

Wording for Constexpr Lambda

Document #​: P0170R0
Date ​: 2015-11-01
Revises ​: N4487
Working Group: Core
Reply to​: Faisal Vali
 (faisalv@yahoo.com)

Faisal Vali

Jens Maurer
Richard Smith

Abstract
This paper presents core wording for the proposal N4487 that was
accepted by the Evolution Working Group in Kona on
2015-10-22. N4487 proposed allowing certain ​lambda-expressions
and operations on certain closure objects to appear within
constant expressions. In doing so, N4487 proposed that a closure
type be considered a literal type if the type of each of its
data-members is a literal type; and, that if the ​constexprspecifier
is omitted within the ​lambda-declarator​, that the generated function
call operator be ​constexprif it would satisfy the requirements of a
constexpr function (similar to the ​constexpr inference that
already occurs for implicitly defined constructors and the
assignment operator functions).

2

1 Précis

In brief, N4487 proposed the following:

1) lambda-expressions should be allowed to appear within constant
expressions if the initialization of each of its closure-type's data
members are allowed within a constant expression:

constexpr int AddEleven(int n) {
 // Initialization of the 'data member' for n can
 // occur within a constant expression since 'n' is

 // of literal type.
 return [n] { return n + 11; }();

}
static_assert(AddEleven(5) == 16, "");

2) The closure type should be a literal type if the type of each of its
data-members is a literal type. This would allow the relevant special
member functions to be ​constexpr (if not deleted) and thus
evaluatable within constant expressions:

constexpr auto add = [] (int n, int m) {
 auto L = [=] { return n; };
 auto R = [=] { return m; };

 return [=] { return L() + R(); };
};
static_assert(add(3, 4)() == 7, "");

3) The ​constexprspecifier should be allowed within the ​lambda-declarator
to specify the function call operator (or template) as ​constexpr​:

auto ID = [] (int n) constexpr { return n; };
constexpr int I = ID(3);

4) If the ​constexprspecifier is omitted within the ​lambda-declarator​, the

function call operator (or template) is ​constexprif it would satisfy the
requirements of a ​constexpr​ function:

auto ID = [](int n) { return n; };
constexpr int I = ID(3);

5) The conversion function (to pointer-to-function) should, if it exists,

be ​constexpr​. If the corresponding function call operator is
constexpr​, the conversion function shall return the address of a
function that is ​constexpr​:

auto addOne = [] (int n) {
 return n + 1;

};
constexpr int (*addOneFp)(int) = addOne;
static_assert(addOneFp(3) == addOne(3), "");

P0170R0

3

2 Core Wording

In [basic.types] 3.9 change bullet 10.5.2:

A type is a literal type if it is:
(10.1) — possibly cv-qualified void; or
(10.2) — a scalar type; or
(10.3) — a reference type; or
(10.4) — an array of literal type; or
(10.5) — a possibly cv-qualified class type (Clause 9) that has all of the following
properties:

(10.5.1) — it has a trivial destructor,
(10.5.2) — it is ​either a closure type (5.1.2 expr.prim.lambda), ​an aggregate
type​, (8.5.1) or has at least one constexpr constructor or constructor template
that is not a copy or move constructor, and
(10.5.3) — all of its non-static data members and base classes are of
non-volatile literal types.

In [expr.prim.lambda] 5.1.2/1 replace the ​mutable​opt terminal with the
decl-specifier-seq​opt production, with the contraint that it shall only be mutable or
constexpr

lambda-declarator:

(parameter-declaration-clause)​ ​mutable​opt​ ​ ​decl-specifier-seq​opt
exception-specification​opt​ attribute-specifier-seq​opt​ trailing-return-type​opt

The ​decl-specifier-seq​ of the ​lambda-declarator​ shall only contain ​mutable​ or ​constexpr​.
 [​Example:

 auto monoid = [](auto v) { return [=] { return v; }; };

 auto add = [](auto m1) constexpr {
 auto ret = m1();
 return [=](auto m2) mutable {

auto m1val = m1();
auto plus = [=] (auto m2val) mutable constexpr
 { return m1val += m2val; };
ret = plus(m2());
return monoid(ret);

 };
 };

P0170R0

4

 constexpr auto zero = monoid(0);
 constexpr auto one = monoid(1);
 static_assert(add(one)(zero)() == one()); // OK

 auto two = monoid(2);
 assert(two() == 2); // OK

 static_assert(add(one)(one)() == two()); ​// ill-formed: two() is not a constant expression
 static_assert(add(one)(one)() == monoid(2)()); // OK

