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std::synchronic<T> 

Atomic objects make it easy to write custom synchronization primitives with efficiency 
problems. One particularly thorny issue is the poor performance of the overall system when it is 
oversubscribed and/or contention is high.  Another is the high power consumed under 
contention, even when there is no oversubscription of the system. 

The central problem is the utilization of system resources by synchronizing threads, which is a 
balance between two conflicting realities that are equally important: 

 The focus of modern platform architecture is on lowering total energy use, and to do so 
for platform APIs originally designed for uniprocessor multi-tasking. 

 The focus of performance-critical software is on minimizing latency on the critical-path, 
especially on now-ubiquitous multiprocessor systems. 

There is yet no standard vocabulary to bridge these two realities. In spite of this, there is at 
least some native (different) support for efficient polling on every major platform, both 
software and hardware.  We now propose “synchronic” variables, a portable library abstraction 
to balance low-latency and low-energy synchronization. 

Good Spin Loops are Difficult to Write 

A bad spin loop is easy to write and performs well in a reasonably wide regime envelope – two 
facts that conspire to make them ubiquitous in practice.  What makes a bad spin loop ‘bad’ is 
that it does not behave gracefully in the face of long delays (causing high energy use) or under 
high degrees of contention (impeding progress on the critical path).  The polar opposite, a 
condition variable, behaves gracefully in all regimes but incur a high minimum cost in 
comparison. 

Simple synchronization algorithms follow one of these two curves with wide areas of resource 
waste between them: 

https://github.com/ogiroux/synchronic


   
Figure 1.  Synchronization algorithms have exponential overheads under contention  

but bad spin loops stand out as being exceptionally exponential. 

The following example outlines an implementation of the mutex concept dubbed Test-and-
Test-And-Set (TTAS), ubiquitously found on Internet forums and in production: 

struct ttas_mutex { 

    ttas_mutex() : locked(false) { } 

    void lock() { 

        while(1) { 

            bool state = false; 

            if(locked.compare_exchange_weak(state, true,  

                                            memory_order_acquire)) 

                break; 

            while(locked.load(memory_order_relaxed)==state) 

                ; //see below why this is emphasized 

        } 

    } 

    void unlock() { 

        locked.store(false, memory_order_release); 

    } 

    atomic<bool> locked; 

}; 

This algorithm’s nested loop reduces cache thrashing over an implementation without the loop, 
which improves its performance under contention. However, it fails to improve either the 
power consumption of the algorithm under delay or the performance when the system is 
oversubscribed. The reason for these issues is that the threads that issue the highlighted 
operations appear to make useful progress to the system’s arbiters. 

To achieve the desired operational profile, this example must be modified with a hybrid of 
these techniques: unmitigated spinning (shown), hardware thread yielding, randomized timed 
exponential back-off, and invocations of platform API’s like SYS_futex for minimum-energy 



waiting.  Implementations of std::mutex tend to do this correctly, but the technique is 
beyond most users. 

While we agree that users don’t need to re-implement std::mutex, they need to be able to 

implement their own (customized) primitives with efficiency comparable to std::mutex. 

Condition Variables Can Be Improved Upon 

When you want to block until something happens, then using condition variables seem like the 
primitive of choice. Unfortunately, that is usually a poor way to get the job done because, on 
average, condition variables incur one order-of-magnitude greater overhead than is achievable 
with hybrid methods. Even, those layered on condition variables themselves. 

  
Figure 2.  For the same job, it’s entirely feasible to  
outperform platform condition variables by 2-10x. 

The reasons for the poor performance are two-fold: 

1. Condition variable APIs require mutual-exclusion of execution, on the assumption that 
the condition predicate is not applied to an atomic object. 

2. Condition variables tend to be implemented with system calls, partly because of that 
mutual-exclusion requirement and partly because of implementation folklore. 

As a result, it takes significant effort and skill to leverage condition variables in a high-
performance contet.  In a reference implementation for this proposal, synchronic objects, the 
most complicated underlying algorithm is the one that is based on condition variables. This 
particular algorithm is a parade of anti-patterns: seq-locks, store-acquire and empty (but vital) 
critical sections that would upset anyone’s intuition. 

This is substantially the same wisdom captured in the saying “Futexes Are Tricky.” 

A simplifying abstraction 

http://dept-info.labri.fr/~denis/Enseignement/2008-IR/Articles/01-futex.pdf


We believe that synchronic objects make it easier to implement scalable and power-efficient 
synchronization on top of C++ atomic variables.  The simplest way to use synchronic objects is 
to express a synchronization value that is expected for continued progress, and notify when this 
value occurs.  

The interface for this purpose can be summarized as follows: 

    template <class T> 
    struct synchronic { 
         ... 
        void notify(std::atomic<T>& atom, T val) noexcept; 
        void expect(std::atomic<T> const& atom, T val) const; 
    }; 

Where it is specified that: 

 notify writes val into atom with memory_order_release. 

 expect blocks until a read of atom with memory_order_acquire returns val.  If 
expect blocks, it may avoid reading atom until the next invocation of notify by 
another thread associated with the same object atom. 

