
P0138R0 2015-09-28 Reply-To: gdr@microsoft.com

1

Construction Rules for enum class Values

Gabriel Dos Reis

Microsoft

Abstract

This paper suggests a simple adjustment to the existing rules governing conversion from

the underlying type of a scoped enumeration to said enumeration, if the latter is defined

with no associated enumerator. This effectively supports programming styles that rely

on defining of new distinct integral types based out of existing integer types, without the

complexity of anarchic integer conversions, while retaining all the ABI characteristics and

benefits of the integer types, especially for system programming.

1 INTRODUCTION

There is an incredibly useful technique for introducing a new integer type that is almost an exact copy, yet
distinct type in modern C++11 programs: an enum class with an explicitly specified underlying type.
Example:

 enum class Index : uint32_t { }; // Note: no enumerator.

One can use Index as a new distinct integer type, it has no implicit conversion to anything (good!) This
technique is especially useful when one wants to avoid the anarchic implicit conversions C++ inherited
from C. For all practical purposes, Index acts like a "strong typedef" in C++11.

There is however, one inconvenience: to construct a value of type Index, the current language spec
generally requires the use a cast -- either a static_cast or a functional notation cast. This is both
conceptually wrong and practically a serious impediment. Constructing an Index value out of uint32_t
is not a cast, no more than we consider

 struct ClassIndex { uint32_t val; };

 ClassIndex idx { 42 };

a cast. It is a simple construction of a value of type ClassIndex, with no narrowing conversion. I claim
the current rule for scoped enumeration is too strict. For instance, we should be able to write

 int f(Index);

 auto a = f({42});

P0138R0 2015-09-28 Reply-To: gdr@microsoft.com

2

This proposal suggests we allow an implicit/non-narrowing conversion from a scoped enumeration's
underlying type to the enumeration itself, when its definition introduces no enumerator and the source
uses a list-initialization syntax. This is safe and support very useful programming techniques. For example,
you could introduce new integer types (e.g. SafeInt) that enjoy the same existing calling conventions as
its underlying integer type, even on ABIs expressly designed to penalize passing/returning structures by
value. This supports a zero-overhead abstraction technique. It has been found very popular in practice
by system programmers and application programmers.

Strictly speaking, this change could be detected by SFINAE tricks; however, the benefit is much greater --
and the SFINAE trick detection is more useful in the other direction, which I am not proposing to change.

2 WORDING

Modify paragraph7.2/8 as follows

For an enumeration whose underlying type is fixed, the values of the enumeration are the

values of the underlying type. A scoped enumeration with a fixed underlying type is

called an integer class if its enumerator-list is empty. […]

Add a bullet between (3.8) and (3.9) to paragraph 8.5.4/3 as follows:

Otherwise, if T is an integer class (7.2) with underlying type E, the initializer list shall be

either empty or of the form { v } and the conversion from v to E (if any) shall not involve

a narrowing conversion. In either case, the object is initialized with T() if the initializer list

was empty, or the functional cast expression T(v). [Example:

enum byte : unsigned char { };

byte b { 42 }; // OK

byte c = { 42 }; // OK; same value as b

byte d = byte{ 42 }; // OK; same value as b

void f(byte);

f({ 42 }); // OK; same as f(T(42))

f({ -43 }); // error

f(43); // error

--end example]

P0138R0 2015-09-28 Reply-To: gdr@microsoft.com

3

3 ACKNOWLEDGMENT

This proposal formalizes the TINY suggestion made on EWG reflector [1]. It benefited from feedback from

various people, in particular Richard Smith and Jens Maurer. After the draft of this paper was completed,

I was made aware of the paper authored by Walter Brown reviving the suggestion of “opaque typedef”

[2]. The current suggestion is not incompatible with Walter’s proposal, nor is it a replacement or a

competing proposal. An integer class is still an enumeration and follows every other rule governing scope

enumerations. This proposal is more of a completion of Oleg Smolsky’s proposal [3], but for

enumerations.

4 REFERENCES

[1] Gabriel Dos Reis, [TINY] enum class conversion and conversion from underlying type when no

enumerator is introduced, 2015. Reflector message c++std-ext-16296 posted on January 7, 2015.

[2] Walter Brown, "Function Aliases + Extended Inheritance = Opaque Typedefs," ISO/IEC

JTC1/SC22/WG21, 2015. Document number P0109R0

[3] Oleg Smolsky, "Extension to aggregate initialization," ISO/IEC JTC1/SC22/WG21, 2015. Document

numnber P0017R0

