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1 Introduction

The algorithms and execution policies specified by the Parallelism TS are designed to permit implementation
on the broadest range of platforms. In addition to preemptive thread pools common on some platforms,
implementations of these algorithms may want to take advantage of a number of mechanisms for parallel
execution, including cooperative fibers, GPU threads, and SIMD vector units, among others. A suitable
abstraction encapsulating the details of how work is created across such diverse platforms would be of significant
value to parallel algorithm implementations. Furthermore, other constructs that expose parallelism to the
programmer—including async and task_block—would benefit from a common abstraction for launching
work. We believe that a suitably defined executor interface provides just such a facility.

Execution policies, which are the organizing principle of the current Parallelism TS, provide a means of
specifying what parallel work can be created, but do not currently address the question of where this work
should be executed. Executors can and should be the basis for exercising this level of control over execution,
where that is desired by the programmer.

In this paper1, we describe an executor interface that can efficiently abstract the details of execution across a
range of platforms. It provides the features required to implement parallel algorithms and control structures
such as task_block. Furthermore, this executor interface is designed to compose with the execution policies
introduced in Version 1 of the Parallelism TS. We propose that an executor facility based on this design be
added to Version 2 of the Parallelism TS in order to provide both a means of implementing parallel algorithms
and a means of controlling their execution.

2 Summary of Proposed Functionality

An executor is an object responsible for creating execution agents on which work is performed, thus
abstracting the (potentially platform-specific) mechanisms for launching work. To accommodate the goals of
the Parallelism TS, whose algorithms aim to support the broadest range of possible platforms, the requirements
that all executors are expected to fulfill should be small. They should also be consistent with a broad range
of execution semantics, including preemptive threads, cooperative fibers, GPU threads, and SIMD vector
units, among others.

The following points enumerate what we believe are the minimal requirements for an executor facility that
would support and interoperate with the existing Parallelism TS.

Uniform API. A program may have access to a large number of standard, vendor-specific, or other third-
party executor types. While various executor types may provide custom functionality in whatever way seems

1This paper updates P0058R0. New sections are highlighted with green titles.
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best to them, they must support a uniform interface for the core functionality required of all executors. We
outline an executor_traits mechanism as a concrete design that satisfies this requirement.
Compose with execution policies. Execution policies are the cornerstone of the parallel algorithm design
found in the Parallelism TS. We describe below how we believe executor support can be incorporated into
execution policies.
Advertised agent semantics. Executors should advertise the kind of execution agent they create. For
example, it should be possible to distinguish between an executor that creates sequential agents and another
that creates parallel agents. We introduce a notion of execution categories to categorize the kinds of execution
agents executors create, and which further clarifies the connection between executors and execution policies.
Bulk agent creation. High-performance implementations of the parallel algorithms we aim to support may
often need to create a large number of execution agents on platforms that provide a large number of parallel
execution resources. To avoid introducing unacceptable overhead on such platforms, executors should provide
an interface where a single invocation can cause a large number of agents to be created. Consolidating the
creation of many agents in a single call also simplifies the implementation of more sophisticated executors
that attempt to find the best schedule for executing and placing the work they are asked to create. The
functionality we sketch below provides a bulk interface, creating an arbitrary number of agents in a single
call and identifying the set of agents created with an integral range.
Standard executor types. There should be some, presumably small, set of standard executor types that
are always guaranteed to be available to any program. We detail what we believe to be the minimal set of
executor types necessary to support the existing Parallelism TS.
Enable convenient launch mechanisms. Most algorithm implementations will want a convenient way of
launching work with executors, rather than using the executor interface directly. The most natural way of
addressing this requirement is to introduce executor-based overloads of control structures such as task_block
and std::async, examples of which we sketch in subsequent sections.
With the additions we propose in this paper, the following use cases of the parallel algorithms library are
possible:

using namespace std::experimental::parallel::v2;

std::vector<int> data = ...

// legacy standard sequential sort
std::sort(data.begin(), data.end());

// explicitly sequential sort
sort(seq, data.begin(), data.end());

// permitting parallel execution
sort(par, data.begin(), data.end());

// permitting vectorized execution as well
sort(par_vec, data.begin(), data.end());

// NEW: permitting parallel execution in the current thread only
sort(this_thread::par, data.begin(), data.end());

// NEW: permitting vector execution in the current thread only
sort(this_thread::vec, data.begin(), data.end());

// NEW: permitting parallel execution on a user-defined executor
my_executor my_exec = ...;
std::sort(par.on(my_exec), data.begin(), data.end());
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3 Composing Control Structures with Executors

The remainder of this paper outlines a featureful, concrete executor facility that both satisfies the minimum
requirements for supporting the algorithms of the Parallelism TS, and also provides a foundation for creating
powerful control structures based on abstracted, modular execution. Before providing the detailed design, we
examine some motivating examples of control structures that compose with our executor interface.

3.1 async

One of the the simplest possible applications of our executor_traits interface could be found in a hypothetical
implementation of std::async. The following implementation sketch demonstrates that std::async may
be implemented with a call to a single executor operation:

template<class Function, class... Args>
future<result_of_t<Function(Args...)>>

async(Function&& f, Args&&... args)
{

using executor_type = ...
executor_type ex;

return executor_traits<executor_type>::async_execute(
ex,
bind(forward<Function>(f), forward<Args>(args)...)

);
}

This implementation assumes the existence of a special executor_type which delivers std::async’s idiosyn-
cratic future blocking behavior. However, the implementation could also be generalized to allow an overload
of async which composes with a user-supplied executor taken as a parameter:

template<class Executor, class Function, class... Args>
typename executor_traits<Executor>::template future<result_of_t<Function(Args...)>

async(Executor& ex, Function&& f, Args&&... args)
{

return executor_traits<Executor>::async_execute(
ex,
bind(forward<Function>(f), forward<Args>(args)...)

);
}

Such an overload would address use cases where the blocking destructor behavior of futures returned by
the current std::async is undesirable. The blocking behavior of the future type returned by this new,
hypothetical overload would simply be a property of the executor’s associated future type.

3.2 for_each_n

The initial motivation for the interface we describe in this paper is to support the implementation of algorithms
in the Parallelism TS. As an example, the following code example demonstrates a possible implementation of
for_each_n for random access iterators using the executor interface we define below.
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template<class ExecutionPolicy, class InputIterator, class Function>
Iterator for_each_n(random_access_iterator_tag,

ExecutionPolicy&& policy, InputIterator first, Size n, Function f)
{

using executor_type = typename decay_t<ExecutionPolicy>::executor_type;

executor_traits<executor_type>::execute(policy.executor(), [=](auto idx)
{

f(first[idx]);
},
n
);

return first + n;
}

The design we suggest associates an executor with each execution policy. The implementation above uses
the executor associated with the policy provided by the caller to create all its execution agents. Because
for_each_n manipulates all executors it encounters uniformly via executor_traits, the implementation is
valid for any execution policy. This avoids the burden of implementing a different version of the algorithm
for each type of execution policy and permits user-defined execution policy types, leading to a substantial
reduction in total code complexity for the library.

