
Unified call concerns P0131R0 Stroustrup

1

P0131R0
September 27, 2015

Bjarne Stroustrup

Unified call syntax concerns

Abstract
This note is a follow-up to the unified call syntax proposals (N4145, N4174, N4474) and discussions in
EWG in Urbana and Lenexa.

This note discusses some problem examples and concerns raised about the unified call syntax proposal.
It suggests remedies for some concerns. The key questions addressed here are:

• Given that every lookup rule can cause problems, does unified calls add new problems or make
old problems significantly worse?

• Does the benefits of unified call outweigh the problems?

My answers are “no” (note “significant”) and “yes!” Current conventional use of namespaces addresses
the most strongly voiced concerns.

Section 7 present a serious name lookup problem presented by David Vandevoorde in Lenexa and
discusses design alternatives to deal with that. This reflects a discussion at Cppcon. A companion paper
by Richard Smith and Chandler Carruth (P???) should have been integrated with the discussion here, but
there was no time for a merge.

A draft of this note was posted to the –ext reflector in May. This version represent significant updates
(especially section 7).

An experimental implementation by Faisal Vali now exists (section 10).

1. Unified call syntax
When Herb Sutter and I proposed a unified call syntax we relied on ideas going back at least to D&E in
the context of C++, and on experience with other languages. C# was mentioned. The debate that
resulted (erupted) on the web mentions ML, Java, Lisp, D, Swift, and other languages with similar
facilities. Generally, uniform call syntax (by any name) is a highly valued feature in those languages.

At the Urbana meeting, concerns about backwards compatibility were raised. The compatibility
concerns were solved in a revision for the Lenexa meeting, but there worries about the stability of
interfaces, “surprises”, and compilation costs were expressed. These concerns are the ones I address
here.

Unified call concerns P0131R0 Stroustrup

2

2. Benefits
We discuss potential problems a lot. Sometimes, the benefits of a proposal get forgotten in all the worry
and due diligence, so here I will briefly re-state the purpose and presumed benefits of unified call
syntax. I think that the benefits obtained far outweigh the potential problems caused.

The basic proposal is

• A call x.f(y) will first look for members of x’s class (as ever) and if no valid call is found will look
for functions as if f(x,y) had been written

• A call, f(x,y) fist looks for functions (as ever) and if no valid call is found looks for functions as if
x.f(y) had been written

This breaks no existing code.

The perceived benefits are

• Ease of use: a caller need not know whether a function is implemented as a member or a free-
standing function or a lambda

• Decreased coupling / better encapsulation: a class implementer does not have to place every
function manipulating and object into the class. Only the minimal set of functions needing
access to the object representation needs to be members. This simplifies comprehension and
maintenance.

• Less replication: Eliminate the need to provide two functions (a member and a free-standing
function) to simplify operation on an object (e.g., begin(x) and x.begin()).

• Non-intrusive extension of functionality: We can add functionality to a class without modifying
the class definition

• Simpler refactoring: We can change a function from a member to a non-member (or vice versa)
without modifying user code.

• More general templates: a template can take arguments of types supporting f(x) as well as
arguments of types requiring x.f().

• Simpler concepts: a concept can be written without duplicating requirements for f(x) and x.f().
• Chaining: we can write h(z,g(y,f(x))) or f(x).g(y).h(z) according to our preferences.
• Functional notation for virtual functions: if the logical or preferred syntax is functional, we can

still implement an operation as a virtual function without adding a helper function.
• Allow member function notation for types without members: for example adding size(A) to an

array type A and call it using a.size(). This decreases the temptation to write adaptor functions
as unconstrained templates.

These benefits are not orthogonal. In fact, some can be seen as mere re-statements of others.

Note that operators and range-for already offer this benefit and that replication of functions (e.g.,
swap(x,y) and x.swap(y)) is common in the standard library and elsewhere. Users of other languages
generally consider these benefits (as they apply to the various languages) significant.

