©ISO 2016 — All rights reserved

ISO/IEC JTC1 SC22 WG21 N4604
Date: 2016-07-12

ISO/IEC FDIS 14882

ISO/IEC JTC1 SC22

Secretariat: ANSI

Programming Languages — C++

Langages de programmation — C++

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject
to change without notice and may not be referred to as an International Standard.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights
of which they are aware and to provide supporting documentation.

Document type: Draft International Standard
Document stage: (40) Enquiry
Document Language: E

©ISO/IEC N4604

Copyright notice

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized
otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the
internet or an intranet, without prior written permission. Permission can be requested from either ISO at
the address below or ISO’s member body in the country of the requester.

ISO copyright office

Case postale 56, CH-1211 Geneva 20
Tel. 4+ 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

ii

©ISO/IEC N4604

Contents

Contents iii
List of Tables xi
List of Figures XV
1 General 1
1.1 SCOPE . o 1
1.2 Normative references L 1
1.3 Terms and definitions 1
1.4 Implementation compliance 4
1.5 Structure of this International Standard 5
1.6 Syntax notation 5
1.7 The C++ memory model 6
1.8 The C++ object model 6
1.9 Program execution L e 8
1.10 Multi-threaded executions and data races 12
1.11 Acknowledgments Lo e 17
2 Lexical conventions 18
2.1 Separate translation 18
2.2 Phases of translationo 18
2.3 Character sets L 19
2.4 Preprocessing tokens L L 20
2.5 Alternative tokens L e 21
2.6 Tokens L e 22
2.7 Comments 22
2.8 Header names Lo 22
2.9 Preprocessing numbers oL e 23
2.10 Identifiers L e 23
211 Keywords o e e e 24
2.12 Operators and punctuators 24
2.13 Literals 25
3 Basic concepts 35
3.1 Declarations and definitionso 35
3.2 One-definition rule e 37
3.3 SCOPE .« o 41
3.4 Namelookup e 47
3.5 Program and linkage L Lo 60
3.6 Start and termination L e e 63
3.7 Storage duration 67
3.8 Object lifetime 71
3.9 TYypes . . o e e 74
3.10 Lvaluesand rvalues e 81
311 Alignmento e 82

Contents iii

©ISO/IEC N4604

4 Standard conversions 84
4.1 Lvalue-to-rvalue conversion e 85
4.2 Array-to-pointer conversion 85
4.3 Function-to-pointer conversion Lo oL 86
4.4 Temporary materialization conversion 0oL 86
4.5 Qualification conversions Lo o 86
4.6 Integral promotions 87
4.7 Floating point promotion L 87
4.8 Integral conversions Lo e 87
4.9 Floating point conversions L Lo 88
4.10 Floating-integral conversions L L L L 88
4.11 Pointer conversionsot e e e e e e 88
4.12 Pointer to member conversionso 88
4.13 Function pointer conversionso Lo 89
4.14 Boolean conversionso e e e e 89
4.15 Integer conversion rank oL oL oL 89

5 Expressions 91
5.1 Primary expressions oL L 94
5.2 Postfix expressions e 106
5.3 Unary expressions ot i et e e e e e e e e e e e e 118
5.4 Explicit type conversion (cast notation) L. 127
5.5 Pointer-to-member operators 128
5.6 Multiplicative operatorso 129
5.7 Additive operators 130
5.8 Shift operators L e e 130
5.9 Relational operators L L 131
5.10 Equality operators L 132
5.11 Bitwise AND operator 133
5.12 Bitwise exclusive OR operator 133
5.13 Bitwise inclusive OR operator L 133
5.14 Logical AND operator e 133
5.15 Logical OR operator e 134
5.16 Conditional operator L 134
5.17 Throwing an exception L 135
5.18 Assignment and compound assignment operators Lo 136
5.19 Comma Operator e e e e e e e e 137
5.20 Constant expressions e e e e e e e e e e e e e e e e 137

6 Statements 142
6.1 Labeled statement L e 143
6.2 Expression statemento e 143
6.3 Compound statement or block 143
6.4 Selection statements Lo 143
6.5 Tteration statements L L Lo 146
6.6 Jump statements L. 148
6.7 Declaration statement Lo Lo 150
6.8 Ambiguity resolutiono 151

7 Declarations 153
7.1 Specifiers L 155

Contents

iv

©ISO/IEC N4604
7.2 Enumeration declarations 173
7.3 Namespaces o v v v v e e e e e e e e 177
7.4 The asm declaration 190
7.5 Linkage specifications L oL 190
7.6 Attributes L e 193
8 Declarators 200
8.1 Typenames e e 201
8.2 Ambiguity resolutiono 202
8.3 Meaning of declarators 203
8.4 Function definitions Lo 215
8.5 Decomposition declarations 219
8.6 Initializers L 220
9 Classes 237
9.1 Class NAINES 240
9.2 Class members e e 241
9.3 Unions e 252
94 Local class declarations 254
10 Derived classes 256
10.1 Multiple base classes L 257
10.2 Member name lookup L 259
10.3 Virtual functions 262
10.4 Abstract classes e 267
11 Member access control 269
11.1 Access specifiers oL e 270
11.2 Accessibility of base classes and base class members 272
11.3 Friends e e 274
11.4 Protected member access e e 277
11.5 Access to virtual functions 278
11.6 Multiple access o e 279
11.7 Nested classes e 279
12 Special member functions 280
12.1 Constructors e 280
12.2 Temporary objects L e e e 283
12.3 Conversions e e 285
12.4 Destructors e e 288
12.5 Freestore e e e 291
12.6 Initialization e e e e e e e e e e 293
12.7 Construction and destruction 301
12.8 Copying and moving class objects L Lo 303
13 Overloading 312
13.1 Overloadable declarations 312
13.2 Declaration matching L L 314
13.3 Overload resolution L e 315
13.4 Address of overloaded function 336
13.5 Overloaded operators 337
Contents v

©ISO/IEC N4604

13.6 Built-in operators L e 341
14 Templates 345
14.1 Template parameters oL Lo 346
14.2 Names of template specializations L oo 350
14.3 Template arguments e 351
14.4 Type equivalence L e 357
14.5 Template declarations L L 358
14.6 Name resolution L e 376
14.7 Template instantiation and specialization 392
14.8 Function template specializations Lo oL 405
14.9 Deduction guides L e e 426
15 Exception handling 427
15.1 Throwing an exception L L 428
15.2 Constructors and destructors L Lo 430
15.3 Handling an exception e 430
15.4 Exception specifications Lo L 432
15.5 Special functions L 437
16 Preprocessing directives 440
16.1 Conditional inclusion L 441
16.2 Source file inclusiono 443
16.3 Macro replacement e 444
16.4 Line control L 450
16.5 Error directive L 450
16.6 Pragma directive oL L 450
16.7 Null directive e 450
16.8 Predefined macro names 450
16.9 Pragma operator L 452
17 Library introduction 453
17.1 General L 453
17.2 The Cstandard library e 454
17.3 Definitions 454
17.4 Additional definitions L e 457
17.5 Method of description (Informative) o 0oL 457
17.6 Library-wide requirements Lo 462
17.7 Header <cstdlib> SYNnopsis o it 483
18 Language support library 485
18.1 General L 485
18.2 Common definitions L 485
18.3 Implementation properties Lo 486
18.4 Imteger types e 496
18.5 Start and termination 497
18.6 Dynamic memory managemento 498
18.7 Typeidentification L 506
18.8 Exception handling L e 509
18.9 Inmitializer lists 513
18.10 Other runtime support L e 514