3.3 task_block

Enabling passing an optional execution policy to define_task_block as described by P0155R0 gives the
user control over the execution agents created by the task_block. In the following example the use of an
explicit par execution policy makes the user’s intention explicit:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
par, // parallel_execution_policy
[&](task_block<>& tb) {

if (n->left)
tb.run([&] { left = traverse(n->left, compute); });

if (n->right)
tb.run([&] { right = traverse(n->right, compute); });

});

return compute(n) + left + right;
}

Please note, that this addition requires turning the actual task_block type as passed to the lambda into a
template. Here is the corresponding changed interface such an implementation would expose:

namespace std {
namespace experimental {
namespace parallel {
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inline namespace v2 {

class task_canceled_exception;

template <typename ExPolicy = v1::parallel_execution_policy>
class task_block;

template <typename F>
void define_task_block(F&& f);

template <typename F>
void define_task_block_restore_thread(F&& f);

// new: overloads taking an additional execution policy argument
template <typename ExPolicy, typename F>

void define_task_block(ExPolicy&& policy, F&& f);
template <typename ExPolicy, typename F>

void define_task_block_restore_thread(ExPolicy&& policy, F&& f);
}
}
}

}

This change also enables defining at runtime what execution policy to use (by passing an instance of a generic
v1::execution_policy). This is beneficial in many contexts, for instance debugging (by dynamically setting
the execution policy to seq).
Often, we want to be able to not only define an execution policy to use by default for all spawned tasks
inside the task block, but in addition to customize the execution context for one of the tasks executed by
task_block::run. Adding an optionally passed executor instance to that function enables this use case:

template <typename Func>
int traverse(node *n, Func&& compute)
{

int left = 0, right = 0;

define_task_block(
par, // parallel_execution_policy
[&](auto& tb) {

if (n->left)
{

// use explicitly specified executor to run this task
tb.run(my_executor(), [&] { left = traverse(n->left, compute); });

}
if (n->right)
{

// use the executor associated with the par execution policy
tb.run([&] { right = traverse(n->right, compute); });

}
});

return compute(n) + left + right;
}

A corresponding template task_block would look like this:
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template <typename ExPolicy = v1::parallel_execution_policy>
class task_block {
private:

// Private members and friends (for exposition only)
template <typename F>

friend void define_task_block(F&& f);
template <typename F>

friend void define_task_block_restore_thread(F&& f);

// new: overloads taking an additional execution policy argument
template <typename ExPolicy, typename F>

friend void define_task_block(ExPolicy&& policy, F&& f);
template <typename ExPolicy, typename F>

friend void define_task_block_restore_thread(ExPolicy&& policy, F&& f);

task_block(_unspecified_);
~task_block();

public:
task_block(const task_block&) = delete;
task_block& operator=(const task_block&) = delete;
task_block* operator&() const = delete;

template <typename F>
void run(F&& f);

// new: overload taking an additional executor argument
template <typename Executor, typename F>

void run(Executor& ex, F&& f);

void wait();

// new: expose underlying execution policy.
ExPolicy& policy();
const ExPolicy& policy() const;

};

3.4 Higher-level user-defined codes

The following code example is presented as a motivating example of paper N4143:

template<typename Exec, typename Completion>
void start_processing(Exec& exec, inputs1& input, outputs1& output, Completion&& comp)
{

latch l(input.size(), forward<Completion>(comp));

for(auto inp : input)
{

spawn(exec,
[&inp]
{

// process inp
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},
[&l]
{

l.arrive();
}

);
}

l.wait();
}

This code can be dramatically simplified in a framework where executors interoperate cleanly with execution
policies and parallel algorithms. The equivalent code using our design is:

template<typename Exec, typename Completion>
void start_processing(Exec& exec, inputs1& input, outputs1& output, Completion&& comp)
{

transform(par.on(exec), input.begin(), input.end(), output.begin(), [](auto& inp)
{

// process inp
});

forward<Completion>(comp)();
}

Because transform’s invocation synchronizes with its caller, there is no longer a need to introduce a low-level
latch object into the high-level start_processing code. Moreover, the code avoids the potentially high
overhead of launching individual tasks within a sequential for loop, replacing that with an abstract parallel
algorithm.

4 Proposed functionality in detail

In this section, we outline a concrete design of an executor facility that meets the requirements laid out above
and provides the interface used in the preceding motivating examples. We focus specifically on the aspects of
a design that address the requirements laid out at the beginning of this paper. A complete design would also
certainly provide functionality beyond the minimal set proposed in this section. We survey some possible
directions for additional functionality in an appendix.

4.1 Uniform manipulation of futures via future_traits

Futures represent a handle to the completion of an asynchronous task. Their interface allows clients to wait
for, and get, the result of asynchronous computations. In addition to acting as one-way channels through
which asynchronously executing agents communicate their results to receiver clients, futures alternatively
allow redirection of results to a successor continutation task. By connecting continuations to futures in
this way, clients may use futures as the basic building blocks for assembling sophisticated, asynchronous
control flows. Our proposed executor_traits interface uses futures to return the results of asynchronously
executing agents.

The C++ Standard Library provides two future templates: std::future<T>, and std::shared_future<T>.
The former provides a single client with a handle to a asynchronous result, while the latter accomodates
multiple clients at once. As parallel programming proliferates through the C++ ecosystem, we envision that
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other types of futures will appear beyond the two types specified by the C++ Standard Library. These
will include user-defined future types – especially those associated with novel types of executors. We wish
to accomodate this diversity by describing a uniform, standardizable protocol for library implementors to
interact with and compose different future types in a uniform way.

One solution for uniform interaction with different future types is through our proposed future_traits
interface, which follows:

template<class Future>
class future_traits
{

public:
// the type of the future
using future_type = Future;

// the type of future value
using value_type = ...

// allows rebinding value_type
template<class U>
using rebind = ...

// the type of future returned by share()
using shared_future_type = ...

// waits for the future to become ready
static void wait(future_type& fut);

// waits for the future to become ready and returns its value
static value_type get(future_type& fut);

// makes a void future which is immediately ready
static rebind<void> make_ready();

// makes a future<T> from constructor arguments which is immediately ready
template<class T, class... Args>
static rebind<T> make_ready(Args&&... args);

// attach continuation f to receive the result of fut
// result of the continuation is communicated through the returned future
template<class Function>
rebind<...> then(future_type& fut, Function&& f);

// casts future<T> to future<U>
// note: some kinds of casts can be performed without creating a continuation
template<class U>
static rebind<U> cast(future_type& fut);

// shares the given future
static shared_future_type share(future_type& fut);

};

This presentation of future_traits matches the functionality present in our prototype implementation.
We have included the operations and associated type aliases which seem most fundamental to a future
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concept. One operation which we include for which there is not yet a standard is the cast() operation. While
implementing our prototype of executor_traits, described in the next section, we often found it necessary
to cast one type of future (e.g., future<T>) to a related type (e.g., future<void>). In general, it would be
necessary to create a continuation to perform a conversion from a future’s result to some other type. However,
there are frequently-occurring cases where a cast may be performed logically where a continuation is not
required. Such use cases include discarding the value of a future<T> by converting it into a future<void>
or converting an empty type into a different empty type. We wish to allow future implementors to target and
accelerate such cases through the cast() operation when such optimizations are available.
Additional operations beyond which we describe here are certainly possible. For example, an operation which
would create an exceptional future, or an operation which would query whether the given future was ready
would be useful. If there exists broad support for our future_traits proposal, we expect commitee feedback
to guide the design of a complete interface.

4.2 Uniform manipulation of executors via executor_traits

Executors are modular components for creating execution agents. For library components to be freely
composable with diverse executors, including user-defined executors, all executors must be capable of
supporting a common interface. This common interface is defined by the executor_traits template. This
represents the minimal interface all control structures can rely on. The definition of this interface has been
chosen so that executor_traits can ensure that the entire interface can be supported for all executor
types, even when the concrete type implements only a subset of the interface. When the concrete executor
type does not implement a particular executor operation, executor_traits synthesizes this operation’s
implementation.
There are three executor operations which create execution agents: execute(), async_execute(), and
then_execute().

4.2.1 Execution Agent Rules

Execution agent creation is subject to two rules:

1. Only concrete executor operations create execution agents. Consequently, synthesized executor op-
erations only cause agents to be created by calling concrete executor operations, either directly or
indirectly.

2. The method for choosing the thread or threads on which these agents execute is a property of the
concrete executor type.

One implication of these rules is that only concrete executor operations are permitted to create threads.
Because they control the mapping onto threads, it is the prerogative of concrete executors to decide whether
execution can occur on the thread which invoked the operation. This ensures that operations synthesized by
executor_traits cannot spuriously introduce threads into a program, nor eagerly execute agents on the
calling thread, unless the specific concrete executor is explicitly built to do these things.
Execution agent synchronization is subject to two rules:

3. Execution agents created by execute() synchronize with the thread which invoked execute().

4. If async_execute() (then_execute()) has a result, it must satisfy the Future concept. Execution
agents created by async_execute() (then_execute()) synchronize with the thread which calls .wait()
on the future returned by async_execute() (then_execute()).