3. The fundamental problem
You can be surprised by what is invoked by a call if you have

Unified call concerns P0131R0 Stroustrup

3

• nested scopes (as with derived/base classes, nested namespaces, or library include paths)
• hiding (or access control)
• overloading

We have lived reasonably happily with those potential problems in C++ for 30+ years. Uniform syntax
can be defined in terms of nested lookups (as the current proposal and range-for lookup) or overloading
(like operator lookup). It follows that for every possible design, we can construct examples that could
surprise someone. Several were presented in the proposals.

4. The end of stable interfaces?
In Lenexa, Chandler Carruth presented this example of a problem we’d face if uniform-call syntax was
adopted:

// my_library.h:
struct FancyAPI {
 void member1(int);
 void member2(int);
};

 // user_code.cpp:
#include "my_library.h"
void my_code(FancyAPI &widget) { // The FancyAPI doesn't have a super useful member3
 auto member3 = [](FancyAPI &widget, int i) { if (i<0) { /* yikes error! */ } ... };
 …
 widget.member3(-1); // calls local member3
}

The programmer’s idea (assuming that I interpret Chandler’s intent correctly) is that the user thinks that
the FancyAPI lacks an operation member3() and (relying on uniform call) adds it locally using a lambda.
In the next release, the provider of FancyAPI improves the API by adding a member3():

// my_library.h:
struct FancyAPI {
 void member1(int);
 void member2(int);
 void member3(size_t); // added later
};

// user_code.cpp:
#include "my_library.h"
void my_code(FancyAPI &widget) { // Now, the FancyAPI has a super useful member3
 auto member3 = [](FancyAPI &widget, int i) { if (i<0) { /* yikes error! */ } ... };
 …
 widget.member3(-1); // calls widget’s member3
}

Unified call concerns P0131R0 Stroustrup

4

Obviously, the behavior of the user code changes (now FancyAPI::member3() is called) – to what
anyone looking at FancyAPI would expect. This will give the wrong result if FancyAP’s member3() is less
appropriate than the local one. The argument types int and unsigned were chosen to get the well-
known language problems with implicit conversions (as described in many places, including N4477). For
extra credit, remember that sizeof(size_t) is larger than sizeof(int) on some popular systems and not on
other popular systems.

I don’t dispute that this will happen in some form or another or that even a better result from
FancyAPI::member3() than from the local member3() could be a serious problem. What I do claim is
that

• such problems will be rare
• we have lived happily with equivalent problems for decades (see section 6)
• implementations can warn
• we will learn not to patch interfaces in an ad hoc and non-obvious manner
• the problem is mitigated by conventional use of namespaces
• other languages have had this exact problem for years, without considering it significant

Consequently, I consider the risk of breaking such future code (we don’t yet have uniform call syntax, so
no current code will be broken) worth the benefits we would get from uniform call syntax.

In the example, the introduction of member3 was a local fix to a deficiency of FancyAPI. Defining a local
lambda and then in the same function calling it with the functional syntax could be seen as a bit odd and
ad hoc. The programmer would have to do that for every call of member3 in the program to get
consistent answers. I doubt that code would pass code review. Also, if you are locally patching an API, I
think it would be reasonable to expect you to be alert to changes (supposedly improvements) to that
API. However, that’s just one variant of the problem, possibly chosen primarily to fit on a slide.

A more common variant of the problem would use a non-local function. For example:

// user_code.cpp:
#include "my_library.h"

void member3(FancyAPI &widget, int i) { if (i<0) { /* yikes error! */ } ... };

void my_code(FancyAPI &widget) {
 …
 widget.member3(-1);
}

Now, which function is invoked depends on which version of FancyAPI we included. This differs from the
lambda version in that now every call where the global member3 is in scope will invoke the same
function.

Had we decided to go with a solution based on overloading (based on a union of overload sets), many
variants of this problem would have been caught by the compiler. However, for backwards compatibility
and other reasons, we decided to give a member function priority when we use the x.f(y) syntax, so the
problem (where it is a problem) must be caught by other means (e.g., a lint or a compiler warning).

Unified call concerns P0131R0 Stroustrup

5

I say “where it is a problem” because I consider a member function primary and almost by definition the
right choice when we have an object of a class as the first argument. It’s the privilege of the class writer
to get “first dibs” on defining such an operation and the class writer’s obligation to provide the most
appropriate semantics. In my original proposal, the member function was always considered first,
independently of which syntax was used. My ideal language would have every call syntax (member,
functional, operator) lead to the same function being called. The proposal is an approximation to that
ideal. See also section 13.

