
Document Number: P0246R0
Date: 2016-02-12
Proje: ISO SC22/WG21 C++ Standard, Evolution Working Group
Authors: John Lakos, Alisdair Meredith, Nathan Myers
Reply to: Nathan Myers nmyers12@bloomberg.net

Contra Support Merged Proposal

Introduion

ere has been a great deal of discussion since Kona, resulting in key simplifications as
proposed here. e design that follows is a careful aempt at reconciling the most
urgent concerns expressed, but is still a work in progress. e design supports:

declarative statements of pre- and post-conditions in funion headers, suitable for
static analysis without access to funion bodies.

runtime eing of these statements and of additional assertions in funion
bodies.

control, according to seleions made at build time, of whether ea e is
evaluated at runtime.

control, according to a seleion made at program link time, of the programmed
response to violations discovered at runtime.

is design does not include features that have been suggested but that we did not
know how to specify, or that may be added without impa on the design. A few su
features have been called out below, with invitations for detailed proposals. Please refer
to P0247 “Criteria for Contra Support” for discussion and code examples.

e syntax and names below should be taken as placeholders. A list of open questions
can be found at the end.

Glossary (to aid precise discussion)

Funion Contra

A set of statements (informally, “preconditions”) about argument values,
well-defined program state, and past and future events for whi the effes of
calling a funion are well-defined, along with statements of those effes
(informally, “postconditions”). e statements need not be expressible in C++, and
may depend on details of the entire execution history of the program. (Example:
operator delete(void* p) requires that p was obtained from

operator new(size_t) and not deleted since it was last so obtained.)

Widen a Contra

To alter a function contract su that one or more preconditions is relaxed.

Narrow a Contra

To alter a function contract su that an additional precondition is placed on the
arguments and/or environment of a call to the funion.

Precondition Expression

An executable predicate, expressed in C++ and associated with a funion, that
may depend on the funion’s argument values and on program state accessible to
the caller at a call site, as evaluated at the point of the call. If the expression (were
it to be evaluated at that point) would evaluate to false then the corresponding
precondition is violated. Example: [[pre: p != 0]] would be violated for null
p at the time of the call.

Postcondition Expression

An executable predicate, expressed in C++ and associated with a funion, that
may depend on the values of the funion’s arguments and return value at the
point of funion return, and on program state at that point accessible to the
caller. If the expression (were it to be evaluated at that point) would evaluate to
false, then the corresponding postcondition is violated. Example:
[[post: return != 0]] would be violated if the funion returns zero.

Assert Expression

An executable predicate expression-statement in C++, that could be evaluated, in
context, aer any lexically preceding statement, and before any following
statement. If the predicate would evaluate to false (were it to be evaluated at that
point), the assertion is violated. Example: [[assert: p != 0]] would be
violated if p were zero at this point in the program.

Che

A precondition expression, postcondition expression, or assert expression.

Contra Annotation

A “pre”, “post”, or “assert” aribute specifying a e.

Cheing Level

: Either “audit” or “check”, in a contra annotation, or, when compiling, as a seleion
of whi es (if any) to evaluate at runtime. “check” is the default level for any
e. “audit” is intended for es that would violate usability guarantees of the
funion, particularly “big-O” performance, relative to the running time of typical uses
of the funion. As a translation-time seleion, the level determines whi es are
evaluated and aed upon at runtime.

Specifications

Declarations may be annotated with precondition and postcondition contract
annotations to support function-contract verification.

Proposed syntax, by example:

auto function(ArgType1 arg1, ArgType2 arg2, ArgType3 arg3)
 [[pre: arg1 != 0]]
 [[pre: arg1 < arg2]]
 [[pre: global_predicate(arg3)]]
 [[post: return > 0]]
 [[post: other_predicate(return, arg1)]]
 -> ResultType;

“[[assert: ...]]” es are not permied in a funion declaration-part.
Declaration-level contra annotations appear immediately aer the closing
parenthsesis of the declaration-part, and appertain to the entire declaration.

1.

Funion definition bodies may be similarly annotated:2.

auto binary_search(RAIterator b, RAIterator e, Ordered v) -> bool
 {
 [[assert audit: std::is_partitioned(b, e,
 [v](Value v2) { return v2 < v; })]];
 [[assert: b <= e]];

while (b < e) {
 [[assert: *b <= *e || v < *b || *e < v]]
 ...
 }
 }

Predicate expressions appearing in es are assumed to have no side effes.
Any side effe that would be caused by evaluation of su an expression might
not occur when the program is executed, even when the predicate expression is
specified to be eed at runtime.