Rule 4. implies that if async_execute() and then_execute() have no result, then the execution agents
they create synchronize with nothing.
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4.2.2 executor_traits Synopsis

A sketch of our proposed executor_traits interface follows:

template<class Executor>
class executor_traits
{

public:
// the type of the executor
using executor_type = Executor;

// the category of agents created by calls to operations with "execute" in their name
using execution_category = ...

// the type of index passed to functions invoked by agents created by
// the multi-agent creation functions
using index_type = ...

// the type of the shape parameter passed to the multi-agent creation functions
using shape_type = ...

// the type of future returned by asynchronous functions
template<class T>
using future = ...

// the type of future returned by share_future
template<class T>
using shared_future = ...

// the type of container used to return multiple results
// from multi-agent operations
template<class T>
using container = ...

// creates an immediately ready future containing a T contructed from
// the given constructor arguments
template<class T, class... Args>
static future<T>

make_ready_future(executor_type& ex, Args&&... args);

// converts a (possibly foreign) some_future<U> to this executor's future<T>
template<class T, class Future>
static future<T>

future_cast(executor_type& ex, Future& fut);

// creates a shared_future<T> from a some_future<T>
static shared_future<...>

share_future(executor_type& ex, Future& fut);

// creates multiple shared_futures<T> from a some_future<T>
static container<shared_future<...>>

share_future(executor_type& ex, Future& fut,
shape_type shape);
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// creates multiple shared_futures<T> from a some_future<T> and returns them
// through the result of the given Factory
template<class Factory>
static result_of_t<Factory(shape_type)>

share_future(executor_type& ex, Future& fut,
Factory factory,
shape_type shape);

// returns the largest shape the executor can accomodate in a single operation
template<class Function>
static shape_type max_shape(const executor_type& ex, const Function& f);

// returns a future to a tuple-like type containing the values of
// the given futures. The result becomes ready when all the given futures are ready
template<class... Futures>
static future<...>

when_all(executor_type& ex, Futures&&... futures);

// single-agent when_all_execute_and_select
// invokes the function when all the input futures are ready
// the values of the input futures are passed through to the result future as a tuple.
// the caller may select which values to passthrough
template<size_t... Indices, class Function, class TupleOfFutures>
static future<...>

when_all_execute_and_select(executor_type& ex, Function&& f,
TupleOfFutures&& futures);

// multi-agent when_all_execute_and_select
template<size_t... Indices, class Function, class TupleOfFutures, class... Factories>
static future<...>

when_all_execute_and_select(executor_type& ex, Function f,
shape_type shape,
TupleOfFutures&& futures,
Factories... factories);

// single-agent then_execute
// asynchronously invokes f(value) when the input future's value is ready
// returns the result f(value) via future
template<class Function, class Future>
static future<...>

then_execute(executor_type& ex, Function&& f, Future& fut);

// multi-agent then_execute returning user-specified container
// asynchronously invokes f(idx, value, shared_args...) when the input future's value is ready
// returns the results of f(idx, value, shared_args...) via future<some_container>
template<class Function, class Future, class Factory, class... Factories>
static future<result_of_t<Factory(shape_type)>>

then_execute(executor_type& ex, Function f,
Factory result_factory,
shape_type shape,
Future& fut,
Factories... factories);

// multi-agent then_execute returning default container
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// asynchronously invokes f(idx, value) when the input future's value is ready
// returns the results of f(idx, value, shared_args...) via future<container<...>>
template<class Function, class Future, class... Factories>
static future<container<...>>

then_execute(executor_type& ex, Function f,
shape_type shape,
Future& fut,
Factories... factories);

// single-agent async_execute
// asynchronously invokes f()
// returns the result of f()'s via future
template<class Function>
static future<result_of_t<Function()>>

async_execute(executor_type& ex, Function&& f);

// multi-agent async_execute returning user-specified container
// asynchronously invokes f(idx, shared_args...)
// returns the results of f(idx, shared_args...) via future<some_container>
template<class Container, class Function, class Factory, class... Factories>
static future<result_of_t<Factory(shape_type)>

async_execute(executor_type& ex, Function f,
Factory result_factory,
shape_type shape,
Factories... factories);

// multi-agent async_execute returning default container
// asynchronously invokes f(idx, shared_args...)
// returns the results of f(idx, shared_args...) via future<container<...>>
template<class Function, class... Factories>
static future<container<...>>

async_execute(executor_type& ex, Function f,
shape_type shape,
Factories... factories);

// single-agent execute
// synchronously invokes f()
// returns the result of f()
template<class Function>
static result_of_t<Function()>

execute(executor_type& ex, Function&& f);

// multi-agent execute returning user-specified container
// synchronously invokes f(idx, shared_args...)
// returns the results of f(idx, shared_args...) via Container
template<class Function, class Factory, class... Factories>
static result_of_t<Factory(shape_type)>

execute(executor_type& ex, Function f,
Factory result_factory,
shape_type shape,
Factories... factories);

// multi-agent execute returning default container
// synchronously invokes f(idx, shared_args...)
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// returns the results of f(idx, shared_args...) via container<...>
template<class Function, class... Factories>
static container<...>

execute(executor_type& ex, Function f,
shape_type shape,
Factories... factories);

};

// inherits from true_type if T satisfies the Executor concept implied by executor_traits;
// otherwise false_type
template<class T>
struct is_executor;

4.3 Groups of Execution Agents

With executor_traits, clients manipulate all types of executors uniformly:

executor_traits<my_executor_type>::execute(my_executor, [](size_t i)
{

// execute task i
},
n);

This call synchronously creates a group of invocations of the given function, where each individual invocation
within the group is identified by a unique integer i in [0,n). Other similar functions in the interface exist to
create groups of invocations asynchronously. Each of these executor_traits operations also provides an
overload which omits the extra parameter and creates a single execution agent. This single-agent mode of
operation corresponds to a special case of the general multi-agent mode and closely matches the executor
model proposed by Mysen (N4143).

4.4 Execution Hierarchies

We often reason about parallel execution as a generalization of sequential for loops. Indeed, parallel
programming systems often expose themselves to programmers as annotations which may be applied to
normal for loops, transforming them into parallel loops. Such programming systems expose the simplest
kind of collective execution: a single “flat” group of execution agents.

In fact, collections of execution agents, and the underlying platform architectures which physically execute
them, often have hierarchical structure. An instance of this kind of execution hierarchy is a simple nesting of
for loops:

for(size_t i = 0; i < m; ++i)
{

for(size_t j = 0; j < n; ++j)
{

f(i,j);
}

}

In our terminology, this nested for loop example creates a hierarchical grouping of execution agents: one
group of sequential execution agents of size m is created by the outer for loop, and m groups of sequential
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execution agents of size n is created by the inner loop. Each iteration of the outer for loop executes in
sequence, while an entire inner loop must execute before the next inner loop in sequential is able to begin.

A parallel programmer could use a programming system such as OpenMP to transform the sequential
execution of these nested for loops by applying annotations:

#pragma omp parallel
for(size_t i = 0; i < m; ++i)
{

#pragma omp simd
for(size_t j = 0; j < n; ++j)
{

f(i,j);
}

}

In this example, the execution agents created by the iterations of the two loops differ: the outer loop iterations
execute in parallel, while the inner loop iterations execution in SIMD fashion. This hierarchical style of
programming is popular among parallel programmers because it provides a close mapping to the execution
exposed by the topology of the physical hardware. In order to best take advantage of parallel platforms, we
should endeavour to provide programmers with a uniform programming model for such hierarchies.

Our executor programming model is one such solution to this problem. In our programming model, executors
may advertise their category of execution as nested, creating groups of both outer and inner execution agents.
For each execution agent created in the outer group, the executor also creates a group of inner execution
agents. The execution semantics of the outer group dicates the ordering semantics of the groups of inner
agents relative to one other. Within each group of inner execution agents, ordering semantics are given as
normal.