So far, we have assumed that the writer of the call widget.member3(-1) wanted the “local” member3().
In real code we would not be able to assume that. A lot of code might separate the definition of the
“local” member3() and the call (even in the lambda variant). The “local” member3() might even be in a
separate header (just like FancyABI’s member3()). If we are writing, maintaining, or debugging such
code we must be relatively neutral about which resolution is the right one. It is non-trivial to determine
a programmer’s intent, and the programmer might even be misguided. We are not all “super coders”, so
explicit specification can be wrong.

5. Use of namespaces to improve interfaces
My favorite style of class definition directly addresses the FancyABI example. I minimize the number of
member functions by using “helper functions” defined in the namespace of the class (see TC++PL3 and
TC++PL4):

// my_library.h:
namespace FancyAPI {
 struct Fancy {
 void member1(int);
 void member2(int);
 void member3(size_t); // added later (maybe)
 };

 void helper1(Fancy&, int);
 void helper2(Fancy&, int);
 void helper3(Fancy&, size_t); // added later (maybe)
}

Uniform call helps here by making it easy to move functions in and out of the class as needed. Using a
namespace enables ADL and minimizes namespace pollution.

// user_code.cpp:
#include "my_library.h"

void member3(FancyAPI::Fancy &widget, int i) { if (i<0) { /* yikes error! */ } ... };

void my_code(FancyAPI::Fancy &widget) {
 …
 widget.member3(-1); // call widget’ member3 if it exists; otherwise “local” member3
 member3(widget,-1); // call “local” member3

Unified call concerns P0131R0 Stroustrup

6

 widget.helper3(-1); // do overload resolution for Widget::helper3

// and “local” helper3
 helper3(widget,-1); // do overload resolution for Widget:: helper3

// and “local” helper3
}

Now, it is obvious that new functions that do not touch the representation of Fancy, should be in
FancyABI and that only functions that do touch the representation should be members of Fancy. Adding
a helper function outside FancyABI is asking for surprises and potential maintenance problems. We
could use the code above, add member3 to the FancyABI in my_library.h, or reopen the namespace:

Namespace FancyABI { // reopen namespace
void member3(Fancy &widget, int i) { if (i<0) { /* yikes error! */ } ... };

 }

Yes, we can still get the problem with a lambda not being found (hidden by a member function) and yes,
we can still get a problem with functions being added to FancyABI and FancyABI::Fancy. However, there
is an obvious place to look and if you don’t want to pick up “local stuff” (lambdas and functions not in
FancyABI) you can use explicit qualification:

void my_code(FancyAPI::Fancy &widget) {
 …
 Fancy_API::member3(widget,-1); // will not find a local or global member3
}

In widget.member3(-1), what lookup should happen if there is no class member member3? Status quo
has that as an error. The current proposal tries member3(widget,-1) which would find a local lambda. If
there is no local lambda, member3(widget,-1) would do overload resolution among global functions and
members of FancyABI found using ADL. Thus an added function to FancyABI would only “hijack” the
“local” function if it was a better match. In the most likely scenarios where the added FancyABI function
and the “local” function are of identical types, an ambiguity error would result. I assume this to be the
most common case because given the same name the two functions are likely to perform very similar
operations and are likely to follow local conventions for argument types.

I am satisfied that this reasonable and recommended style of namespace use addresses the concerns
raised by the FancyABI example. It decreases the likelihood of an uncaught problem below the level of
similar problems that we currently deal with successfully.

6. Similar current problems

Variants of the FancyAPI problem exist today and we successfully cope with them. The examples in this
section do not assume unified call.