Contents vi

©ISO/IEC N4604

19 Diagnostics library 517
19.1 General L e e 517
19.2 Exception classes L 517
19.3 0 ASSErtions e 521
19.4 Error numbers oL e 521
19.5 System error SUpport L. e e 523

20 General utilities library 534
20.1 General e 534
20.2 Utility components e e e e e e e 534
20.3 Compile-time integer sequenceso 540
20.4 Pairs e e 540
20.5 Tuples . . . L 545
20.6 Optional objects 556
20.7 Variants e e 567
20.8 Storage for any type e 581
20.9 Class template bitset 586
20.10 Memory 593
20.11 Smart pointerso e 608
20.12 MemOTY TESOUTCES . . « . o v v v v e e e i e e e et e e e e e e e 634
20.13 Class template scoped_allocator_adaptor v vt v i i 646
20.14 Function objects 652
20.15 Metaprogramming and type traits oL oL o 676
20.16 Compile-time rational arithmetic o oL 701
20.17 Time utilities L L e 703
20.18 Class type_index v vt e 720
20.19 Execution policies L L 722

21 Strings library 724
21.1 Generalo e 724
21.2 Character traits L 724
21.3 String classes L. e 730
21.4 String view classes e 764
21.5 Null-terminated sequence utilities L oo 774

22 Localization library 779
221 General 779
22.2 Header <locale> SYNOPSIS . . . v« v v v v vt et e e e e 779
22.3 Locales e e 780
22.4 Standard locale categories 792
22.5 Standard code conversion facets 831
22.6 Clibrary locales e 833

23 Containers library 834
23.1 General e 834
23.2 Container requirementsol L e e e 837
23.3 Sequence containerso i e e e 871
23.4 Associative containers L 902
23.5 Unordered associative containers L oL 922
23.6 Container adaptors 942

Contents

vii

©ISO/IEC N4604

24 Tterators library 952
24.1 General e 952
24.2 Tterator requirements L Lo L e e e e 952
24.3 Header <iterator> SynopsiS. v v v v vt e e e e e e e e e e e 957
24.4 Tterator primitives L 960
24.5 Tterator adaptors L e 963
24.6 Stream iterators. L L L L e 977
247 Range access 983
24.8 Container acCess ot it e e e e 985

25 Algorithms library 986
25.1 General e 986
25.2 Parallel algorithms L 1005
25.3 Non-modifying sequence operations L o 1008
25.4 Mutating sequence operations Lo L Lo 1014
25.5 Sorting and related operations 1023
25.6 Clibrary algorithms 1036

26 Numerics library 1037
26.1 General 1037
26.2 Definitions L 1037
26.3 Numeric type requirements Lo e 1037
26.4 The floating-point environment oL 1038
26.5 Complex numberso 1039
26.6 Random number generationo 1049
26.7 Numeric arrays e 1093
26.8 Generalized numeric operations 1114
26.9 Mathematical functions for floating point types oo 1123

27 Input/output library 1141
27. 1 General 1141
27.2 Jostreams requirements L Lo L oL e e e 1142
27.3 Forward declarations Lo e 1142
27.4 Standard iostream objects 1144
27.5 TJostreams base classes 1146
27.6 Stream buffers. 1164
27.7 Formatting and manipulators oL o L 1173
27.8 String-based streams Lo 1200
27.9 File-based streamso 1211
27.10 Filesystems L e 1224
27.11 Clibrary files e 1275

28 Regular expressions library 1279
28.1 General e 1279
28.2 Definitions 1279
28.3 Requirements 1280
28.4 Header <regex> Synopsiso Lo e 1282
28.5 Namespace std::regex_constants e e 1289
28.6 Class re@eX_erTor i it e 1292
28.7 Class template regex_traits 1292
28.8 Class template basic_regex 1296

Contents

©ISO/IEC

28.9 Class template sub_match
28.10 Class template match_results
28.11 Regular expression algorithms
28.12 Regular expression iterators oo

28.13 Modified ECMAScript regular expression grammar

29 Atomic operations library

29.1 General
29.2 Header <atomic> Synopsis« oL oo e e
29.3 Order and consistency
29.4 Lock-free property
29.5 Atomic types
29.6 Operations on atomic types L.
29.7 Flag type and operationso
29.8 Fences
30 Thread support library
30.1 General
30.2 Requirements Lo
30.3 Threads
30.4 Mutual exclusion e
30.5 Condition variables 0oL
30.6 Futures
A Grammar summary
Al Keywords e
A2 Lexical conventions
A3 Basicconcepts.
A4 EXpressions oo ...
A5 Statements
A6 Declarations
A7 Declarators
AR Classes o o e
A9 Derived classes
A.10 Special member functions
A1l Overloading
A12 Templates
A.13 Exception handling L o
A.14 Preprocessing directives

B Implementation quantities

C Compatibility

Cl C++andISOC e
C.2 CH+t+and ISO C++ 2003
C3 CH++and ISO C++ 2011 e
C4 CH++andISO C++ 2014 e
C.5 Cstandard library

D Compatibility features
D.1 Redeclaration of static constexpr data members

Contents

N4604

ix

©ISO/IEC N4604

D.2 Implicit declaration of copy functions 1445
D.3 Dynamic exception specifications 1445
D.4 Cstandard library headers L 1445
D.5b charx streams o . .o e e e e e e e e e 1446
D.6 Violating exception-specificationso o 1455
D.7 uncaught_exception. L 1455
D.8 Old adaptable function bindings L oL 1455
D.9 The default allocator 1460
D.10 Raw storage iterator 1462
D.11 Temporary buffers 1463
D.12 Deprecated Type Traits o0 e 1463
D.13 Deprecated Tterator primitives Lo 1464
E Universal character names for identifier characters 1465
E.1 Ranges of characters allowed 1465
E.2 Ranges of characters disallowed initially 0. 1465
Cross references 1466
Index 1487
Index of grammar productions 1519
Index of library names 1523
Index of implementation-defined behavior 1570

Contents

©ISO/IEC N4604
L[]

