Wording for Constexpr Lambda

Document #: P0O170R0

Date 2015-11-01

Revises : N4487

Working Group: Core

Reply to: Faisal Vali

(faisalv(@yahoo.com)
Faisal Vali
Jens Maurer
Richard Smith

Abstract

This paper presents core wording for the proposal N4487 that was
accepted by the Evolution Working Group in Kona on
2015-10-22. N4487 proposed allowing certain /lambda-expressions
and operations on certain closure objects to appear within
constant expressions. In doing so, N4487 proposed that a closure
type be considered a literal type if the type of each of its
data-members is a literal type; and, that if the constexpr specifier
is omitted within the lambda-declarator, that the generated function
call operator be constexpr if it would satisfy the requirements of a
constexpr function (similar to the constexpr inference that
already occurs for implicitly defined constructors and the
assignment operator functions).

1 Précis
In brief, N4487 proposed the following:

1) lambda-expressions should be allowed to appear within constant
expressions if the initialization of each of its closure-type's data

members are allowed within a constant expression:
constexpr int AddEleven(int n) {
// Initialization of the ‘'data member' for n can
// occur within a constant expression since 'n
// of literal type.
return [n] { return n + 11; }();

}
static_assert(AddEleven(5) == 16, "");

is

2) The closure type should be a literal type if the type of each of its
data-members is a literal type. This would allow the relevant special
member functions to be constexpr (if not deleted) and thus
evaluatable within constant expressions:

constexpr auto add = [] (int n, int m) {
auto L = [=] { return n; };
auto R = [=] { return m; };
return [=] { return L() + R(); };

5

static_assert(add(3, 4)() == 7, "");

3) The constexpr specifier should be allowed within the lawbda-declarator

to specify the function call operator (or template) as constexpr:
auto ID = [] (int n) constexpr { return n; };
constexpr int I = ID(3);

4) If the constexpr specifier is omitted within the /ambda-declarator, the
function call operator (or template) is constexpr if it would satisty the
requirements of a constexpr function:

auto ID = [](int n) { return n; };
constexpr int I = ID(3);

5) The conversion function (to pointer-to-function) should, if it exists,
be constexpr. If the corresponding function call operator is
constexpr, the conversion function shall return the address of a

function that is constexpr:
auto addOne = [] (int n) {
return n + 1;
}s
constexpr int (*addOneFp)(int) = addOne;
static_assert(addOneFp(3) == addOne(3), "");

PO170R0

2 Core Wording

In [basic.types] 3.9 change bullet 10.5.2:

A type is a literal type if it is:

(10.1) — possibly cv-qualified void; or

(10.2) — a scalar type; or

(10.3) — a reference type; or

(10.4) — an array of literal type; or

(10.5) — a possibly cv-qualified class type (Clause 9) that has all of the following

properties:
(10.5.1) — it has a trivial destructor,
(10.5.2) — it is Either a closure type (5.1.2 expr.prim.Jambda), an aggregate
type, (8.5.1) or has at least one constexpr constructor or constructor template
that is not a copy or move constructor, and
(10.5.3) — all of its non-static data members and base classes are of
non-volatile literal types.

In [expr.prim.lambda] 5.1.2/1 replace the mutable,, terminal with the
decl-spectfier-seq,,, production, with the contraint that it shall only be mutable or

constexpr

lambda-declarator:

(parameter-declaration-clanse) _ _

exception-spectfication,,, attribute-specifier-seq,,, tratling-return-tjpe,,,

—

PO170R0

Change [expt.prim.lambda] 5.1.2/3
The type of the lambda-expression (which is also the type of the closure object) is a unique,

unnamed nonunion class type — called the closure type — whose properties are described
below. This class type is _

Change [expt.prim.lambda] 5.1.2/5:

... This function call operator or operator template is declared const (9.3.1) if and
only if the lambda-expression’s parameter-declaration-clanse is not followed by mutable.

It is neither virtual nor declared volatile. Any exception-specification specified on a
lambda-expression applies to the corresponding function call operator or operator
template. An attribute-specifier-seq in a lambda-declarator appertains to the type of the
ing function call operator or operator template.

[Note: Names referenced
in the lambda-declarator are looked wup in the context in which the
lambda-expression appears. —end note |

PO170R0

Change [expt.prim.lambda] 5.1.2/6

The closure type for a non-generic lambda-expression with no lambda-capture has a public
non-virtual non-explicit const conversion function to pointer to function with
C++ language linkage (7.5) having the same parameter and return types as the closure type’s
function call operator. The value returned by this conversion function shall be the address of
a function that, when invoked, has the same effect as invoking the closure
call operator.

e’s function

For a generic lambda with no lambda-capture, the closure type has a
non-virtual non-explicit const conversion function template to pointer to

public

function. ...

The value returned by any given specialization of this conversion function template shall
be the address of a function that, when invoked, has the same effect as invoking the generic
lambda’s corresponding function call operator template specialization.

[Note: ...

Change [expt.prim.lambda] 5.1.2/16:
An entity is captured by reference if it is implicitly or explicitly captured but not captured by

copy. It is unspecified whether additional unnamed non-static data members are declared in
the closure type for entities captured by reference.

Remove bullet |exir.const| 5.20/2.6:

PO170R0

Modify bullet [expr.const] 5.20/2.10:
— in a lambda-expression, a reference to this or to a variable with automatic

storage duration defined outside that lambda-expression, where the reference would
be an odr-use (3.2, 5.1.2

3 Acknowledgment
Ville Voutilainen & Gabriel Dos Reis for co-authoring the original proposal: N4487

PO170R0