To illustrate how this is used, we show a partial implementation of the std::latch object in 
the concurrency TS (http://wg21.link/n4538): 

    class latch { 
      ... 
      void count_down_and_wait() { 
        if(count.fetch_add(-1,std::memory_order_acq_rel)!=1) 

          while(!released.load(std::memory_order_acquire)); 
          sync.expect(released, true); 
        else 

          released.store(true, std::memory_order_release); 
          sync.notify(released, true); 
      } 

      ... 
      atomic<int> count; 
      atomic<bool> released; 
      synchronic<bool> sync; 
    };  

http://wg21.link/n4538


 

Synchronic objects         [thread.synchronic] 

Synchronic objects provide efficient waiting operations for synchronization over simple atomic 
objects. A synchronic object encapsulates an algorithm for waiting and its associated 
acceleration data structures. 

Synchronic objects permit concurrent invocations of the notify, expect and 

expect_update member functions. 

Invocations of expect functions may block indefinitely unless a notify function is invoked 
by another thread for the object object.  Conversely, invocations of expect functions that 
return do not guarantee that a notify function has been invoked by any other thread 
because implementations may return whenever the condition is true. 

Invocations of the expect functions that are unblocked by the invocation of a notify 
function may re-evaluate the user-provided predicate and block again. If the value of the 
synchronic object is transient, threads may only unpredictably unblock. 

 [ Note: synchronic objects functions are susceptible to issues with transient 
values, also known as the ABA problem, resulting in continued blocking of threads 
that could potentially be unblocked.  Users of synchronic objects should ensure 
that either transient values do not occur or that the program does not depend on 
threads unblocking when transient values occur. – End Note. ] 

Synchronic object construction and destruction need not be synchronized. 

Header synchronic synopsis 

namespace std { 

  template <class T> struct synchronic; 

 

  enum notify_hint { notify_all, notify_one }; 

  enum expect_hint { expect_urgent, expect_delay }; 

} 

Class synchronic 

namespace std { 

  template <class T> 

  class synchronic { 

  public: 

    synchronic(); 

    ~synchronic(); 

    synchronic(const synchronic&) = delete; 

    synchronic& operator=(const synchronic&) = delete; 

    synchronic& operator=(const synchronic&) volatile = delete; 

 

    void notify(A& object, T value,  

                notify_hint hint = notify_all) noexcept; 

    void expect(A const& object, T desired,  

                expect_hint hint = expect_urgent) const noexcept; 

 

    void notify(A& object, F&& func, notify_hint hint = notify_all); 



    void expect(A const& object, F&& func,  

                expect_hint hint = expect_urgent) const; 

 

    void expect_update(A const& object, T current,  

                       expect_hint hint = expect_urgent) const noexcept; 

    void expect_update_for(A const & object, T current,  

                       chrono::duration<Rep, Period> const& rel_time, 

                       expect_hint hint = expect_urgent) const; 

    void expect_update_until(A const& object, T current,  

                       chrono::time_point<Clock,Duration> const& abs_time, 

                       expect_hint hint = expect_urgent) const; 

  } 

} 

In the following operation definitions: 

 an A refers to the corresponding atomic type. 

 an F refers to a callable type. 

synchronic(); 

Effects: Constructs an object of type synchronic<T>. 

Throws: system_error when an exception is required (30.2.2). 

Error conditions: 

- resource_unavailable_try_again – if some non-memory resource 

limitation prevents initialization. 

~synchronic(); 

Requires: There shall be no threads blocked on *this.  [ Note: synchronic objects 
can be destroyed if all threads blocked on an object have been notified. – end note ] 

Effects: Destroys the object. 

void notify(A& object, T value,  

    notify_hint hint = notify_all) noexcept; 

void notify(A& object, F&& func,  

    notify_hint hint = notify_all); 

Requires: the object func is callable with the signature void().  

Effects:  

o invokes func or object.store(value, memory_order_release). 

o if hint is notify_one and any threads are blocked waiting for object, 

unblocks one of those threads. 

o if hint is notify_all, unblocks all threads that are blocked waiting for 

object.  



Synchronization: each invocation of notify synchronizes-with invocations of expect 
that unblock as a result. 

void expect(A const& object, T desired,  

    expect_hint hint = expect_urgent) const noexcept; 

void expect(A const& object, F&& pred,  

    expect_hint hint = expect_urgent) const; 

void expect_update(A const& object, T current,  

    expect_hint hint = expect_urgent) const noexcept; 

void expect_update_for(A const & object, T current,  

    chrono::duration<Rep, Period> const& abs_time,  

    expect_hint hint = expect_urgent) const; 

void expect_update_until(A const& object, T current,  

    chrono::time_point<Clock,Duration> const& rel_time,  

    expect_hint hint = expect_urgent) const; 

Requires: the object pred is callable with the signature bool(). 

Effects:  

o invokes pred or object.load(memory_order_acquire). 

o blocks the thread until the predicate pred is true, or the value of object is 

either equal to desired or not equal to current, or the absolute time-out 

specified by abs_time expires, or the relative time-out specified by 

rel_time expires, or spuriously if a timed function is used. 

Remarks: the value of hint has no effect. 

Throws: Timeout-related exceptions (30.2.4). 

 