One application of nested executors used in the current implementation of our proposal is to easily create
new types of executors via composition. For example, our implementation of parallel_executor defines
itself in terms of special kinds of executor adaptors. First, we create an executor which nests sequential
execution agents inside concurrent execution agents. Our implementation of parallel_executor is simply
the “flattening” of this hierchical executor.

The resulting implementation of parallel_executor is a single using declaration:

using parallel_executor = flattened_executor<
nested_executor<

concurrent_executor,
sequential_executor

>
>;

4.5 Shared Parameters

Groups of execution agents often require communicating among themselves. It makes sense to mediate
this communication via special shared parameters set aside for this purpose. For example, parallel agents
might communicate via a shared atomic<T> parameter, while concurrent agents might use a shared barrier
object to synchronize their communication. Even sequential agents may need to receive messages from their
ancestors.

To enable these use cases, the multi-agent executor_traits operations receive optional Factory arguments.
The job of these factories is to construct these parameters which are shared across the group of agents.
Because locality is so important to efficient communication, we envision associating with each factory an
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optional allocator which executors may use to allocate storage for these shared parameters. We use the
nomenclature Factory for these parameters to distinguish them from normal Functions which do not have
an associated allocator. In our implementation, the client must pass either zero factories, or exactly one
factory per level of the executor’s execution hierarchy.

When an executor client passes a factory to a multi-agent executor_traits operation, the factory is invoked
once per group of execution agents created before the agents begin execution. The object created by the
factory is passed by reference to each execution agent as an additional argument to the task to execute. In
this way, each execution agent sees the same shared object, and with proper synchronization, the execution
agents may communicate through it.

4.6 Multidimensionality

When programming multidimensional applications, one often must often generate points in a multidimensional
index space. A straightforward way to produce multidimensional indices in a sequential application is to use
loop variables generated by nested for loops:

for(int i = 0; i < m; ++i)
{

for(int j = 0; j < n; ++i)
{

auto idx = int2(i,j);
}

}

These for loops create indices idx which enumerate the points spanned by a M × N rectangular lattice
originating at the origin.

We abstract this application of sequential for loops within our executor programming model by generalizing
the agent indices produced by executors to multiple dimensions. By the same token, the parameter specifying
the number of execution agents to create is also allowed to be multidimensional. Respectively, these are the
index_type and shape_type typedefs associated with each executor.

The difference between the multidimensional for loop example described in this section and the hierarchical for
loop example described in the section on execution hierarchies is that the agents created in the multidimensional
example all belong to a single group. By contrast, the agents created by the hierarchical example belong to
separate groups: one outer group, and many inner groups, where the execution semantics of the outer and
inner groups are allowed to differ. Note that depending on the definition of the executor, hierarchical execution
agents can in general be indexed multidimensionally. In other words, hierarchy and multidimensionality are
orthogonal features. A given executor can choose to support one, both, or neither.

4.7 Fire-and-Forget

Some creators of work may be uninterested in the work’s outcome: they simply with to “fire off” some work
and then “forget” about it. In these cases, creators of work do not require synchronizing with the work’s
completion. For example, a deferred resource deallocation scheme might present clients with an asynchronous
interface. Behind the interface, an executor might create asynchronous agents to execute the destructors of
resources deallocated through the interface. Requiring a future for each deallocation request would burden the
executor with the wasteful construction of superfluous and potentially expensive synchronization primitives.

Our proposal allows executors to advertise their asynchronous operations as “fire-and-forget” by allowing
them to return void from such operations. Instead of returning an instance of a type that fulfills the Future
concept, async_execute() and then_execute() would return void. For such executors, the associated
future<T> template always yields void when instantiated for any given T. Of course, it is always possible for
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the client to synchronize with work created this way by introducing their own synchronization primitives into
the program.

4.8 Associated Typedefs and Templates

executor_traits exposes a number of associated member types and templates which appear in the signatures
of its member functions. If the executor for which executor_traits has been instantiated has a member
typedef (template) with a corresponding name, these associated typedefs (templtes) are simply an alias for
that type (template). Otherwise, they are assigned a default.

4.8.1 executor_type

executor_type simply names the type of executor for which executor_traits has been instantiated.

4.8.2 execution_category

execution_category advertises the guaranteed semantics of execution agents created by calls to multi-agent
operations. For example, an execution_category of sequential_execution_tag guarantees that execution
agents created in a group by a call to a function such as execute(exec, f, n) all execute in sequential order.
By default, execution_category should be parallel_execution_tag. We discuss execution categories in
detail in a later section.

4.8.3 index_type and shape_type

index_type and shape_type describe both the domain of multi-agent execution groups and the indices of
individual agents therein, as discussed previously. By default, both of these types are size_t.

4.8.4 future<T>

The future<T> template parameterizes the types of futures which the executor_type produces as the result
of asynchronous operations. Executors may opt to define their own types of future when it is desirable to do
so for the reasons discussed in previous sections. By default, this template is std::future<T>.

4.8.5 shared_future<T>

The shared_future<T> template parameterizes the types of futures which the executor_type produces as a
result of the share_future function. By default, this template is future_traits<future<T>>::shared_future_type.

4.8.6 container<T>

The container<T> template parameterizes the collections of results produced by multi-agent operations. For
example, a call to a function such as execute(exec, f, n) will produce a result for all the invocations of
f(idx). In order to communicate all results to the caller of .execute(), we collect them within a container.
By default, instantiations of this template are an implementation-defined random access containers. However,
an executor might choose to expose a custom container type if the default choice was undesirable. For
example, an executor whose agents executed in a NUMA machine might choose to locate results in a memory
location local to those execution agents in order to enjoy the benefits of memory locality.

For the purposes of executor_traits, a container is any type which may be constructed from a single
shape_type argument and whose elements may be assigned via cont[idx] = x, where idx is an instance of
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index_type. In this way, there is a convenient correspondence between the shape_type and index_type
which describe both multi-agent execution groups and containers collecting their results.

4.9 executor_traits Operations

executor_traits’s interface includes several member functions for creating execution agents and other associ-
ated operations. Every member function foo of executor_traits, executor_traits::foo(exec, args...)
is implemented with exec.foo(args...), if such a call is well-formed. Otherwise, executor_traits provides
provides a default implementation through a lowering onto other functions in the interface. This section
describes executor_traits’s member functions in detail.

4.9.1 make_ready_future

make_ready_future generalizes the C++ Concurrency TS’s operation of the same name to interoperate
with executors. It allows the client of an executor to create a new future in an immediately ready state. We
have generalized the interface to invoke a general constructor, rather than simply a copy constructor. This
accomodates executors abstracting NUMA architectures, where copies may be relatively expensive.

4.9.2 future_cast

future_cast generalizes our previously described future_traits::cast operation to interoperate with ex-
ecutors. With it, clients may convert a future of any type (even futures associated with a foreign executor) to a
type of future associated with the given executor. It also provides a way for different executors’ futures to inter-
operate. In general, future_cast must create a continuation (e.g. via executor_traits::then_execute())
to perform the conversion operation. However, there are cases where conversions may be performed “for free”
without introducing additional asynchronous tasks. We include this operation because we found ourselves
frequently requiring such casts within our current prototype’s implementation of executor_traits. By
exposing this operation as an optimization and customization point, it allows executor authors to accelerate
this frequently-occurring use case.

4.9.3 share_future

Like future_cast, share_future generalizes our previously described future_traits::share operation to
interoperate with executors. It is useful when implementing dynamically-sized “fan-out” operations and when
constructing important kinds of compositions of executors. For example, an adaptor executor may adapt a
collection of underlying executors and present the entire collection as a single logical executor. To implement
the then_execute operation, the wrapping executor must communicate the incoming future dependency
to each of the N underlying executors. The most straightforward way to accomplish this is to share the
incoming future N times and call then_execute() on each underlying executor. Because the degree of sharing
may be arbitrarily large, we provide overloads of the share_future operation which return a container of
shared_future<T>. These overloads capture a frequent use case and allow the executor author to accelerate
it.