List of Tables

1 Alternative tokens L 21
2 Identifiers with special meaning L Lo 23
3 Keywords o e e 24
4 Alternative representations L e 24
5 Types of integer literals L 26
6 Escape sequenceso 28
7 String literal concatenations Lo 31
8 Relations on const and volatile 80
9 simple-type-specifiers and the types they specify oo L. 167
10 Relationship between operator and function call notation 320
11 Conversions o e e e e 329
12 Value of folding empty sequences L e 365
13 Library categories L 453
14 CH++ library headers o L e 463
15 C++ headers for C library facilities o 464
16 Cstandard Annex Knames 465
17 C++ headers for freestanding implementationso oL 465
18 EqualityComparable requirements Lo 466
19 LessThanComparable requirements Lo 467
20 DefaultConstructible requirements e 467
21 MoveConstructible requirementso 467
22 CopyComstructible requirements (in addition to MoveConstructible) 467
23 MoveAssignable requirements oL Lo 467
24 CopyAssignable requirements (in addition to MoveAssignable) 467
25 Destructible requirements L.l e e 467
26 NullablePointer requirements o ittt e e 469
27 Hash requirements o e e e e 470
28 Descriptive variable definitions oL oL o 470
29 Allocator requirements e 471
30 Language support library summary Lo 485
31 Diagnostics library summaryo 517
32 General utilities library summary 534
33 optional::operator=(const optional&) effects 560
34 optional::operator=(optional&&) effects L. 561
35 optional::swap(optional&) effectso 562
36 Primary type category predicates L L L 684
37 Composite type category predicates 685
38 Type property predicates L L e 685
List of Tables xi

©ISO/IEC N4604

39 Type property queries e e e e e 692
40 Type relationship predicateso 693
41 Const-volatile modifications L 695
42 Reference modifications Lo 695
43 Sign modifications 696
44 Array modifications L e e 697
45 Pointer modifications L L 697
46 Other transformations L 698
47 Expressions used to perform ratio arithmetic L. 702
48 Clock requirementso e e e 707
49 Strings library summary oL Lo e 724
50 Character traits requirements Lo L 725
51 Dbasic_string(const Allocator&) effects 740
52 Dbasic_string(const basic_string&) effects o oo 740

53 basic_string(const basic_string&, size_type, const Allocator&)
and basic_string(const basic_string&, size_type, size_type, const Allocator&) effects 740

54 basic_string(const charT*, size_type, const Allocator&) effects. 741
55 basic_string(const charT#*, const Allocator&) effects 741
56 basic_string(size_t, charT, const Allocator&) effects 741
57 basic_string(const basic_string&, const Allocator&)

and basic_string(basic_string&&, const Allocator&) effects 742
58 operator=(const basic_string&) effects o oo 742
59 compare() results 756
60 basic_string view(const charT*) effects oL 768
61 basic_string view(const charT*, size_type) effects 768
62 compare() results 770
63 Additional basic_string_view comparison overloads 773
64 Localization library summary oL e 779
65 Locale category facets L 783
66 Required specializations 784
67 do_in/do_out result values 801
68 do_unshift result values e 802
69 Integer conversions L Lol e e 805
70 Length modifier e 806
71 Integer conversionsl 809
72 Floating-point conversionsl L 810
73 Length modifier L 810
74 Numeric CONVErSIONS o o v vt e e e e e e e e 810
75 Fill padding e 811
76 do_get_dateeffects L 818
77 Potential setlocale dataraces 833
78 Containers library summary e e 834
79 Container types with compatible nodes L 834
80 Container requirements e e e e e e e e e 837
81 Reversible container requirements L 840
82 Optional container operations e 841
83 Allocator-aware container requirements L.l 842
84 Sequence container requirements (in addition to container) L. 844

List of Tables xii

©ISO/IEC N4604

85
86
87

88
89
90
91
92
93
94
95

96

97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127

128
129

Optional sequence container operations e 847
Associative container requirements (in addition to container) 849
Unordered associative container requirements (in addition to container) 860
Iterators library summary L. e e 952
Relations among iterator categories 952
Tterator requirements L. 954
Input iterator requirements (in addition to Iterator), 954
Output iterator requirements (in addition to Iterator) 955
Forward iterator requirements (in addition to input iterator) 956
Bidirectional iterator requirements (in addition to forward iterator) 956
Random access iterator requirements (in addition to bidirectional iterator) 957
Algorithms library summaryo 986
Numerics library summaryo e e e 1037
Seed sequence requirements oL ol e e e e 1051
Uniform random bit generator requirements oL oo 1052
Random number engine requirements oL o Lo 1053
Random number distribution requirements oL 0oL 1056
Input/output library summary oL 1141
fmtflags effects L 1151
fmtflags constants L 1151
iostateeffects 1151
openmode effects 1152
seekdir effects L L 1152
Position type requirements Lo Lo 1156
basic_ios::init() effects L 1158
basic_ios::copyfmt() effectso 1160
seekoff positioningo 1205
newoff values L 1205
File open modes L 1215
seekoff effects L 1217
filesystem_error(const string&, error_code) effects 1250
filesystem_error(const string&, const path&, error_code) effects 1250
filesystem_error(const string&, const path&, const path&, error_code) effects . . . 1250
Enum class file_type L 1251
Enum class copy_options Lo 1252
Enum class perms L e 1253
Enum class directory_options L L 1253
absolute(const path&, const path&) return value 1261
Effects of permission bits L L 1270
Regular expressions library summary oL Lo 1279
Regular expression traits class requirementso L Lo 1280
syntax_option_type effects 1290
regex_constants::match_flag type effects when obtaining a match against a character con-

tainer sequence [first, last). L 1291
error_type values in the Clocale L o . 1292
Character class names and corresponding ctype masks 1295

List of Tables xiii

©ISO/IEC N4604

130
131
132

133
134
135
136

137

138
139
140
141
142

143
144
145
146
147
148

match_results assignment operator effects Lo L oL 1309
Effects of regex_match algorithm oo L 1313
Effects of regex_search algorithm oo Lo 1315
Atomics library summary e e 1327
Named atomic types o e 1336
Atomic typedefs 1337
Atomic arithmetic computations L 1341
Thread support library summary L e 1345
Standard macros e e e 1441
Standard values L e 1441
Standard types e e 1441
Standard structs L e 1441
Standard functions Lo 1442
Cheaders e 1445
strstreambuf (streamsize) effects Lo 1447
strstreambuf (void* (*) (size_t), void (%) (voidx)) effects 1448
strstreambuf (charT*, streamsize, charT*) effects 1448
seekoff positioningo 1450
newoff values L. L 1451

List of Tables xiv

©ISO/IEC N4604

List of Figures

1 Expression category taxonomy Lol oL 81
2 Directed acyclic graph 257
3 Non-virtual base e e e e 258
4 Virtual base e e e 259
5 Virtual and non-virtual baseo 259
6 Name lookup e e 261
7 Stream position, offset, and size types [non-normative] L. 1141

List of Figures XV

(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

(1.6)

(1.7)

©ISO/IEC N4604

1 General [intro]

1.1 Scope [intro.scope]

This International Standard specifies requirements for implementations of the C++ programming language.
The first such requirement is that they implement the language, and so this International Standard also
defines C++. Other requirements and relaxations of the first requirement appear at various places within this
International Standard.

C++ is a general purpose programming language based on the C programming language as described in
ISO/IEC 9899:1999 Programming languages — C' (hereinafter referred to as the C standard). In addition to
the facilities provided by C, C++ provides additional data types, classes, templates, exceptions, namespaces,
operator overloading, function name overloading, references, free store management operators, and additional
library facilities.