3.

Contra annotations in a funion body may include, immediately aer “pre”,4.

“post”, or “assert”, and before the colon, a eing level. If omied, the level is
taken to be “check” (the default). e eing level designation helps to
determine whether the e is evaluated at runtime.

All es on declarations of identically the same funion must mat
everywhere that the funion is declared. No su relationship is assumed
between overloads, between a virtual base and its overrides, or between a
template and its explicit specializations. Indire calls, whether via a funion
pointer, a virtual-funion base-class interface, or a base-case template, are
eed according to the declaration used at the call site, and also according to
any es on the declaration of the funion aually called. No aempt is made
to e consistency or redundancy of es that are not required to be identical.
e same e appearing on two different declarations may be evaluated once, or
more than once, where evaluated at all.

5.

Ches are evaluated, or not, at runtime according to the eing level specified
at translation time. “audit” e expressions are evaluated only at “audit”
eing level; “check” es (including es that do not specify a eing
level) are evaluated at “audit” and “check” levels. Programs built with eing
“off” evaluate no es. Example:

6.

 $ cc --check-audit -c bsearch.cc # check everything
 $ cc -c bsearch.cc # no "audit" checks evaluated
 $ cc --check-off -O -c bsearch.cc # check nothing

If a single eing level is seleed for all translation units in a program, then the
above fully determines whether any given e is evaluated at runtime. Where
the eing levels seleed when translating different TUs differ, it is unspecified
whi of the seleed levels determines, at a call site, whether to evaluate es
found in a funion declaration obtained via an “#include” direive.
(Implementers may oose to provide more detailed specifications for this case.)
Ches specified in modules will be evaluated according to the level specified by
that module for calls into it, if any, or by the level specified at translation time for
calls from the TU to that module, whiever more aggressively enables runtime
eing.

7.

When translation units are combined, a translation unit may provide (in the
manner of a user-specified operator new()) a definition of a handler that takes
an argument describing the caller’s context, as in N4259. e handler is called if a
e is specified to be evaluated and found to be false. e response to a
violation if no su handler is provided is “as if” to call std::abort(). e
standard places no requirements on the values passed in the argument, but
implementations are encouraged to provide informative values. Example:

8.

 $ nm --demangle handler.o

 00000 t contract_violation_handler(std::source_location const&)
 $ cc -c qualify.o bsearch.o handler.o -o qualify

Predicates expressed in es must be well-formed regardless of the eing
level designated or seleed. Names used in precondition- and postcondition
expressions are looked up in the lexical context of the annotated funion’s body,
but with no access to names not accessible by the caller. A call that violates a
precondition- or postcondition expression at translation time (i.e. in a constexpr
expression) is ill-formed. Che expressions on funions decalared constexpr
must themselves be constexpr.

9.

rowing an exception from the handler called in response to a violation in
calling a funion identified as “noexcept” results in an immediate call to
terminate().

10.

If a violation-handler funion returns, execution resumes aer the e.
Implementations may have a build mode in whi returning is not permied,
resulting in termination or UB. (We note that to transition a program to using a
library with eing enabled, it is common to pass through a stage in whi
some es fail, and the failure must be logged and execution resumed in order
to identify more than one violation per run. When the Standard C++ Library gets
annotated with es, we expe most large programs will be found to trigger
myriad violations.)

11.

We do not here specify any effe of es that are not evaluated. Implementers
may provide a mode to treat es as definitive expressions of program state for
improved code generation or error eing. (Su a mode would be incompatible
with allowing the violation handler to return.)

12.

Che aributes are not part of the funion type. Che aributes on a funion
pointer refer to the obje, not its value. When calling through a funion pointer,
the es specified on the funion pointer apply in addition to any on the body
of the funion called.

13.

Open issues:

e default eing level for postcondition expressions has been suggested
to be “off”, rather than “check”, refleing postconditions’ primary use in
static analysis.

a.

Proposals are invited for standard-library convenience funions that a
handler may call to implement common violation-handling policies. E.g.,
one that calls through a static funion pointer, and another that does a
longjmp via a named static jmp_buf.

b.

Proposals are invited for syntax to enable a postcondition e to specifyc.

14.

state, including argument values and program state, to be caed at funion
entry and subsequently usable in a postcondition expression.

Proposals are invited for syntax to specify a runtime aion if a particular
e is violated, in effe converting that e to part of the
implementation.

d.

It is our intention that implementations should be compatible with extant
ABIs. e specification may need to be altered to fulfill this intention.

e.