4.9.4 max_shape

The max_shape function reports the largest multi-agent group which may be possibly created by a call to
an executor_traits operation. It is directly analogous to allocator_traits::max_size, which reports
a similar limit for memory allocation. Because the semantics guaranteed by executors will be limited by
available resources (e.g. executors which make guarantees regarding concurrency), it makes sense to provide a
means to query these limits. Note that requests for multi-agent groups whose shapes fit within max_shape
may still fail to execute due to resource unavailability.

17



4.9.5 when_all

The when_all function introduces a join operation on a collection of futures by producing a future whose
value is a tuple of the input futures’ values. The result future becomes ready only when all of the input futures
become ready. Our proposed version of when_all is similar to the one presented by the Concurrency TS,
with one key difference: instead of producing future<tuple<future<T1>,future<T2>,..., future<TN>>>,
our proposed version produces future<tuple<T1,T2,...,TN>>. In other words, our proposed version of
when_all “unwraps” the input futures’ values when tupling. To deal with void futures, the corresponding
element of the tuple is simply omitted. If all input futures are void, our proposed version of when_all produces
a void future instead of introducing a tuple. We believe this formulation promotes better composability
because it allows continuation functions to consume the result of when_all directly, rather than be required
to traffic in futures. In a future C++ ecosystem where we expect a diversity of future types to exist, it would
be burdensome to require user lambdas to accomodate all types of futures. Instead, our alternate formulation
allows them to operate on the values of function parameters directly.

4.9.6 when_all_execute_and_select

The when_all_execute_and_select function is an aggressively-parameterized general purpose function
which acts as a sort of Swiss Army knife which may be employed to implement any other executor_traits
operation efficiently. When implementing our current executor_traits prototype, without this function,
we found it impossible to provide default implementations of many operations without introducing spurious
continuations. For example, this issue presents itself when adapting an executor whose native operation
creates single-agent tasks to the multi-agent interface; and vice versa.

when_all_execute_and_select executes a given function when all of its input future parameters become
ready. The given function receives the values of the input futures as separate parameters. In this sense,
it is a sort of fusion of when_all and then_execute. Rather than return the result of the function via a
future, the values of the input parameters are forwarded into a future tuple returned by the function. If
the caller wishes to retain the result of the invoked function, she may do so by storing a value to one of
the input parameters. Because the input parameters get forwarded to the result, the effect is a return by
output parameter. Note that when_all_execute_and_select’s client may introduce storage for an output
parameter with make_ready_future.

If the caller of when_all_execute_and_select is uninterested in receiving some of the input parameters, it
may discard them. The interface accomodates this use case by providing non-type integer template parameters
which select a subset of interesting parameters by index. This subset of selected values is returned in the
tuple; the remainder is discarded.

4.9.7 then_execute

The then_execute function allows an executor client to asynchronously enqueue a task as a continuation
dependent on the completion of a predecessor task. Like the Concurrency TS, executor_traits uses a
future to specify the predecessor task. When the predecessor future becomes ready, the continuation may be
executed. When the continuation function is invoked, it receives as an argument an index identifying the
invocation’s execution agent. In the single-agent case, the index is omitted. The continuation function also
receives the predecessor future’s value as its second argument. Unlike the Concurrency TS, the continuation
function consumes a value rather than a value wrapped in a future. We believe consuming values provides
better composability and avoids burdening execution agents with exception handling. In our experiments,
we have found handling exceptions in the continuation to be awkward or impossible for multi-agent groups.
However, this alternate scheme suggests we should design a first class scheme for exception handling as future
work.

Any result of the continuation function is returned through the future returned by then_execute. If the
continuation has no result, then_execute’s result is future<void>, where future is the executor’s associated
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future template. If the continuation has a result of type T, then then_execute’s result is future<T> in
the single-agent case. In the multi-agent case, the results of all the individual invocations are collected in a
container.

The type of container returned by then_execute may be controlled by the caller. If the caller sup-
plies a factory to construct the result via the result_factory parameter, then then_execute’s result
is future<result_of_t<Factory(shape_type)>>; otherwise, it is future<container<T>>. In any case,
execution agent idx’s result is located at index idx in the resulting container.

4.9.8 async_execute

The behavior of async_execute is identical to then_execute, except that async_execute omits the prede-
cessor future which acts as the desired task’s dependency. Instead, async_execute allows the client to signal
that a task is immediately ready for asynchronous execution. In the single-agent case, the function invoked
by execution agents created by this operation receives no parameters. In the multi-agent case, the function
receives one parameter: the index of the invocation’s execution agent. async_execute returns results from
function invocations identically to then_execute.

4.9.9 execute

The behavior of the execute operation is identical to async_execute, except that execute is entirely syn-
chronous: the caller of execute synchronizes with all execution agents created by the operation. Accordingly,
the results of function invocations executed by agents created by execute are returned directly to the caller,
rather than indirectly through a future.

4.10 Execution categories

Execution categories categorize execution agents by the order in which they execute function invocations
with respect to neighboring function invocations within a group. Execution categories are represented in
the C++ type system by execution category tags, which are empty structs similar to iterator categories.
Unlike execution policies, which encapsulate state (such as an executor) describing how and where execution
agents are created, and may make guarantees over which threads are allowed to execute function invocations,
execution categories are stateless and focused only on describing the ordering of groups of function invocations.
A partial order on execution categories exists; one may be weaker or stronger than another. A library
component (such as an executor) which advertises an execution category which is not weaker than another
may be substituted for the other without violating guarantees placed on the ordering of function invocations.

The minimum set of execution categories necessary to describe the ordering semantics of the Parallelism TS
are:

• sequential_execution_tag - Function invocations executed by a group of sequential execution agents
execute in sequential order.

• parallel_execution_tag - Function invocations executed by a group of parallel execution
agents execute in unordered fashion. Any such invocations executing in the same thread are
indeterminately sequenced with respect to each other. parallel_execution_tag is weaker than
sequential_execution_tag.

• vector_execution_tag - Function invocations executed by a group of vector execution agents are
permitted to execute in unordered fashion when executed in different threads, and unsequenced with
respect to one another when executed in the same thread. vector_execution_tag is weaker than
parallel_execution_tag.
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• concurrent_execution_tag - The exact semantics of this execution category are to be determined.
The basic idea is that the function invocations executed by a group of concurrent execution agents are
permitted to block each others’ forward progress. This guarantee allows concurrent execution agents to
communicate and synchronize.

• nested_execution_tag<OuterExecutionCategory,InnerExecutionCategory> - The exact semantics
of this execution category are to be determined. This category indicates that execution agents
execute in a nested organization. The semantics of the outer group of execution agents are given by
OuterExecutionCategory. With each execution agent in the outer group is associated a group of
execution agents with semantics given by InnerExecutionCategory.

4.10.1 Categories without Corresponding Standard Execution Policies

4.10.1.1 concurrent_execution_tag Efficient implementations of parallel algorithms must be able to
create and reason about physically concurrent execution agents. Some implementations will require groups of
concurrent agents to synchronize and communicate amongst themselves. To serve this use case, this category
of executor must be able to guarantee successful creation (or indicate failure) of an entire group of concurrent
agents. To appreciate why this is important, realize that the first code example of section 3.3 deadlocks
when an individual spawn() call fails. To represent this category of execution, we introduce a concurrent
execution category concurrent_execution_tag as well as a concurrent_executor class. We anticipate the
semantics of this category of execution to be determined pending ongoing standardization efforts, especially
the foundational work of Riegel’s Light-Weight Execution Agents proposal (N4439).

Note that unlike other execution categories, concurrent_execution_tag currently has no corresponding
execution policy. This is because it is doubtful that the semantics of the entire suite of parallel algorithms
would allow concurrent element access functions. In principle, one could partition the set of parallel algorithms
into those which could support concurrent execution and which could not. As yet, we have not attempted to
devise a scheme for categorizing algorithms in such a fashion.

4.10.1.2 nested_execution_tag nested_execution_tag encodes the category of execution agent hier-
archies. It is a template with two parameters: OuterExecutionCategory and InnerExecutionCategory.
These categories name the execution categories of agents in the outer group, and inner groups, respec-
tively. Hiearchies deeper than two levels may be described by nesting nested_execution_tag as the
InnerExecutionCategory.

