
Structured bindings
Document Number: P0144R0

Date: 2015-10-14

Reply-to: Herb Sutter (hsutter@microsoft.com),

 Bjarne Stroustrup (bjarne@stroustrup.com),

 Gabriel Dos Reis (gdr@microsoft.com)

Attention: EWG

Abstract
This paper proposes the ability to declare multiple variables initialized from a tuple or struct, along the lines of:

 tuple<T1,T2,T3> f(/*...*/) { /*...*/ return {a,b,c}; }

 auto {x,y,z} = f(); // x has type T1, y has type T2, z has type T3

This addresses the requests for support of returning multiple values, which has become a popular request lately.

We already can return multiple values (e.g., via tuple) but lack a syntax to make it easy/elegant to use.

This paper contains no proposed wording. This is a discussion paper to determine EWG interest in the feature,

and if there is interest to get direction for a follow-up paper with wording.

Contents

Abstract ..1

1. Motivation ..2

2. Proposal ..2

2.1 Basic syntax ..2

2.2 Direct and copy initialization ...3

2.3 Basic type deduction..3

2.4 Qualifying auto with a cv-qualifier ...3

2.5 Qualifying auto with & ..4

3. Q&A: Other options/extensions considered ..4

3.1 Should this syntax support initialization from an initializer_list<T>? ..4

3.2 Should this syntax support initialization from a braced-init-list? ..4

3.3 Should we also allow a non-declaration syntax without auto to replace tie() syntax?4

3.4 Should qualifying auto with && be supported? ..4

3.5 Should the syntax be extended to allow const/&-qualifying individual variables’ types?5

3.6 Should this syntax support concepts? non-deduced (concrete) type(s)? ...5

3.7 Should there be a way to explicitly ignore variables? ...6

3.8 Should there be support for recursive destructuring? ..6

Acknowledgments ..6

mailto:hsutter@microsoft.com
mailto:bjarne@stroustrup.com
mailto:gdr@microsoft.com

P0144R0 Structured bindings Sutter, Stroustrup, Dos Reis

Page 2 of 6

1. Motivation
Today, we allow multiple return values via tuple pretty nicely in function declarations and definitions:

tuple<T1,T2,T3> f(/*...*/) { // nice declaration syntax

 T1 a{}; T2 b{}; T3 c{};

 return {a,b,c}; // nice return syntax

}

We enable nice syntax at the call site too, if you have existing variables:

T1 x; T2 y; T3 z;

tie(x,y,z) = f(); // nice call syntax, with existing variables

However, this has several drawbacks:

 It works only for separately declared variables.

 If those variables are of POD type, they may be uninitialized. This may violate reasonable coding rules.

 If they are non-PODs or initialized PODs, they may be initialized redundantly – first to a placeholder or

default value (possibly using default construction) and then again to their intended value.

 Even default construction is often undesirable, for example if f() is an attempt to open a file stream

and return the stream together with an outcome status. Being able to declare and initialize the variables

at the same time would be much more direct and more natural to read.

What we could like is a syntax to declare and initialize variables:

declare-and-tie(x,y,z) = f(); // nice call syntax, to declare and initialize

2. Proposal
We propose extending the local variable declaration syntax to allow:

 a single declaration that declares one or more local variables,

 that can have different types (and so must have a distinct syntax from the current multiple variable

declaration syntax where all variables have the same type),

 whose types are always deduced (using auto, possibly const- or &-qualified),

 when assigned from a std::tuple, std::pair, or any class with all public non-static data members.

2.1 Basic syntax
For the basic syntax, we want to make the new form distinct enough from the current form that requires the

variables to have the same type (e.g., auto x = 1, y = 2, z = 3;, or auto x, y, z = f(); which

initializes only z today).

There are several unused syntaxes available that we could use to express this case. Two major one are:

auto (x,y,z) = f(); // Option 1: parentheses

auto {x,y,z} = f(); // Option 2: braces

Pending EWG direction, this paper will use Option 2 as a strawman syntax. It is more visually distinct from the

existing syntax for declaring multiple variables which must be of the same type. Also, the {x,y} introduction

syntax is used in concepts.

P0144R0 Structured bindings Sutter, Stroustrup, Dos Reis

Page 3 of 6

2.2 Direct and copy initialization
This paper proposes allowing both direct and copy initialization:

auto { list-of-comma-separated-variable-names } { expression };

auto { list-of-comma-separated-variable-names } = expression;

For simplicity the remaining examples will focus on copy initialization, but all examples apply to both forms.