— ​end example​]

Change [expr.prim.lambda] 5.1.2/3
The type of the lambda-expression (which is also the type of the closure object) is a unique,
unnamed nonunion class type — called the closure type — whose properties are described
below. This class type is ​neither an aggregate (8.5.1) nor a literal type (3.9​) ​not an aggregate
type (8.5.1)​. …

Change [expr.prim.lambda] 5.1.2/5:

… This function call operator or operator template is declared ​const(9.3.1) if and
only if the ​lambda-expression’s parameter-declaration-clause​ is not followed by ​mutable​.
It is neither virtual nor declared ​volatile​. Any exception-specification specified on a
lambda-expression applies to the corresponding function call operator or operator
template. An ​attribute-specifier-seq in a ​lambda-declarator appertains to the type of the
corresponding function call operator or operator template. ​The function call
operator or any given operator template specialization is a constexpr function if the
corresponding ​lambda-expression's ​parameter-declaration-clause is followed by ​constexpr​,
or it satisfies the requirements for a constexpr function. ​[Note: Names referenced
in the lambda-declarator are looked up in the context in which the
lambda-expression appears. —end note]

 [​Example:

 auto endofunctor = [](auto a) { return a; };
 static_assert(endofunctor(3) == 3); // ​OK

 struct NonLiteral {
 NonLiteral(int n) : n(n) { }
 int n;
 };

 static_assert(endofunctor(NonLiteral{3}).n == 3); // ​ill-formed

— ​end example​]

P0170R0

5

Change [expr.prim.lambda] 5.1.2/6
The closure type for a non-generic ​lambda-expression with no ​lambda-capture has a public
constexprnon-virtual non-explicit const conversion function to pointer to function with
C++ language linkage (7.5) having the same parameter and return types as the closure type’s
function call operator. The value returned by this conversion function shall be the address of
a function that, when invoked, has the same effect as invoking the closure type’s function
call operator. ​It shall be the address of a constexpr function if the function call operator is a
constexpr function. For a generic lambda with no lambda-capture, the closure type has a
public ​constexp​r non-virtual non-explicit const conversion function template to pointer to
function. …

The value returned by any given specialization of this conversion function template shall
be the address of a function that, when invoked, has the same effect as invoking the generic
lambda’s corresponding function call operator template specialization. ​It shall be the address
of a constexpr function if the corresponding specialization is a constexpr function.​[Note: ...

[​Example:

 auto L = [](auto a) { return a; };
 auto M = [](int (*fp)(int), auto a) { return fp(a); };
 static_assert(M(L,3) == 3); // OK

 ​// no specialization of the function call operator template can be constexpr.
 auto V = [](auto a) { static int I; return a; };
 static_assert(M(V,3) == 3); // ​ill-formed

— ​end example

Change [expr.prim.lambda] 5.1.2/16:
An entity is captured by reference if it is implicitly or explicitly captured but not captured by
copy. It is unspecified whether additional unnamed non-static data members are declared in
the closure type for entities captured by reference. ​If declared, such non-static data members
shall be of literal type.
[​Example:
 // ​the inner closure type must be a literal type regardless of how reference captures are handled
 // by the implementation
 ​static_assert([](int n) { return [&n] { return ++n; }(); }(3) == 4);
— ​end example​]

Remove bullet [expr.const] 5.20/2.6:
 ​— a lambda-expression (5.1.2);

P0170R0

6

Modify bullet [expr.const] 5.20/2.10:
— in a lambda-expression, a reference to ​this ​or to a variable with automatic
storage duration defined outside that lambda-expression, where the reference would
be an odr-use (3.2, 5.1.2)​, unless the reference is to a non-volatile object whose
lifetime began within the evaluation of ​e​;​[​Example:

 // ​'v' & 'm' are odr-used & captured by the nested lambdaa
 ​auto monad = [](auto v) { return [=] { return v; }; };

auto bind = [](auto m) {
return [=](auto fvm) { return fvm(m()); };

};

// ​OK to have captures to automatic objects created during
// ​the constant expression evaluation.
static_assert(bind(monad(2))(monad)() == monad(2)());

— ​end example​]

3 Acknowledgment
Ville Voutilainen & Gabriel Dos Reis for co-authoring the original proposal: N4487

P0170R0