4.11 Standard executor types

In addition to other executor types under consideration in various proposals, we propose the following
standard executor types. Each type corresponds to the execution policy implied by its name:

• sequential_executor - creates groups of sequential execution agents which execute in the calling
thread. The sequential order is given by the lexicographical order of indices in the index space.

• parallel_executor - creates groups of parallel execution agents which execute in either the calling
thread, threads implicitly created by the executor, or both.

• this_thread::parallel_executor - creates groups of parallel execution agents which execute in the
calling thread.

• vector_executor - creates groups of vector execution agents which execute in either the calling thread,
threads implicitly created by the executor, or both.

• this_thread::vector_executor - creates groups of vector execution agents which execute in the
calling thread.

• concurrent_executor - creates groups of execution agents which execute concurrently.
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4.11.1 Example this_thread::vector_executor implementation

The following code example demonstrates a possible implementation of this_thread::vector_executor
using #pragma simd:

namespace this_thread
{

class vector_executor
{

public:
using execution_category = vector_execution_tag;

template<class Function, class T>
void execute(Function f, size_t n)
{

#pragma simd
for(size_t i = 0; i < n; ++i)
{

f(i);
}

}

template<class Function, class T>
std::future<void> async_execute(Function f, size_t n)
{

return async(launch::deferred, [=]
{

this->execute(f, n);
});

}
};

}

In our experiments with Clang and the Intel compiler, we found that the performance of codes written using
this_thread::vector_executor is identical to an equivalent SIMD for loop.

4.12 A Dynamic Polymorphic Executor

The executor interface we define permits control structures to accept executors as template parameters. The
resulting static polymorphism is valuable in avoiding unnecessary overhead and keeping the cost of abstraction
near zero. On the other hand, there may be cases where executors must be passed across binary interfaces.
To support such use cases, we propose the following executor class to act as a polymorphic container for all
executor types:

class executor
{

public:
using execution_category = erased_type;

template<class Executor>
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executor(Executor&& exec);

template<class Function>
result_of_t<Function()> execute(Function&& f);

template<class Function, class... Factories>
vector<result_of_t<Function(size_t, result_of_t<Factories()>...)>>
execute(Function f, size_t n, Factories... factories);

template<class Function>
future<result_of_t<Function()>> async_execute(Function&& f);

template<class Function, class... Factories>
future<result_of_t<Function(size_t, result_of_t<Factories()>...)>>
async_execute(Function f, size_t n, Factories... factories);

// the rest of the Executor interface follows
...

};

An executor object may be constructed from an object of any type fulfilling the Executor concept. For
every executor_traits function, executor exposes a corresponding member function whose implementation
manipulates the underlying contained executor. This is possible via typical type erasure techniques.

For example, the following sketch of executor demonstrates a possible implementation of executor::async_execute():

class executor
{

public:
template<class Executor>
dynamic_executor(Executor&& exec)

: executor_ptr(make_unique<abstract_executor>(forward<Executor>(exec))
{}

template<class Function>
future<result_of_t<Function()>> async_execute(Function&& f)
{

// async_execute a future to any
future<any> any_fut = executor_ptr->async_execute([]
{

// call f() and erase the type of its result
return any(f());

});

using result_type = result_of_t<Function()>;

// cast the any future to the right type
return future_traits<future<any>>::template cast<result_type>(any_fut);

}

private:
struct abstract_executor
{

virtual ~abstract_executor(){};
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virtual future<any> async_execute(function<any()>) = 0;
};

template<class Executor>
struct concrete_executor : public abstract_executor
{

Executor exec;

virtual future<any> async_execute(function<any()> f)
{

return executor_traits<Executor>::async_execute(exec, f);
}

};

unique_ptr<abstract_executor> executor_ptr;
};

The general strategy is to transport all parameters that would be represented by template parameters in a
function template interface through type erasing containers such as any and function. Similar constructions
yield the rest of the interface.

4.13 Standard Control Structures

The executor_traits interface we have described is a customization interface for executors: authors of
executors target it by implementing a subset of executor_traits functionality as concrete executor member
functions. This interface has been chosen so that executor_traits can ensure that the entire interface can
be supported for all executor types, even when the concrete executor supports only a subset of the interface.

Because its interface is complete, it is sufficient for a client to interface with an executor via executor_traits
when implementing any computation whose execution is parameterized by that executor. However, working
at such a low level of abstraction is often undesirable. Instead, the Standard Library should provide higher
level abstract control structures, parameterized by executors, for implementing common operations. As a
whole, this set of control structures forms an executor usability interface.

Examples of existing control structures are the functions std::async, std::invoke, std::future::then,
as well as the entire collection of parallel algorithms. These control structures should be extended with new
overloads specifying the executor to be used when creating work.

The syntactic convention we propose is that:

• Constructs that create a single agent accept as their first parameter an executor.
• Constructs that create one or more agents accept an execution policy.

We describe a mechanism for composing execution policies with executors in the next section.

4.14 Execution policy support for executors

We accomplish interoperation between execution policies and executors by associating an executor object
with each execution policy object. During algorithm execution, execution agents may be created by the
execution policy’s associated executor. The following code presents additional members to the Parallelism TS
v1’s execution policy types which enable interoperation with executors.
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// rebind the type of executor used by an execution policy
// the execution category of Executor shall not be weaker than that of ExecutionPolicy
template<class ExecutionPolicy, class Executor>
struct rebind_executor;

// add the following members to each execution policy defined in the Parallelism TS
class library-defined-execution-policy-type
{

public:
// the category of the execution agents created by this execution policy
using execution_category = ...

// the type of the executor associated with this execution policy
using executor_type = ...

// constructor with executor
library-defined-execution-policy-type(const executor_type& ex = executor_type{});

// returns the executor associated with this execution policy
executor_type& executor();
const executor_type& executor() const;

// returns an execution policy p with the same execution_category as this one,
// such that p.executor() == ex
// executor_traits<Executor>::execution_category may not be weaker than
// this execution policy's execution_category
template<class Executor>
typename rebind_executor<ExecutionPolicy,Executor>::type

on(const Executor& ex) const;
};

4.15 Additional this_thread-specific execution policies

For convenient access to what we anticipate will be a common use case, we propose augmenting the existing
suite of execution policies with two additional policies which permit algorithm execution within the invoking
thread only:

namespace this_thread
{

class parallel_execution_policy;
constexpr parallel_execution_policy par{};

class vector_execution_policy;
constexpr vector_execution_policy vec{};

}

Our executor model allows us to distinguish between parallel and vector execution policies which restrict
execution to the current thread and those which do not. For this reason, we suggest restoring the original name
of parallel_vector_execution_policy and par_vec to vector_execution_policy and vec, respectively.
With this restoration, the vector policies’ nomenclature would be consistent with par and this_thread::par.
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5 Relationship with existing executor proposals

This proposal is primarily motivated by the desire to support algorithms in the Parallelism TS and to enable
programmer control of work placement during parallel algorithm execution. Accordingly, the functionality
we have described focuses only on the most basic features which enable interoperation between execution
policies and executors. At first glance, this proposal may seem very different from the preexisting executor
proposals N4143 (Mysen) and N4242 (Kohlkoff), which more closely resemble abstractions of work queues.
However, we believe our proposal is largely complementary to these existing proposals.

The functionality described in N4143 and N4242, or indeed other alternatives, may be layered on top
of our design. Either or both could form the basis for a more complete executor facility built upon the
minimal foundations we have outlined. Indeed, we believe that our abstract Executor concept as well as our
customizable executor_traits offers a plausible way for different types of executors to coexist within the
same programming model.

5.1 Comparisons with paper N4143 (Mysen)

Our async_execute() function corresponds to N4143’s spawn(), but returns a future by default. In the
appendix, we discuss a scheme to generalize the result type.