6.1. C API
Let’s see what the equivalent problem using a C-style interface from a C++ in a C++ program would be:

Unified call concerns P0131R0 Stroustrup

7

// my_C_library.h:
struct FancyAPI {
 // …
};

void member1(FancyAPI*, int);
void member2(FancyAPI*, int);

 void member3(FancyAPI*, size_t); // added later (maybe)

// user_code.cpp:
#include "my_C_library.h"

void member3(FancyAPI* widget, int i) { if (i<0) { /* yikes error! */ } ... };

void my_code(FancyAPI& widget) {
 …
 member3(&widget,-1); // do overload resolution for all member3()s
}

Depending on the argument types we may get an ambiguity error or select one of the alternative
member3()s. If member3() is called from other parts of the program, we may get different member3()s
called. If the two member3()s have the same type, we may and may not get a linker error (depending on
build procedures). I hope for a double-definition link-time error for member3(). However, we just might
get every part of a program using user_code.cpp’s member3() instead of my_C_library.h’s. Where
overloading is not used, we de facto have a variant of the problem in C – since 1972.

Overloading
The variant that has worried me most (long before I saw Chandler’s; you can see versions in N4477)
involves overloading:

// my_library.h:
struct FancyAPI {
 void f(double);
 void f(size_t); // added later (maybe)
};

// user_code.cpp:
#include "my_library.h"

void my_code(FancyAPI &widget) {
 …
 widget.f(-1);
}

Today, a function added in FancyAPI can lead to a different function being chosen (quietly).

Unified call concerns P0131R0 Stroustrup

8

Everyone who calls a function (member or non-member) is vulnerable to “hijacking” by a better-match
function. We have lived with this since 1983.

There are organizations that have banned overloading to avoid such problems, but overloading (often in
the guise of templates) is the backbone of modern C++.

6.2. Non-member functions
At least that FancyAPI struct offers a closed set of alternatives. With free functions, we get an open set:

// my_library.h:
struct FancyAPI {
 // …
};

void f(FancyAPI*, double);
void f(FancyAPI*, size_t); // added later (maybe)

// user_code.cpp:
#include "my_library.h"

void f(FancyAPI* widget, int i) { if (i<0) { /* yikes error! */ } ... };

void my_code(FancyAPI &widget) {
 …
 f(&widget,-1);
}

If the “local” function is a perfect match, the local function will be chosen, but a slight change brings
back the problem:

// my_library.h:
struct FancyAPI {
 // …
};

void f(FancyAPI*, double);
void f(FancyAPI*, size_t); // added later (maybe)

// user_code.cpp:
#include "my_library.h"

void f(FancyAPI* widget, int i) { if (i<0) { /* yikes error! */ } ... };

void my_code(FancyAPI &widget, size_t i) {
 …
 f(&widget,i);
}

Unified call concerns P0131R0 Stroustrup

9

Now the FancyAPI intercepts/hijacks, the call.

In 1983 this was considered so scary that I experimented with ways of marking all overloaded functions
as special. That proved unmanageable. Today, we do regularly see problems with “the wrong function”
being picked, but I don’t consider that one of the worst problems with C++. My guess is that
“overloading selecting an unexpected function” will remain a more significant problem than “finding the
wrong function when looking in nested scopes.”

6.3. Inheritance
It has been pointed out that the problem with uniform syntax is that a remote change to a program,
such as adding a member to a class or a nonlocal function can change the meaning of a program.

It should be noted that such a change sometimes is exactly what was intended by a change and that
changing the behavior in many places by a single change is an ideal for some uses. For example, it is
often considered good that you can change the behavior of a set of derived classes by changing a base
class. In such cases, the “hijacking” is a feature, not a bug. However, consider an inheritance variant of
the FancyAPI example:

// my_library.h:
struct FancyAPI {
 void member1(int);
 void member2(int);
 void member3(size_t); // (maybe)
};

// user_code.cpp:
#include "my_library.h"
class My_class : public FancyABI {

 void member3 (int i) { if (i<0) { /* yikes error! */ } ... };

void my_code() {
 …
 member3(-1); // calls My_class::member3; hides FancyABI::member3 (maybe)
 }
}

void my_code(My_class &widget) { // use derived class
 widget.member3(-1);

 }

void my_code(FancyABI& widget) { // use base class
 widget.member3(-1);

 }

By using

 using FancyABI::member3; // alleviate hiding problems

Unified call concerns P0131R0 Stroustrup

10

I could turn the hiding problem into an overload resolution problem.