1.2 Normative references [intro.refs]

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

— Ecma International, ECMAScript Language Specification, Standard Ecma-262, third edition, 1999.
— ISO/IEC 2382 (all parts), Information technology — Vocabulary

— ISO/IEC 9899:2011, Programming languages — C

— ISO/IEC 9899:2011/Cor.1:2012(E), Programming languages — C, Technical Corrigendum 1

— ISO/IEC 9945:2003, Information Technology — Portable Operating System Interface (POSIX)

— ISO/IEC 10646-1:1993, Information technology — Universal Multiple-Octet Coded Character Set (UCS)
— Part 1: Architecture and Basic Multilingual Plane

— ISO 80000-2:2009, Quantities and units — Part 2: Mathematical signs and symbols to be used in the
natural sciences and technology

The library described in Clause 7 of ISO/IEC 9899:2011 is hereinafter called the C standard library.t
The operating system interface described in ISO/IEC 9945:2003 is hereinafter called POSIX.
The ECMAScript Language Specification described in Standard Ecma-262 is hereinafter called ECMA-262.

1.3 Terms and definitions [intro.defs]

For the purposes of this document, the terms and definitions given in ISO/IEC 2382-1:1993 and the terms,
definitions, and symbols given in ISO 80000-2:2009 apply, as do the following definitions.

17.3 defines additional terms that are used only in Clauses 17 through 30 and Annex D.

Terms that are used only in a small portion of this International Standard are defined where they are used
and italicized where they are defined.

1) With the qualifications noted in Clauses 18 through 30 and in C.5, the C standard library is a subset of the C++ standard
library.

§1.3 1

©ISO/IEC N4604

1.3.1 [defns.access]
access
(execution-time action) to read or modify the value of an object

1.3.2 [defns.argument)]
argument
(function call expression) expression in the comma-separated list bounded by the parentheses (5.2.2)

1.3.3 [defns.argument.macro]
argument

(function-like macro) sequence of preprocessing tokens in the comma-separated list bounded by the parenthe-
ses (16.3)

1.3.4 [defns.argument.throw|
argument
(throw expression) the operand of throw (5.17)

1.3.5 [defns.argument.templ]
argument

(template instantiation) constant-expression, type-id, or id-expression in the comma-separated list bounded
by the angle brackets (14.3)

1.3.6 [defns.cond.supp]
conditionally-supported

program construct that an implementation is not required to support

[Note: Each implementation documents all conditionally-supported constructs that it does not support. — end
note|

1.3.7 [defns.diagnostic]|
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

1.3.8 [defns.dynamic.type]
dynamic type

(glvalue) type of the most derived object (1.8) to which the glvalue refers

[Example: if a pointer (8.3.1) p whose static type is “pointer to class B” is pointing to an object of class
D, derived from B (Clause 10), the dynamic type of the expression *p is “D”. References (8.3.2) are treated
similarly. — end ezample]

1.3.9 [defns.dynamic.type.prvalue]
dynamic type
(prvalue) static type of the prvalue expression

1.3.10 [defns.ill.formed]
ill-formed program
program that is not well-formed (1.3.27)

1.3.11 [defns.impl.defined]
implementation-defined behavior
behavior, for a well-formed program construct and correct data, that depends on the implementation and
that each implementation documents

§1.3.11 2

©ISO/IEC N4604

1.3.12 [defns.impl.limits]
implementation limits
restrictions imposed upon programs by the implementation

1.3.13 [defns.locale.specific]
locale-specific behavior

behavior that depends on local conventions of nationality, culture, and language that each implementation
documents

1.3.14 [defns.multibyte]
multibyte character

sequence of one or more bytes representing a member of the extended character set of either the source or
the execution environment

[Note: The extended character set is a superset of the basic character set (2.3). — end note]

1.3.15 [defns.parameter]|
parameter

(function or catch clause) object or reference declared as part of a function declaration or definition or in the
catch clause of an exception handler that acquires a value on entry to the function or handler

1.3.16 [defns.parameter.macro]
parameter

(function-like macro) identifier from the comma-separated list bounded by the parentheses immediately
following the macro name

1.3.17 [defns.parameter.templ]
parameter
(template) template-parameter

1.3.18 [defns.signature]
signature

(function) name, parameter type list (8.3.5), and enclosing namespace (if any)

[Note: Signatures are used as a basis for name mangling and linking. — end note]

1.3.19 [defns.signature.templ]
signature

(function template) name, parameter type list (8.3.5), enclosing namespace (if any), return type, and template
parameter list

1.3.20 [defns.signature.spec]
signature

(function template specialization) signature of the template of which it is a specialization and its template
arguments (whether explicitly specified or deduced)

1.3.21 [defns.signature.member]|
signature

(class member function) name, parameter type list (8.3.5), class of which the function is a member, cv-qualifiers
(if any), and ref-qualifier (if any)

1.3.22 [defns.signature.member.templ]
signature

(class member function template) name, parameter type list (8.3.5), class of which the function is a member,
cv-qualifiers (if any), ref-qualifier (if any), return type (if any), and template parameter list

§ 1.3.22 3

(2.1)

(2.2)

(2.3)

©ISO/IEC N4604

1.3.23 [defns.signature.member.spec]
signature

(class member function template specialization) signature of the member function template of which it is a
specialization and its template arguments (whether explicitly specified or deduced)

1.3.24 [defns.static.type]
static type

type of an expression (3.9) resulting from analysis of the program without considering execution semantics
[Note: The static type of an expression depends only on the form of the program in which the expression
appears, and does not change while the program is executing. — end note]

1.3.25 [defns.undefined]
undefined behavior

behavior for which this International Standard imposes no requirements

[Note: Undefined behavior may be expected when this International Standard omits any explicit definition of
behavior or when a program uses an erroneous construct or erroneous data. Permissible undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
program execution in a documented manner characteristic of the environment (with or without the issuance
of a diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message).
Many erroneous program constructs do not engender undefined behavior; they are required to be diagnosed.
— end note]

1.3.26 [defns.unspecified]
unspecified behavior

behavior, for a well-formed program construct and correct data, that depends on the implementation

[Note: The implementation is not required to document which behavior occurs. The range of possible
behaviors is usually delineated by this International Standard. — end note |

1.3.27 [defns.well.formed]
well-formed program

C++ program constructed according to the syntax rules, diagnosable semantic rules, and the one-definition
rule (3.2).

1.4 Implementation compliance [intro.compliance]

The set of diagnosable rules consists of all syntactic and semantic rules in this International Standard except
for those rules containing an explicit notation that “no diagnostic is required” or which are described as
resulting in “undefined behavior.”

Although this International Standard states only requirements on C++ implementations, those requirements
are often easier to understand if they are phrased as requirements on programs, parts of programs, or
execution of programs. Such requirements have the following meaning;:

— If a program contains no violations of the rules in this International Standard, a conforming implemen-
tation shall, within its resource limits, accept and correctly execute? that program.