An analogue to our synchronous execute() function is not present in N4143. We include it because
synchronization is critical. Achieving synchronization via the introduction of a promise/future pair via side
effects may be expensive, difficult, or impossible for some types of executors.

For example, the vector_executor example of 3.4.1 implemented with a SIMD for loop naturally synchronizes
with the caller as a consequence of its loop-based implementation. Introducing asynchrony requires the
additional step of calling std::async. If execute() was not a basic executor operation, the only way to
achieve synchronization with the vector_executor would be to call wait() on the future returned from
async_execute(). The cost of calling a superfluous std::async would likely dominate the performance of
many applications of vector_executor.

Like our proposed executor_traits, N4143 also provides a uniform means for generic code to manipulate
executors through a type erasing executor wrapper called executor. We view executor_traits and executor
as complementary and serving different use cases: when the underlying executor type is known statically,
executor_traits is useful. In other cases, when it is inconvenient to statically track an executor’s type (for
example, when passing it through a binary API), executor may be used.

5.2 Comparisons with paper N4242 (Kohlkoff)

Our async_execute() function corresponds most closely with N4242’s post(). Unlike post(), our
async_execute() allows the executor to eagerly execute the given function, if that is the behavior of the
executor. For example, our sequential_executor class must execute the function in the calling thread.

Another difference is that N4242 proposes three different basic executor operations. By contrast, our proposal
suggests two: one synchronous, and one asynchronous. Our proposal could accomodate the additional
semantics of N4242 by introducing different types of executors with the corresponding semantics.

The nuances of task dispatch semantics are critical to the use cases encountered in libraries such as Asio.
On the other hand, we need not require all executors to support them. One way to harmonize these
proposals would be to introduce a refinement of the Executor concept we propose catered to the use cases
motivating N4242. For the sake of argument, suppose this refinement was called Scheduler. In this model,
all Schedulers would be Executors, but not all Executors would be Schedulers.
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7 Appendix: Future Work

We have described what we believe is a set of executor functionality necessary to interoperate with and
implement the algorithms of the Parallelism TS and other execution control structures in emerging proposals.
A full-featured executor design would likely include additional functionality, both for convenience and to
broaden its scope. In this appendix, we identify features which may be valuable in a complete design and
thus may warrant future work.

7.1 Continuation Interface

Our proposal’s handling of continuations in future_traits::then and executor_traits::then_execute
differ from the Concurrency TS. In the Concurrency TS, continutation functions consume parameters wrapped
in futures as arguments rather than raw values. We believe that this additional layer of indirection hinders
composability because it requires the authors of continuation functions to operate at the level of futures,
rather than directly on the function’s parameters of interest.

For example, suppose a program uses a variety of different executors. If the programmer wishes to write a
continuation function that may interoperate with all these executors’ futures, the programmer must choose
from a few strategies which may be undesirable:

1. Write separate continuation functions parameterized on each different executor’s future type.
2. Write a single continuation functions as function templates whose template parameter is Future.
3. Write a single continuation function which is called by a wrapper function whose job is to unwrap the

predecessor future and pass its value to the actual continuation.

This scheme of receiving continuation arguments as futures also introduces difficult questions about how the
continuation function is allowed to interact with the predecessor future. The continuation scheme described
by the Concurrency TS may create a situation where functions which receive a future as a parameter must
modulate its behavior based on whether or not it is acting as a continuation. For example, is the continuation
function allowed to call a nested .then() on the predecessor future? If the answer is no, what is the best way
for the future’s interface to signal that .then() is unavailable? If the answer is yes, are nested continuations
a use case that should be enabled?

The benefit of receiving predecessor arguments indirectly through futures is that it does not require additional
APIs for exception handling in the presence of continuations. If the predecessor future contains an exception,
the exception may be handled directly inside the continuation function. In a C++ ecosystem of only two
types of futures (std::future and std::shared_future) and single-agent continuations, this seems like a
reasonable convention.

However, an ecosystem of diverse execution platforms along with multi-agent continuations complicates this
convention. For example, consider an executor which abstracts the execution resources of a distributed cluster
of machines. On such a platform, a future may abstract the details necessary for tracking the lifetime of
execution agents executing on remote machines across a network. In such an environment, where efficient
shared memory may be unavailable, it may be awkward to present execution agents responsible for executing
continuations with the future corresponding to the predecessor task. This is because the predecessor future
may be stored in a remote memory. When implementing our prototype of the functionality proposed in this
document, we encountered exactly this issue.
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Multi-agent continuations present another issue for handling exceptions. Suppose the continuation executed
by a multi-agent execution group receives an exceptional future as a parameter. If the execution agents are
executing in parallel, it will be difficult to decide how to handle the exception: which agent(s) should be
elected as the handler(s)? If the execution agents are not able to communicate and synchronize, there may
be no way to decide this question. At worst, a single “leader” agent may be required to handle the exceptions
by default. If the exception is a large exception_list, this strategy is likely to be inefficient.

For these reasons, we believe a more powerful design would “lift” the problem of exception handling “above”
the level of execution agents. This alternative design would introduce exception handling as a first class
primitive into the executor_traits interface. For example, it may be possible to separate the problem of
exception handling from the then_execute function. In this scheme, then_execute’s exceptional behavior
simply would forward any exception to the future it returns instead of executing its continuation.

For first class exception handling support, this alternative design could introduce a variant to then_execute
which could receive as parameters both the continuation function and an exception handler separately.
Instead of receiving a future as a parameter, the exception handler function could receive an exception_ptr
or exception_list. This primitive could be an overload of try_execute, or a function with a different
name, say, then_try_execute. then_try_execute would either execute the given continuation, or in the
exceptional case, the given handler. Alternatively, support for exception handling could be exposed as a
primitive entirely separate from then_execute. We anticipate exploring these alternatives as future work.

7.2 Obtaining executors

Before using executors to launch work, a program must obtain one or more executor objects to use. For
some executor types, directly constructing an executor object of the desired type is the most natural mode
of use. The simplest example of this case is the sequential_executor type. Objects of this type are quite
likely to be stateless, and the implementation of execute() is a simple loop. Creating an object of type
sequential_executor and then using it directly or passing it to an algorithm, is a simple and efficient way
of using such executors.

In other cases, it may be desirable to have a means of obtaining suitable executors from a query interface.
This seems most likely for executors that are meant to correspond to actual hardware resources. For example,
a program might wish to enumerate a set of executors corresponding to the available cores of the processor
on which the calling thread is running. However, most such use cases also seem to be platform specific. It is
an open question whether a query interface applicable to all target platforms can be defined and whether it
would prove sufficiently useful to include in a standard executor facility.

7.3 Executor Introspection

Some executor use cases require providing an execution agent with the ability to identify the executor or
execution resource on which it is currently executing. Some proposals such as P0113R0 (Kohlkoff) refer to
this resource as the execution agent’s execution context. Executor introspection is useful when an execution
agent created by an executor itself wishes to create additional work. Informing the execution agent of the
executor from whence it came is useful for making informed decisions about the efficient use of execution
resources within that agent.

While it is true that a function to be executed could simply capture the executor as part of its closure, this
assumes that the author of the function has access to the executor at the point at which it is defined. This is
in general not the case.

Kohlkoff’s proposal provides a mechanism based on thread local storage for querying the ambient current
executor within an execution agent. It seems unlikely that a mechanism based on thread local storage would
be universally desirable or efficient.
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Instead, we envision a protocol by which a function invoked through an executor operation could receive a
copy of the executor as an optional first parameter. A copy of the executor, rather than reference, would be
required for at least two reasons:

1. During asynchronous operations, the executor’s lifetime may have ended by the time the function is
invoked.

2. Executor operations that create multiple agents would create data races when accessing the same
executor.

More sophisticated and convenient mechanisms which track the current executor could be built on top of this
basic protocol.

7.4 Asynchronous Progress Guarantees

Our proposal describes a mechanism by which executors advertise the progress guarantees they make about
groups of agents via a nested typedef execution_category. These guarantees describe an execution agent’s
progress with respect to the other agents within the same group as that agent. However, our proposal does
not currently describe the progress relationship between a thread which launches an asynchronous executor
operation and the group of agents created by that operation. It may be similarly useful to use the type
system to describe this relationship as well.