Virtual functions do a lot to alleviate the potential problems, as do systematic use of override. We did,
however, survive without override for 25+ years, and with the equivalent problem for data members
(for which we don’t have, and probably don’t need a remedy).

A trickier variant arises from using a template argument as the base (often to circumvent the need for
virtual functions):

// user_code.cpp:
#include "my_library.h"
template<class Base>
class My_class : public Base {

 void member3 (int i) { if (i<0) { /* yikes error! */ } ... };

void my_code() {
 …
 member3(-1); // calls My_class::member3; hides FancyABI::member3 (maybe)
 }
}

void my_code(My_class<FancyABI> &widget) // use derived class
{
 widget.member3(-1);
 widget.my_code(-1);

 }

void my_code(My_class<OtherABI>& widget) // use base class
{
 widget.member3(-1);
 widget.my_code(-1);

 }

Again, this is a delight to language lawyers and a challenge to language designers, but we have lived
happily with it since 1990 or so.

6.4. Nested namespaces
Nested namespaces is probably the most direct equivalent to the unified call problem that we have
today:

// my_library.h:
namespace FN {
 struct FancyAPI {
 // …
 };

 void f(FancyAPI*, double);

Unified call concerns P0131R0 Stroustrup

11

 void f(FancyAPI*, size_t); // added later (maybe)
 …

 Namespace MN {
 // user_code.cpp:
 #include "my_library.h"

 void f(FancyAPI* widget, int i) { if (i<0) { /* yikes error! */ } ... };

 void my_code(FancyAPI &widget) {
 …
 f(&widget,-1);
 } // MN

 } // FN

Here MN::f hides FN::f.

7. Template lookup
In Lenexa, David Vandevoorde presented this example:

Daveed was wondering how lookup occurs:

Currently, for m(p), lookup is split in two phases: Ordinary lookup when the template is first
parsed (phase 1), and argument-dependent lookup when it’s instantiated (phase 2). For p.m(),
there is only a lookup at instantiation time.

Unified call concerns P0131R0 Stroustrup

12

So suppose we have a call p.m(). If at instantiation time, we realize it cannot be resolved the
traditional way, we’re past the point where we could make it equivalent to m(p), because the
phase-1 lookup context is gone. We could always assume it’s going to fail and pre-emptively
perform a phase-1 lookup for every p.m() form, but that might be quite expensive.

This is a surprising (to me at least) consequence of the two-phase lookup that I had not taken into
account earlier.

There are two obvious ways handling this:

• For both x.f(y) and f(x,y), do the lookup for f(x,y) and later do the lookup for x.f(y) and only
after that decide which resolution to use. This would incur the double lookup cost in all cases,
but would allow use to choose semantics (member preference, preference based on notation
used, or overload resolution) exclusively based on need. Waiting for the second lookup would
delay error detection significantly for template functions (instantiation time for templates).

• Unify calls only for the f(x,y), notation. That would mean that the only change from status quo
would be a phase-2 lookup where we currently give an error.

I don’t know how expensive would be to do the double lookup required by the first alternative.

The second alternative is exactly opposite to Herb Sutter’s original proposal: Unify calls only for the
x.f(y), notation. Herb was at the Cppcon meaning and didn’t respond with an instant “over my dead
body.”

Note that all STL-style code (and that’s essentially all generic code) rely on the f(x,y) notation. Note also
that the f(x,y) notation is used to define customization points (e.g., std::swap()).

So if we generalize only one notation, it must be the f(x,y) notation: STL, lambdas, and customization
points.

If we generalize only one notation, we should expect every generic library and every concept to use it.

Potential disadvantage of generalizing only the f(x,y) notation include

• People who like the x.f(y) might get very upset on aesthetic grounds. After all, variants of that
notation has been a key part of the OO culture.

• People who fear side effects from generalization might then prefer x.f(y) because it is more
restrictive

• The benefits of auto completion of x.f(would not be achieved (see section 8).

It was observed (by several people) that the major objections to generalizing the x.f(y) notation to also
handle the f(x,y) notation might be alleviated once we have modules. In that case, the search for f(x,y)
would be limited to the modules of x and y. However, we don’t yet have modules, so I won’t try to make
this idea concrete.