— If a program contains a violation of any diagnosable rule or an occurrence of a construct described in
this Standard as “conditionally-supported” when the implementation does not support that construct,
a conforming implementation shall issue at least one diagnostic message.

— If a program contains a violation of a rule for which no diagnostic is required, this International
Standard places no requirement on implementations with respect to that program.

2) “Correct execution” can include undefined behavior, depending on the data being processed; see 1.3 and 1.9.

§1.4 4

©ISO/IEC N4604

For classes and class templates, the library Clauses specify partial definitions. Private members (Clause 11)
are not specified, but each implementation shall supply them to complete the definitions according to the
description in the library Clauses.

For functions, function templates, objects, and values, the library Clauses specify declarations. Implementa-
tions shall supply definitions consistent with the descriptions in the library Clauses.

The names defined in the library have namespace scope (7.3). A C++ translation unit (2.2) obtains access to
these names by including the appropriate standard library header (16.2).

The templates, classes, functions, and objects in the library have external linkage (3.5). The implementation
provides definitions for standard library entities, as necessary, while combining translation units to form a
complete C++ program (2.2).

Two kinds of implementations are defined: a hosted implementation and a freestanding implementation. For
a hosted implementation, this International Standard defines the set of available libraries. A freestanding
implementation is one in which execution may take place without the benefit of an operating system, and
has an implementation-defined set of libraries that includes certain language-support libraries (17.6.1.3).

A conforming implementation may have extensions (including additional library functions), provided they do
not alter the behavior of any well-formed program. Implementations are required to diagnose programs that
use such extensions that are ill-formed according to this International Standard. Having done so, however,
they can compile and execute such programs.

Each implementation shall include documentation that identifies all conditionally-supported constructs that
it does not support and defines all locale-specific characteristics.?

1.5 Structure of this International Standard [intro.structure]

Clauses 2 through 16 describe the C++ programming language. That description includes detailed syntactic
specifications in a form described in 1.6. For convenience, Annex A repeats all such syntactic specifications.

Clauses 18 through 30 and Annex D (the library clauses) describe the Standard C++ library. That description
includes detailed descriptions of the templates, classes, functions, constants, and macros that constitute the
library, in a form described in Clause 17.

Annex B recommends lower bounds on the capacity of conforming implementations.

Annex C summarizes the evolution of C++ since its first published description, and explains in detail the
differences between C++ and C. Certain features of C++ exist solely for compatibility purposes; Annex D
describes those features.

2

Throughout this International Standard, each example is introduced by “[Ezample: ” and terminated by

“ —end example]”. Each note is introduced by “[Note: ” and terminated by “ — end note]”. Examples and
notes may be nested.
1.6 Syntax notation [syntax]

In the syntax notation used in this International Standard, syntactic categories are indicated by italic type,
and literal words and characters in constant width type. Alternatives are listed on separate lines except in
a few cases where a long set of alternatives is marked by the phrase “one of” If the text of an alternative is
too long to fit on a line, the text is continued on subsequent lines indented from the first one. An optional
terminal or non-terminal symbol is indicated by the subscript “,,:”, so

{ expressionop: }
indicates an optional expression enclosed in braces.

Names for syntactic categories have generally been chosen according to the following rules:

3) This documentation also defines implementation-defined behavior; see 1.9.

§1.6 5

(2.1)
(2.2)

(2.3)

(2.4)

©ISO/IEC N4604

— X-name is a use of an identifier in a context that determines its meaning (e.g., class-name, typedef-name).
— X-id is an identifier with no context-dependent meaning (e.g., qualified-id).

— X-seq is one or more X’s without intervening delimiters (e.g., declaration-seq is a sequence of declara-
tions).

— X-list is one or more X’s separated by intervening commas (e.g., expression-list is a sequence of
expressions separated by commas).

1.7 The C++ memory model [intro.memory]

The fundamental storage unit in the C++ memory model is the byte. A byte is at least large enough to contain
any member of the basic execution character set (2.3) and the eight-bit code units of the Unicode UTF-8
encoding form and is composed of a contiguous sequence of bits, the number of which is implementation-
defined. The least significant bit is called the low-order bit; the most significant bit is called the high-order
bit. The memory available to a C++ program consists of one or more sequences of contiguous bytes. Every
byte has a unique address.

[Note: The representation of types is described in 3.9. — end note]

A memory location is either an object of scalar type or a maximal sequence of adjacent bit-fields all having non-
zero width. [Note: Various features of the language, such as references and virtual functions, might involve
additional memory locations that are not accessible to programs but are managed by the implementation.
— end note] Two or more threads of execution (1.10) can access separate memory locations without interfering
with each other.

[Note: Thus a bit-field and an adjacent non-bit-field are in separate memory locations, and therefore can be
concurrently updated by two threads of execution without interference. The same applies to two bit-fields,
if one is declared inside a nested struct declaration and the other is not, or if the two are separated by a
zero-length bit-field declaration, or if they are separated by a non-bit-field declaration. It is not safe to
concurrently update two bit-fields in the same struct if all fields between them are also bit-fields of non-zero
width. — end note]

[Ezample: A structure declared as

struct {
char a;
int b:5,
c:11,
:0,
d:8;
struct {int ee:8;} e;

}

contains four separate memory locations: The field a and bit-fields d and e.ee are each separate memory
locations, and can be modified concurrently without interfering with each other. The bit-fields b and ¢
together constitute the fourth memory location. The bit-fields b and ¢ cannot be concurrently modified, but
b and a, for example, can be. — end ezample|

1.8 The C++ object model [intro.object]

The constructs in a C++ program create, destroy, refer to, access, and manipulate objects. An object is
created by a definition (3.1), by a new-expression (5.3.4), when implicitly changing the active member of a
union (9.3), or when a temporary object is created (4.4, 12.2). An object occupies a region of storage in its
period of construction (12.7), throughout its lifetime (3.8), and in its period of destruction (12.7). [Note:
A function is not an object, regardless of whether or not it occupies storage in the way that objects do.

§1.8 6

©ISO/IEC N4604

— end note| The properties of an object are determined when the object is created. An object can have a
name (Clause 3). An object has a storage duration (3.7) which influences its lifetime (3.8). An object has
a type (3.9). The term object type refers to the type with which the object is created. Some objects are
polymorphic (10.3); the implementation generates information associated with each such object that makes it
possible to determine that object’s type during program execution. For other objects, the interpretation of
the values found therein is determined by the type of the ezpressions (Clause 5) used to access them.

2 Objects can contain other objects, called subobjects. A subobject can be a member subobject (9.2), a base
class subobject (Clause 10), or an array element. An object that is not a subobject of any other object is
called a complete object. If an object is created in storage associated with a member subobject or array
element e (which may or may not be within its lifetime), the created object is a subobject of e’s containing

object if:
(2.1) — the lifetime of e’s containing object has begun and not ended, and
(2.2) — the storage for the new object exactly overlays the storage location associated with e, and
(2.3) — the new object is of the same type as e (ignoring cv-qualification).