2.3 Basic type deduction
The declaration

auto {x,y,z} = expression;

declares the variables x, y, and z, and deduces their respective types and initial values from the non-static data

member of E, the type of expression, in declaration order. E must have the same number of data members (here

three), and the data members must be accessible. The initialization of x, y, and z is performed as if x, y, and z

were data members of E and we had written

E __e = expression;

to perform memberwise initialization. Note that for this construct to be efficient, the wording should be crafted

to allow implementation latitude, such as copy elision.

A little more formally: Let E denote the type of the initializer expression. E shall be either a specialization of

std::tuple, or a type whose non-static data members are all accessible and are declared in the same base

class of E (E is considered a base class of itself for this purpose). The variables x, y, and z are initialized from a

declaration-order traversal of the non-static data members of E, and their types are deduced from their

initializers as if individually declared auto. If E has any non-static anonymous union member, then the first

member of that union is selected for to initialize the corresponding variable. If that member is not the most

recent active field of that union, the program is ill-formed (no diagnostic required). If E is a specialization of

std::tuple then the Nth member is taken to be that member designated by __e.get<N>.

Specifically, E may be a tuple, pair, or user-defined type. For example:

tuple<T1,T2,T3> f();

auto {x,y,z} = f(); // types are: T1, T2, T3

map<int,string> mymap;

auto {iter, success} = mymap.insert(value); // types are: iterator, bool

struct mystruct { int i; string s; double d; };

mystruct s = { 1, “xyzzy”s, 3.14 };

auto {x,y,z} = s; // types are: int, string, double

2.4 Qualifying auto with a cv-qualifier
As with individual variable declarations, here auto can be cv-qualified. The declaration

auto const {x,y,z} = f(); // const T1, const T2, const T3

is as in 2.3 but declares x, y, and z to be const.

P0144R0 Structured bindings Sutter, Stroustrup, Dos Reis

Page 4 of 6

2.5 Qualifying auto with &
As with individual variable declarations, here auto can be &-qualified. If the initializer is an rvalue, then it must

also be const-qualified, and results in lifetime extension of the returned tuple. Thus the declaration

auto const& {x,y,z} = f(); // const T1&, const T2&, const T3&

is as in 2.3 but declares x, y, and z to be const&.

Further, the declaration

auto& {x,y,z} = f(); // ERROR, illegal for an rvalue

is not legal for a returned rvalue, but can be correctly written by turning the rvalue into an lvalue:

auto const& val = f(); // or just plain “auto” to copy by value

auto& {x,y,z} = val; // ok, initializer is an lvalue

3. Q&A: Other options/extensions considered

3.1 Should this syntax support initialization from an initializer_list<T>?
We think the answer has to be no, primarily because the size of an initializer_list is dynamic whereas the

list of variables to be defined is static.

3.2 Should this syntax support initialization from a braced-init-list?
For example:

auto {x,y,z} = {1, “xyzzy”s, 3.14159}; // NOT proposed

We think the answer should be no. This would be trivial to add, but should be well motivated and we know of no

use cases where this offers additional expressive power not already available (and with greater clarity) using

individual variable declarations.

3.3 Should we also allow a non-declaration syntax without auto to replace tie() syntax?
For example:

{x,y,z} = f(); // same as: tie(x,y,z) = ...

{iter, success} = mymap.insert(value); // same as: tie(iter,success) = ...

We think the answer should be no. We know of no use cases where this is better than using std::tie, as

noted in the comments. It would also complicate the grammar because { is already permitted in this position to

begin a block, so we would need lookahead to disambiguate. (Using () parens is worse, because code like

(iter, success) = expression; already has a meaning and in some cases might compile today.)

3.4 Should qualifying auto with && be supported?
We are undecided. Qualifying with && is for forwarding , which is usually for parameters. Valid local forwarding

uses are rare… we know of only one, but it is notable, namely in range-for to forward the value to the loop body:

for(auto&& {first,second} : mymap) { // NOT proposed

 // use first and second

}

P0144R0 Structured bindings Sutter, Stroustrup, Dos Reis

Page 5 of 6

It seems this case could be better dealt by extending Stephan Lavavej’s proposal for range-for with a similar

syntax to that supported in this proposal, rather than adding general support for &&.