8. IDEs
Many (but not all) programmers rely on IDEs with helpful “auto completion” features (lists of possible
functions to call). For example x.f(can yield a list of all member functions f in x’s class. Similarly, f(x can
yield a list of all free standing functions called f that can be called with x as their first argument. The task

Unified call concerns P0131R0 Stroustrup

13

for f(x is harder than the task for x.f(both because the set of non-member fs is open and because
conversions of x are allowed. Obviously, uniform call would enlarge the set of function that could be
called (to the union of what can be called for x.f(and f(x). I don’t see that as a major problem and it
would actually be useful in cases where the operation a programmer considered did not support the
syntax used.

9. Warnings
It has been suggested that compilers can detect clashes between member and non-member functions. It
has also been pointed out that this may slow down compilation.

I’d like warnings, but we should not base a language design on assumptions about better warnings. In
this case, I worry less about compiler speed than about false positives from the many double definitions
(e.g. begin(x) and x.begin()) that we have because of the lack of uniform calls. I suspect warnings are
best provided optionally (e.g., -Wuniformcall) or as a separate static analysis tool (e.g., lint) with a way
of suppressing known false positives.

10. Implementation experience
Faisal Vali implemented a couple of the alternatives. He also ran a small experiment based on the
examples from Nicholai Josuttis’ book and found no case where a “wrong” function was selected.

11. Explicit qualification of calls
There were suggestions that a way of qualifying a call to say “call a member only” and/or “call a non-
member only” would be useful. Such a feature would do nothing but restrict the set of alternatives for
an individual call. Systematic use would be a matter for a coding guideline. Programmers would be
confused about what usage would be best and opinions would vary, leading to complaints and
confusion.

We already have qualification with a namespace name to direct a call into a specific interface.

12. Explicit qualification of classes
There were suggestions that a way of qualifying a class to say “if not found, look for a non-member
function” (the suggested uniform call semantics) and/or “if not found, do not look for a non-member
function” (the status quo semantics) would be useful.

This would do far more harm than good. When calling a class member or trying to extend an interface
with a helper function, the programmer would have to consider what kind of class was being used.
Different libraries would require different use and different techniques. This is against the fundamental
idea of uniform access. It is also against the idea that we should not have many distinct kinds of classes.

Also, we would need an equivalent way of annotating a set of overloaded functions with something
saying “if not found, look for a member function” (the suggested uniform call semantics) and/or “if not
found, do not look for a member function” (the status-quo semantics). I don’t know how to do that
effectively (where would you put such an annotation?).

Unified call concerns P0131R0 Stroustrup

14

13. What about ->?
There has been some discussion about the meaning of p->f(). This note is a clarification and a
documentation of what we decided in Lenexa.

• For p->f(): try p->f() and if it is not valid, try f(*p)
• For f(p): try f(p) and if that’s not valid, try p.f()

These are not new rules, they are simply consequences of the ancient C rule that p->f() is equivalent to
(*p).f(). This implies that when p is a pointer, p->f() can match a function taking a reference (e.g. void
f(X&)), rather than a pointer (e.g. void f(X*)), so that dereference happens in both cases. Conversely,
f(p) can match a member function for an object p rather than a pointer p, so that dereferencing
happens in neither case.

These rules apply to smart pointers as well as ordinary pointers.

Summary
Uniform call provides significant benefits (simplifications) to the programmer and the problems with
interface design conjectured are no worse than what we already manage quite well (section 6) and is
addressed by conventional use of namespaces (Section 5). Users of other languages with similar features
deem their versions of uniform call a valuable facility. Technical issues with lookup and their possible
resolution are discussed in section 7.

	Unified call syntax concerns
	Abstract
	1. Unified call syntax
	2. Benefits
	3. The fundamental problem
	4. The end of stable interfaces?
	5. Use of namespaces to improve interfaces
	6. Similar current problems
	6.1. C API
	Overloading
	6.2. Non-member functions
	6.3. Inheritance
	6.4. Nested namespaces

	7. Template lookup
	8. IDEs
	9. Warnings
	10. Implementation experience
	11. Explicit qualification of calls
	12. Explicit qualification of classes
	13. What about ->?
	Summary