[Note: If the subobject contains a reference member or a const subobject, the name of the original subobject
cannot be used to access the new object (3.8). — end note] [Example:

struct X { const int n; };
union U { X x; float f; };
void tong() {

Uu={{113}

u.f = 5.f; // OK, creates new subobject of u (9.3)

X *p = new (&u.x) X {2}; // OK, creates new subobject of u

assert(p->n == 2); // OK

assert (*std::launder (&u.x.n) == 2); // OK

assert(u.x.n == 2); // undefined behavior, u.x does not name new subobject

}

— end example]

3 If a complete object is created (5.3.4) in storage associated with another object e of type “array of N
unsigned char”, that array provides storage for the created object if:

(3.1) — the lifetime of e has begun and not ended, and
(3-2) — the storage for the new object fits entirely within e, and
(3.3) — there is no smaller array object that satisfies these constraints.

[Note: If that portion of the array previously provided storage for another object, the lifetime of that object
ends because its storage was reused (3.8). — end note] [Ezample:

template<typename ...T>
struct AlignedUnion {
alignas(T...) unsigned char datal[max(sizeof(T)...)];

};
int £O {
AlignedUnion<int, char> au;
int *p = new (au.data) int; // OK, au.data provides storage

char *c = new (au.data) char(); // OK, ends lifetime of *p
char *d = new (au.data + 1) char();

§1.8 7

(4.1)
(4.2)

(4.3)

(5.1)

(5.2)

©ISO/IEC N4604

return *c + *d; // OK
}
— end example|

An object a is nested within another object b if:

— a is a subobject of b, or
— b provides storage for a, or

— there exists an object ¢ where a is nested within ¢, and c¢ is nested within b.

For every object x, there is some object called the complete object of x, determined as follows:

— If x is a complete object, then x is the complete object of x.

— Otherwise, the complete object of x is the complete object of the (unique) object that contains x.

If a complete object, a data member (9.2), or an array element is of class type, its type is considered the most
derived class, to distinguish it from the class type of any base class subobject; an object of a most derived
class type or of a non-class type is called a most derived object.

Unless it is a bit-field (9.2.4), a most derived object shall have a non-zero size and shall occupy one or more
bytes of storage. Base class subobjects may have zero size. An object of trivially copyable or standard-layout
type (3.9) shall occupy contiguous bytes of storage.

Unless an object is a bit-field or a base class subobject of zero size, the address of that object is the address
of the first byte it occupies. Two objects a and b with overlapping lifetimes that are not bit-fields may have
the same address if one is nested within the other, or if at least one is a base class subobject of zero size and

they are of different types; otherwise, they have distinct addresses.*
[Example:

static const char testl = ’x’;

static const char test2 = ’x’;

const bool b = &testl != &test2; // always true

— end example]

[Note: C++ provides a variety of fundamental types and several ways of composing new types from existing
types (3.9). — end note]

1.9 Program execution [intro.execution]

The semantic descriptions in this International Standard define a parameterized nondeterministic abstract
machine. This International Standard places no requirement on the structure of conforming implementations.
In particular, they need not copy or emulate the structure of the abstract machine. Rather, conforming
implementations are required to emulate (only) the observable behavior of the abstract machine as explained
below.”

Certain aspects and operations of the abstract machine are described in this International Standard as
implementation-defined (for example, sizeof(int)). These constitute the parameters of the abstract

4) Under the “as-if” rule an implementation is allowed to store two objects at the same machine address or not store an object
at all if the program cannot observe the difference (1.9).

5) This provision is sometimes called the “as-if” rule, because an implementation is free to disregard any requirement of this
International Standard as long as the result is as if the requirement had been obeyed, as far as can be determined from the
observable behavior of the program. For instance, an actual implementation need not evaluate part of an expression if it can
deduce that its value is not used and that no side effects affecting the observable behavior of the program are produced.

§1.9 8

(8.1)

(8.2)

(8.3)

©ISO/IEC N4604

machine. Each implementation shall include documentation describing its characteristics and behavior in
these respects.® Such documentation shall define the instance of the abstract machine that corresponds to
that implementation (referred to as the “corresponding instance” below).

Certain other aspects and operations of the abstract machine are described in this International Standard
as unspecified (for example, evaluation of expressions in a new-initializer if the allocation function fails to
allocate memory (5.3.4)). Where possible, this International Standard defines a set of allowable behaviors.
These define the nondeterministic aspects of the abstract machine. An instance of the abstract machine can
thus have more than one possible execution for a given program and a given input.

Certain other operations are described in this International Standard as undefined (for example, the effect of
attempting to modify a const object). [Note: This International Standard imposes no requirements on the
behavior of programs that contain undefined behavior. — end note]

A conforming implementation executing a well-formed program shall produce the same observable behavior as
one of the possible executions of the corresponding instance of the abstract machine with the same program
and the same input. However, if any such execution contains an undefined operation, this International
Standard places no requirement on the implementation executing that program with that input (not even
with regard to operations preceding the first undefined operation).

If a signal handler is executed as a result of a call to the raise function, then the execution of the handler is
sequenced after the invocation of the raise function and before its return. [Note: When a signal is received
for another reason, the execution of the signal handler is usually unsequenced with respect to the rest of the
program. — end note]

An instance of each object with automatic storage duration (3.7.3) is associated with each entry into its
block. Such an object exists and retains its last-stored value during the execution of the block and while the
block is suspended (by a call of a function or receipt of a signal).

The least requirements on a conforming implementation are:
— Access to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to one of the possible results that
execution of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place in such a fashion that prompting
output is actually delivered before a program waits for input. What constitutes an interactive device is
implementation-defined.

These collectively are referred to as the observable behavior of the program. [Note: More stringent cor-
respondences between abstract and actual semantics may be defined by each implementation. — end
note|

[Note: Operators can be regrouped according to the usual mathematical rules only where the operators
really are associative or commutative.” For example, in the following fragment

int a, b;

a=a+ 32760 + b + 5;

the expression statement behaves exactly the same as

a = (((a + 32760) + b) + 5);

due to the associativity and precedence of these operators. Thus, the result of the sum (a + 32760) is next
added to b, and that result is then added to 5 which results in the value assigned to a. On a machine in which

6) This documentation also includes conditionally-supported constructs and locale-specific behavior. See 1.4.
7) Overloaded operators are never assumed to be associative or commutative.

§1.9 9

10

11

12

©ISO/IEC N4604

overflows produce an exception and in which the range of values representable by an int is [-32768, +32767],
the implementation cannot rewrite this expression as

a = ((a +b) + 32765);

since if the values for a and b were, respectively, -32754 and -15, the sum a + b would produce an exception
while the original expression would not; nor can the expression be rewritten either as

a = ((a + 32765) + b);

or

a=(a+ (b + 32765));

since the values for a and b might have been, respectively, 4 and -8 or -17 and 12. However on a machine in
which overflows do not produce an exception and in which the results of overflows are reversible, the above
expression statement can be rewritten by the implementation in any of the above ways because the same
result will occur. — end note]

A full-expression is an expression that is not a subexpression of another expression. [Note: in some contexts,
such as unevaluated operands, a syntactic subexpression is considered a full-expression (Clause 5). — end
note] If a language construct is defined to produce an implicit call of a function, a use of the language
construct is considered to be an expression for the purposes of this definition. A call to a destructor generated
at the end of the lifetime of an object other than a temporary object is an implicit full-expression. Conversions
applied to the result of an expression in order to satisfy the requirements of the language construct in which
the expression appears are also considered to be part of the full-expression.

