that the TOE we block
on (i.e., until) is the same that we will signal. This also tells the executor that it can
simply stop executing the calling coroutine and resume the coroutine this will block on.

To spawn a coroutine, we provide this function:

template<class F> event spawn corout ine (F func , event& block on) ;

This will spawn a coroutine that will execute func, and will create a stackful or stackless
one depending on whether func is a suspendable function. Before starting execution,
the coroutine will block on block on. This function returns an event that is associated
with the coroutine, and can be used by func to send its first sign of life.11 The spawned
coroutine has weakly parallel forward progress requirements (see P0299R0), which is
sufficient because we use blocking-with-forward-progress-guarantee-delegation to make
sure it gets executed when needed.

Finally, for convenience, we add another function that requests the executor to signal
an event right after a coroutine has terminated. This just reduces the number of suspen-
sions that are necessary, but is a good example of things the executor can do to improve
performance by being aware of blocking relationships.

void u n b l o c k o n t o e e x i t (event& s i g n a l) ;

With these functions available, we can build and use a generator as shown in Figure 2.
The generator class simply models the lifecycle of a generator together with a crude
way to return data until no more data can be generated. The constructor only sets up
the coroutine but does not yet execute it; note that we set up the events such that one
is associated with the generator and one with the caller of the generator, thus building
a pattern similar to a synchronous coroutine.

11In the generator example below, this is all we need, but the coroutine could also set it up to signal
that it is done initializing more events.

P0073R2 13

template <typename T, class F>
class generato r
{

event run ;
event data ready ;
bool hd ;
T data ;

// This a s s o c i a t e s run with the TOE tha t c rea t ed the generator , and
// data ready w i l l be a s s o c i a t e d wi th the spawned corou t ine . The
// corou t ine w i l l b l o c k on run be f o r e s t a r t i n g to execu te .
generato r (F func) : run () , data ready (spawn corout ine (func , run) , hd (true)
{}

produce (T data , bool has more data)
{

generato r . data = data ;
i f (has more data)

b lock and unblock (run , data ready) ;
else
{

u n b l o c k o n t o e e x i t (data ready) ;
hmd = fa l se ;

}
}

T consume ()
{

block and unblock (data ready , run) ;
return generato r . data ;

}

bool has data () { return hd ; }
} ;

int count to 10 () autosuspendable
{

for (int i = 1 ; i < 10 ; i++) generato r . produce (i , (i < 1 0)) ;
}

// Note t ha t au tosuspendab l e i s not necessary but j u s t t h e r e to make user ()
// a l s o c a l l a b l e from a suspendab l e f unc t i on
void user () autosuspendable
{

generator<int> gen (count to 10) ;
while (gen . has data ())

gen . consume () ;
}

Figure 2: Example for how to build and use a generator.

P0073R2 14

consume is called from the “caller” of the generator and just blocks the calling TOE
and unblocks the generator coroutine (as one indivisible step). This will start or resume
the coroutine (the event data ready is used for both).
produce is called from within the generator and publishes the generated data. If

there is more data, it blocks until the consumer requests more data and unblocks the
consumer so it can consume the data. If no more data will be generated, it will set a
flag accordingly and unblock the consumer when the coroutine TOE has exited, which
avoids another suspension and switch between consumer and generator just to let the
generator exit.

The user function then makes uses of this by running count to 10 as a generator.
Note that this can be run as a stackless coroutine because count to 10 is a suspendable
function. Likewise, user can be called from either a std::thread, a stackful, or a
stackless coroutine because blocking is well-defined for all of these. The executor of the
TOE calling user would execute the coroutine as well (e.g., if this is a std::thread,
the generator would run on this OS thread).

In the case of std::thread, forward progress is guaranteed because of the concurrent
forward progress guarantee that std::thread gives (see P0296R0); in the case of corou-
tines, forward progress is as strong as forward progress of the coroutine (which in turn
may be strengthened by another TOE delegating its forward progress guarantees).

Also note that because the implementation (e.g., the executor) is aware of the block-
ing relationships and the block and unblock pattern, no use of atomic operations is
necessary—the implementation simply knows that there is no concurrency not under its
own tight control, so it can do synchronization via scheduling.

To conclude, I’d like to reiterate that this section was not supposed to present features
that you have never seen before in another proposal—instead, it is meant to show that
by focusing on the common base of the coroutine proposals and TOE in general (i.e.,
blocking, forward progress, suspension when blocking, knowledge that is helpful to the
scheduler and the implementation), we can unify the coroutine proposals and also avoid
making them unneccesarily different from the TOE we already have (i.e., std::thread
and the thread that runs main).

6 Revision history

Changes between R1 and R2:

• Added Section 5.

Changes between R0 and R1:

• Added proposal for an alternative way to write resumable functions (split out as
Section 4).

P0073R2 15

	The goals of this paper
	Coroutines represent threads of execution
	Examples for specific properties of execution

	Call stack implementations
	Bridging the gap between stackful and resumable
	Suspendable functions
	Suspending and executing suspendable functions
	Unification with stackful coroutines
	Allowing for more code reuse

	Making executors aware of blocking
	Revision history