8 Appendix: Design Notes

In this appendix, we provide additional insight into the rationale of various aspects of the design of our
executor programming model.

8.1 Implementing executor_traits and Executors

executor_traits’ interface is both featureful and designed specifically to make defining new types of
executors as straightforward as possible. When a user-defined executor defines a native operation via a
member function, the correspondingly-named executor_traits function simply forwards to that member
function. When a native operation does not exist, a default implementation is applied via a lowering onto
other operations within the executor_traits and future_traits interfaces. To avoid endless recursion,
implementors of executor_traits should designate particular operations as terminal. In our implementation,
these terminal operations are the execute functions. For any particular operation, there may be many
possible lowerings which satisfy the operation’s requirements, and different lowerings may have performance
characteristics which vary from platform to platform. For this reason, we do not prescribe a particular lowering
for each operation and instead suggest it be implementation-defined. If performance or other characteristics
of a particular lowering is desirable, an executor author may implement that lowering directly within the
executor’s corresponding member function.

This executor_traits protocol makes defining new user-defined executors straightforward, yet permits codes
to interact with user-defined executors as if they supported the complete executor interface natively. In fact,
in our current implementation, user-defined executors need not define any native operations at all. Yet, these
“empty” executors still remain compatible with executor_traits because executor_traits “fills in” the
missing features. In a final specification, we anticipate introducing minimal requirements on executor authors.
For example, to avoid confusing unrelated types for executors, we may choose to require executors to define
at least one member function corresponding to an executor_traits operation.
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8.2 Factories

In our initial design, executor clients passed shared parameter values directly to executor_traits operations
rather than indirectly through a factory. It was executor_traits’ job to make copies of these values for
each group of execution agents. We realized that these copies often would be relatively expensive, especially
on NUMA architectures. Moreover, on distributed, cluster-based systems, copies might be impossible. The
Factory-based interface nicely avoids these problems while enabling customizable memory allocation.

User control over the construction of the result of these operations is also desirable, for the same reasons.
When constructing an object to contain multiple results, the factory is invoked with the shape parameter
given to the executor operation.

8.3 Multidimensionality

When we reason about an executor’s “shape”, we are describing the index space of each bulk task it creates.
For example, suppose we have an executor abstracting a thread pool with a bounded number of k threads at
its disposal. This executor advertises that the execution agents it creates during a multi-agent bulk task are
mutually concurrent. Since this executor has access to only k threads, this means the maximum number of
agents in a multi-agent bulk task it could ever create would be no more than k. Otherwise, the executor could
not satisfy the concurrency guarantee it makes of its agents. In this example, the “shape” of these multi-agent
bulk tasks is one-dimensional, and can be encoded with a size_t. However, if it is convenient to some
application domain, the author of the executor could choose to impart dimensionality on these bulk tasks by
introducing a different organization. For example, the author could partition the thread pool’s k threads
into a rectangular domain, and assign agents two-dimensional indices, where each 2D index corresponds to a
lattice point within the rectangle. The only difference between the two examples is simply how agents are
labeled: the underlying thread pool implementation could remain unchanged.

An alternative design would simply require that executors index the execution agents they create one-
dimensionally. If multidimensionality is required by a client of the executor, the client could layer multidimen-
sionality on top by reindexing the one-dimensional indices produced by the executor. Though it is simpler,
the drawback of such a design is that reindexing can be an expensive operation relative to the cost of each
agent’s task. For example, lifting one-dimensional indices into higher dimensions often requires relatively
expensive integer operations such as division and modulus. By the same token, projecting higher-dimensional
indices into lower dimensions often requires multiplication and addition. Given that many executors will be
able to produce multi-dimensional indices efficiently and directly, it seems unwise to bake an unavoidable
inefficiency into the programming model at a very low level. Moreover, many client applications of executors
will require reasoning about multidimensional domains. In the worst case, the simpler design would introduce
multiple occurrances of reindexing: a natively multi-dimensional executor’s indices would first be projected
to 1D, and then lifted back into multiple dimensions by the client. We avoid these inefficiencies by designing
explicitly for multidimensionality at the level of the executor interface.

To our knowledge, there is no precedent for multidimensional indexing within the existing C++ Standard
Library, though N4512 proposes std::bounds and std::index as instances of this kind of functionality. Our
requirements for these types are simple: for the purposes of executor_traits, a type may be used as a
shape if it is an unsigned integral type or if it is a tuple-like type whose elements are themselves shapes.
Index types have similar requirements, though in the terminal case, index types are permitted to be signed
rather than unsigned. Note that these definitions are recursive, permitting hierarchical shapes and indices.
Observe further that these definitions include both std::bounds and std::index as valid shape and index
types, respectively. From these simple definitions, executors may manipulate and reason about shape and
index types uniformly without requiring that all executors use a particular shape or index type.

8.4 Executor Operation Parameter Ordering

29



The order of parameters of the executor_traits functions execute, async_execute, and then_execute
was chosen to conform to the following conventions:

1. Multi-agent overloads should append a shape parameter to the single-agent overload.
2. The parameter order of the user function to be invoked should match the order of the parameters to

the executor_traits function.
3. The execution agent index, if it exists, should be the first parameter of the user function.

then_execute disrupts these conventions due to its Future parameter. The single-agent version of
then_execute receives the Future as its second parameter:

template<class Function, class T>
future<result_of_t<Function(T)>>

then_execute(Function&& f, future<T>& fut);

If the multi-agent then_execute overload extended this function by appending the shape parameter, the
signature would look like this:

template<class Future, class T, class... Factories>
future<result_of_t<Function(T&,index_type,result_of_t<Factories()>&...)>>

then_execute(Function f, future<T>& fut, shape_type shape, Factories... factories);

The signature of the user function f would need to be f(T&, index_type, result_of_t<Factories>&...)
to match this parameter order. However, this violates 3.

The more important conventions are 2. and 3, so the form of then_execute we propose violates convention
1.:

template<class Future, class T, class... Factories>
future<result_of_t<Function(index_type,T&,result_of_t<Factories()>&...)>>

then_execute(Function f, shape_type shape, future<T>& fut, Factories... factories);

With corresponding user function signature:

f(index_type, T&, result_of_t<Factories()>&...)

Return type factories further disrupt these conventions. We insert the result_factory between f and shape
to position result_factory to the left of the function parameters, because it corresponds to the result of
the user function.

9 Appendix: Changelog

0. P0058R1

0. Rework introductory paragraph of Section 4.2.
1. Define rules for execution agent creation in Section 4.2.1.
2. Define rules for execution agent synchronization in Section 4.2.1.
3. Added “Fire-and-Forget” Section and removed corresponding section from future work.
4. Added section describing the dynamic polymorphic executor container.
5. Added shared_future_type and share to future_traits synopsis.
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6. Added shared_future and share_future to executor_traits synopsis.
7. Added descriptions of executor_traits::shared_future and executor_traits::share_future.
8. Added section Standard Control Structures arguing for a usability interface for executors and a

convention for composing executors with control structures.
9. Added Future Work section Executor Introspection.
10. Added Future Work section Asynchronous Progress Guarantees.
11. Added section Extending P0155R0 to support execution policies and executors
12. Eliminated redundant section “Implementing task_block”

1. P0058R0

0. Added changelog section.
1. Added future_traits sketch along with description and removed corresponding section from

future work.
2. Added section describing multidimensionality and removed corresponding section from future

work.
3. Added task_block implementation sketch.
4. Added concurrent_execution_tag and concurrent_executor and removed corresponding sec-

tion from future work.
5. Describe in detail the behavior of each executor_traits function.
6. executor_traits functions now return the results of function invocations.
7. Added exception handling to future work section.
8. Added section on obtaining executors to future work section.
9. Added shared parameters section and removed the corresponding section from future work.
10. Added section on continuation interface to future work section.
11. Added section on execution hierarchies and removed the corresponding section from future work.
12. Added design notes appendix.

2. N4406

1. Initial Document
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