[Example:

struct S {
S(int i): I(i) { }
int& v() { return I; }

private:
int I;
3
S s1(1); // full-expression is call of S::S(int)
S s2 = 2; // full-expression is call of S::S(int)
void £() {
if (S(3).v0)) // full-expression includes lvalue-to-rvalue and
// int to bool conversions, performed before
// temporary is deleted at end of full-expression
{1}
}

— end example]

[Note: The evaluation of a full-expression can include the evaluation of subexpressions that are not lexically
part of the full-expression. For example, subexpressions involved in evaluating default arguments (8.3.6) are
considered to be created in the expression that calls the function, not the expression that defines the default
argument. — end note]

Reading an object designated by a volatile glvalue (3.10), modifying an object, calling a library I/O
function, or calling a function that does any of those operations are all side effects, which are changes in the
state of the execution environment. Fvaluation of an expression (or a sub-expression) in general includes
both value computations (including determining the identity of an object for glvalue evaluation and fetching
a value previously assigned to an object for prvalue evaluation) and initiation of side effects. When a call to

§1.9 10

13

14

16

©ISO/IEC N4604

a library I/O function returns or an access to a volatile object is evaluated the side effect is considered
complete, even though some external actions implied by the call (such as the I/0O itself) or by the volatile
access may not have completed yet.

Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a single
thread (1.10), which induces a partial order among those evaluations. Given any two evaluations A and B,
if A is sequenced before B (or, equivalently, B is sequenced after A), then the execution of A shall precede
the execution of B. If A is not sequenced before B and B is not sequenced before A, then A and B are
unsequenced. [Note: The execution of unsequenced evaluations can overlap. — end note] Evaluations
A and B are indeterminately sequenced when either A is sequenced before B or B is sequenced before A,
but it is unspecified which. [Note: Indeterminately sequenced evaluations cannot overlap, but either could
be executed first. — end note] An expression X is said to be sequenced before an expression Y if every
value computation and every side effect associated with the expression X is sequenced before every value
computation and every side effect associated with the expression Y.

Every value computation and side effect associated with a full-expression is sequenced before every value
computation and side effect associated with the next full-expression to be evaluated.®

Except where noted, evaluations of operands of individual operators and of subexpressions of individual
expressions are unsequenced. [Note: In an expression that is evaluated more than once during the execution
of a program, unsequenced and indeterminately sequenced evaluations of its subexpressions need not be
performed consistently in different evaluations. — end note] The value computations of the operands of
an operator are sequenced before the value computation of the result of the operator. If a side effect on a
memory location (1.7) is unsequenced relative to either another side effect on the same memory location or a
value computation using the value of any object in the same memory location, and they are not potentially
concurrent (1.10), the behavior is undefined. [Note: The next section imposes similar, but more complex
restrictions on potentially concurrent computations. — end note]

[Example:

void f(int, int);
void g(int i, int* v) {

i = v[i++]; // the behavior is undefined

i =7, i++, i++; // i becomes 9
= i++ + 1; // the behavior is undefined
=i+ 1; // the value of i is incremented

£f(i =-1, i = -1); // the behavior is undefined
}

— end example]

When calling a function (whether or not the function is inline), every value computation and side effect
associated with any argument expression, or with the postfix expression designating the called function, is
sequenced before execution of every expression or statement in the body of the called function. For each
function invocation F, for every evaluation A that occurs within F' and every evaluation B that does not
occur within F but is evaluated on the same thread and as part of the same signal handler (if any), either A
is sequenced before B or B is sequenced before A. ? [Note: If A and B would not otherwise be sequenced then
they are indeterminately sequenced. — end note| Several contexts in C++ cause evaluation of a function call,
even though no corresponding function call syntax appears in the translation unit. [Ezample: Evaluation of
a new-expression invokes one or more allocation and constructor functions; see 5.3.4. For another example,

8) As specified in 12.2, after a full-expression is evaluated, a sequence of zero or more invocations of destructor functions for
temporary objects takes place, usually in reverse order of the construction of each temporary object.
9) In other words, function executions do not interleave with each other.

§1.9 11

©ISO/IEC N4604

invocation of a conversion function (12.3.2) can arise in contexts in which no function call syntax appears.

— end example] The sequencing constraints on the execution of the called function (as described above) are
features of the function calls as evaluated, whatever the syntax of the expression that calls the function might
be.

1.10 Multi-threaded executions and data races [intro.multithread]

1 A thread of execution (also known as a thread) is a single flow of control within a program, including the initial
invocation of a specific top-level function, and recursively including every function invocation subsequently
executed by the thread. [Note: When one thread creates another, the initial call to the top-level function of
the new thread is executed by the new thread, not by the creating thread. — end note] Every thread in a
program can potentially access every object and function in a program.'® Under a hosted implementation, a
C++ program can have more than one thread running concurrently. The execution of each thread proceeds
as defined by the remainder of this standard. The execution of the entire program consists of an execution of
all of its threads. [Note: Usually the execution can be viewed as an interleaving of all its threads. However,
some kinds of atomic operations, for example, allow executions inconsistent with a simple interleaving, as
described below. — end note] Under a freestanding implementation, it is implementation-defined whether a
program can have more than one thread of execution.

2 A signal handler that is executed as a result of a call to the raise function belongs to the same thread of
execution as the call to the raise function. Otherwise it is unspecified which thread of execution contains a
signal handler invocation.

1.10.1 Data races [intro.races]

1 The value of an object visible to a thread T at a particular point is the initial value of the object, a value
assigned to the object by T, or a value assigned to the object by another thread, according to the rules
below. [Note: In some cases, there may instead be undefined behavior. Much of this section is motivated by
the desire to support atomic operations with explicit and detailed visibility constraints. However, it also
implicitly supports a simpler view for more restricted programs. — end note]

2 Two expression evaluations conflict if one of them modifies a memory location (1.7) and the other one reads
or modifies the same memory location.

3 The library defines a number of atomic operations (Clause 29) and operations on mutexes (Clause 30) that are
specially identified as synchronization operations. These operations play a special role in making assignments
in one thread visible to another. A synchronization operation on one or more memory locations is either a
consume operation, an acquire operation, a release operation, or both an acquire and release operation. A
synchronization operation without an associated memory location is a fence and can be either an acquire
fence, a release fence, or both an acquire and release fence. In addition, there are relaxed atomic operations,
which are not synchronization operations, and atomic read-modify-write operations, which have special
characteristics. [Note: For example, a call that acquires a mutex will perform an acquire operation on
the locations comprising the mutex. Correspondingly, a call that releases the same mutex will perform a
release operation on those same locations. Informally, performing a release operation on A forces prior side
effects on other memory locations to become visible to other threads that later perform a consume or an
acquire operation on A. “Relaxed” atomic operations are not synchronization operations even though, like
synchronization operations, they cannot contribute to data races. — end note]

4 All modifications to a particular atomic object M occur in some particular total order, called the modification
order of M. If A and B are modifications of an atomic object M and A happens before (as defined below)
B, then A shall precede B in the modification order of M, which is defined below. [Note: This states that
the modification orders must respect the “happens before” relationship. — end note] [Note: There is a
separate order for each atomic object. There is no requirement that these can be combined into a single total

10) An object with automatic or thread storage duration (3.7) is associated with one specific thread, and can be accessed by a
different thread only indirectly through a pointer or reference (3.9.2).