3.5 Should the syntax be extended to allow const/&-qualifying individual variables’ types?
For example:

auto {& x, const y, const& z} = f(); // NOT proposed

We think the answer should be no. This is a simple feature intended to bind simple names to a structure’s

components by value or by reference. We should avoid complication and keep the simple defaults simple.

We already have a way to spell the above, which also makes any lifetime extension explicit:

auto const& val = f(); // or just plain “auto” to copy by value

T1& x = get<0>(val);

T2 const y = get<1>(val);

T3 const& z = get<2>(val);

Secondarily, we could be creating subtle lifetime surprises when the initializer is an rvalue:

 Should a single const& extend the lifetime of the whole tuple? The answer should probably be yes,

but then this could cause surprises by silently extending lifetimes for the other values in the tuple.

 Should the use of non-const & be allowed? If we allow any const& to extend lifetime, then non-const &

would also be safe as long as there was some other variable being declared using const&. But that

would be inconsistent with the basic case, and create quirky declaration interactions.

 Should only const, but not &, be allowed? That would avoid the above problems, but feels arbitrary.

3.6 Should this syntax support concepts? non-deduced (concrete) type(s)?
For example:

string {x,y} = f(); // NOT proposed: same type

Iterator {x,y} = f(); // NOT proposed: same concept

something {int x, string& y} = f(); // NOT proposed: different types

something {Iterator it, bool b} = f(); // NOT proposed: different concepts

We think the answer should be no. This is a simple feature intended to bind simple names to a structure’s

components by value or by reference. We should avoid complication and keep the simple defaults simple.

As noted in 3.5, we already have ways to spell all of the above. For example, the last line can already be spelled:

auto const& val = f(); // or just plain “auto” to copy by value

Iterator it = get<0>(val);

bool b = get<1>(val);

The argument could be made that in other cases we do not have mandatory type deduction, so that for

parameters and concepts you can choose among: specifying the exact type (no deduction); specifying a concept

(constrained deduction); and specifying auto (unconstrained deduction). If we do not allow that here, we are

breaking consistency for return value binding. We don’t think that argument holds, because the purpose of this

feature is to supply a simple default that you can already write out by hand. We do not need to burden a

targeted feature with ornamentation to become a second (and ornate) way to spell something we can spell

already; indeed, that would be missing the point of adding a simple default.

P0144R0 Structured bindings Sutter, Stroustrup, Dos Reis

Page 6 of 6

Finally, allowing specific concepts or types would be feature creep. The purpose of the feature is to bind new

names to the values that are already there. Even replacing auto with a concept or type as in the first group of

lines changes the meaning, because in the proposal auto{x,y} can deduce different types whereas

presumably the concept or type must apply to all variables. This will nearly always be wrong, and people will

want to mention the concept and type names on the individual components, leading right back to 3.5 with the

same observations noted there, including that we already have a way to spell those things.

3.7 Should there be a way to explicitly ignore variables?
The motivation would be to silence compiler warnings about unused variables.

We think the answer should be “not yet.” This is not motivated by use cases (silencing compiler warnings is a

motivation, but it is not a use case per se), and is best left until we can revisit this in the context of a more

general pattern matching proposal where this should fall out as a special case.

Symmetry with std::tie, which uses std::ignore in expression, would suggest using something like a

std::ignore_t (since this is a declaration, not an expression):

tuple<T1,T2,T3> f();

auto {x, std::ignore_t, z} = f(); // NOT proposed: ignore second element

However, this feels awkward.

Anticipating pattern matching in the language could suggest a wildcard like _ or *, but since we do not yet have

pattern matching it is premature to pick a syntax that we know will be compatible. This is a pure extension that

can wait to be considered with pattern matching.

3.8 Should there be support for recursive destructuring?
For example:

std::tuple<T1, std::pair<T2, T3>, T4> f();

auto { w, {x, y}, z } = f(); // NOT proposed: types are T1, T2, T3, T4

This could be a future extension, following experience in languages like Python.

Acknowledgments
Thanks to Matt Austern, Aaron Ballman, Jonathan Caves, Tom Honermann, Nevin Liber, Jens Maurer, Gor

Nishanov, Thorsten Ottosen, Richard Smith, Oleg Smolsky, Andrew Tomazos, Tony Van Eerd, and Ville

Voutilainen for feedback and discussion on drafts of this paper.