§ 1.10.1 12

(5.1)

(5.2)

7
(7.1)

(7.1.1)

(7.1.2)

(7.1.3)

(7.1.4)

(7.2)

(7.3)

(8.1)

(8.2)

(9.1)
(9.2)

(9-3)
(9.3.1)

©ISO/IEC N4604

order for all objects. In general this will be impossible since different threads may observe modifications to
different objects in inconsistent orders. — end note]

A release sequence headed by a release operation A on an atomic object M is a maximal contiguous sub-
sequence of side effects in the modification order of M, where the first operation is A, and every subsequent
operation

— is performed by the same thread that performed A, or

— is an atomic read-modify-write operation.

Certain library calls synchronize with other library calls performed by another thread. For example, an
atomic store-release synchronizes with a load-acquire that takes its value from the store (29.3). [Note: Except
in the specified cases, reading a later value does not necessarily ensure visibility as described below. Such a
requirement would sometimes interfere with efficient implementation. — end note] [Note: The specifications
of the synchronization operations define when one reads the value written by another. For atomic objects,
the definition is clear. All operations on a given mutex occur in a single total order. Each mutex acquisition
“reads the value written” by the last mutex release. — end note|

An evaluation A carries a dependency to an evaluation B if
— the value of A is used as an operand of B, unless:

— B is an invocation of any specialization of std::kill_dependency (29.3), or

— A is the left operand of a built-in logical AND (&&, see 5.14) or logical OR (||, see 5.15) operator,
or

— A is the left operand of a conditional (?:, see 5.16) operator, or

— A is the left operand of the built-in comma (,) operator (5.19);
or

— A writes a scalar object or bit-field M, B reads the value written by A from M, and A is sequenced
before B, or

— for some evaluation X, A carries a dependency to X, and X carries a dependency to B.

[Note: “Carries a dependency to” is a subset of “is sequenced before”, and is similarly strictly intra-thread.
— end note

An evaluation A is dependency-ordered before an evaluation B if

— A performs a release operation on an atomic object M, and, in another thread, B performs a consume
operation on M and reads a value written by any side effect in the release sequence headed by A, or

— for some evaluation X, A is dependency-ordered before X and X carries a dependency to B.

[Note: The relation “is dependency-ordered before” is analogous to “synchronizes with”, but uses release/-
consume in place of release/acquire. — end note|

An evaluation A inter-thread happens before an evaluation B if

— A synchronizes with B, or
— A is dependency-ordered before B, or

— for some evaluation X
— A synchronizes with X and X is sequenced before B, or

§ 1.10.1 13

(9.3.2)

(9.3.3)

10

(10.1)

(10.2)

11

(11.1)

(11.2)

12

13

14

15

16

©ISO/IEC N4604

— A is sequenced before X and X inter-thread happens before B, or
— A inter-thread happens before X and X inter-thread happens before B.

[Note: The “inter-thread happens before” relation describes arbitrary concatenations of “sequenced before”,
“synchronizes with” and “dependency-ordered before” relationships, with two exceptions. The first exception
is that a concatenation is not permitted to end with “dependency-ordered before” followed by “sequenced
before”. The reason for this limitation is that a consume operation participating in a “dependency-ordered
before” relationship provides ordering only with respect to operations to which this consume operation
actually carries a dependency. The reason that this limitation applies only to the end of such a concatenation
is that any subsequent release operation will provide the required ordering for a prior consume operation.
The second exception is that a concatenation is not permitted to consist entirely of “sequenced before”. The
reasons for this limitation are (1) to permit “inter-thread happens before” to be transitively closed and (2)
the “happens before” relation, defined below, provides for relationships consisting entirely of “sequenced
before”. — end note|

An evaluation A happens before an evaluation B (or, equivalently, B happens after A) if:

— A is sequenced before B, or

— A inter-thread happens before B.

The implementation shall ensure that no program execution demonstrates a cycle in the “happens before”
relation. [Note: This cycle would otherwise be possible only through the use of consume operations. — end
note|

A wisible side effect A on a scalar object or bit-field M with respect to a value computation B of M satisfies
the conditions:

— A happens before B and
— there is no other side effect X to M such that A happens before X and X happens before B.

The value of a non-atomic scalar object or bit-field M, as determined by evaluation B, shall be the value
stored by the visible side effect A. [Note: If there is ambiguity about which side effect to a non-atomic object
or bit-field is visible, then the behavior is either unspecified or undefined. — end note] [Note: This states
that operations on ordinary objects are not visibly reordered. This is not actually detectable without data
races, but it is necessary to ensure that data races, as defined below, and with suitable restrictions on the use
of atomics, correspond to data races in a simple interleaved (sequentially consistent) execution. — end note]

The value of an atomic object M, as determined by evaluation B, shall be the value stored by some side effect
A that modifies M, where B does not happen before A. [Note: The set of such side effects is also restricted
by the rest of the rules described here, and in particular, by the coherence requirements below. — end note]

If an operation A that modifies an atomic object M happens before an operation B that modifies M, then
A shall be earlier than B in the modification order of M. [Note: This requirement is known as write-write
coherence. — end note |

If a value computation A of an atomic object M happens before a value computation B of M, and A takes
its value from a side effect X on M, then the value computed by B shall either be the value stored by X or
the value stored by a side effect ¥ on M, where Y follows X in the modification order of M. [Note: This
requirement is known as read-read coherence. — end note|

If a value computation A of an atomic object M happens before an operation B that modifies M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of M. [Note:
This requirement is known as read-write coherence. — end note]

If a side effect X on an atomic object M happens before a value computation B of M, then the evaluation B
shall take its value from X or from a side effect Y that follows X in the modification order of M. [Note:
This requirement is known as write-read coherence. — end note]

§ 1.10.1 14

17

18

19

(19.1)

(19.2)

20

21

22

(1.1)

(1.2)

©ISO/IEC N4604

[Note: The four preceding coherence requirements effectively disallow compiler reordering of atomic operations
to a single object, even if both operations are relaxed loads. This effectively makes the cache coherence
guarantee provided by most hardware available to C++ atomic operations. — end note]

[Note: The value observed by a load of an atomic depends on the “happens before” relation, which depends
on the values observed by loads of atomics. The intended reading is that there must exist an association of
atomic loads with modifications they observe that, together with suitably chosen modification orders and
the “happens before” relation derived as described above, satisfy the resulting constraints as imposed here.
— end note]

Two actions are potentially concurrent if

— they ar