
1 
 

Project:   Programming Language C++, Library Evolution Working Group 

Document number: P0123R0 

Date:   2015-09-25 

Reply-to:  Neil MacIntosh neilmac@microsoft.com 

 

Unifying the interfaces of string_view and 
array_view 
 

Contents 
Introduction .................................................................................................................................................. 2 

Motivation and Scope ................................................................................................................................... 2 

Impact on the Standard ................................................................................................................................ 2 

Design Decisions ........................................................................................................................................... 2 

basic_string_view as a type alias .............................................................................................................. 2 

Removing string-specific member functions ............................................................................................ 3 

Zero termination ....................................................................................................................................... 3 

Character traits ......................................................................................................................................... 3 

Static and dynamic lengths ....................................................................................................................... 3 

Supporting both mutable and const forms ............................................................................................... 3 

Convenience aliases .................................................................................................................................. 4 

Specification .................................................................................................................................................. 4 

Acknowledgements ....................................................................................................................................... 5 

References .................................................................................................................................................... 5 

 

  

mailto:neilmac@microsoft.com


2 
 

 

 

Introduction 
This paper presents a design for basic_string_view (similar to that proposed in N3762 [1]) that would 

have an interface consistent with the array_view type described in P0122 [2]. Doing so improves the 

generality of the basic_string_view type and allows it to offer bounds-safety guarantees like array_view.  

It is worth noting that the basic_string_view type presented here directly depends upon the array_view 

proposed in P0122.  

Motivation and Scope 
basic_string_view is a “vocabulary type” that is proposed for inclusion in the standard library. It can be 

widely used in C++ programs, as a replacement for passing const basic_string objects or zero-terminated 

character arrays. This basic_string_view design supports high performance and bounds-safe access to 

contiguous sequences of characters. This type would also improve modularity, composability, and reuse 

by decoupling accesses to string data from the specific container types used to store that data.  

It is desirable that the interface offered by basic_string_view is harmonized with array_view, given the 

similarity between the purposes and functionality of the two types. This has the positive benefit of also 

reducing the number of interfaces that need to be learned by C++ programmers who want to perform 

bounds-safe, high-performance access to sequences – whether they are sequences of characters, or 

objects. 

Impact on the Standard 
basic_string_view is a pure library extension. It does not require any changes to standard classes, 

functions or headers. Nor does it require any changes or extensions to the core language. 

However, it can be imagined that some standard library functions and classes might benefit from 

adopting overloads for this new types, if it is adopted.  

basic_string_view as presented here has been implemented in standard C++ and successfully used 

within at least one commercial codebase. An open source reference implementation is available at 

https://github.com/Microsoft/GSL [3]. 

Design Decisions 

basic_string_view as a type alias 
A string is simply a contiguous sequence of characters. An array_view is a vocabulary type that 

encapsulates access to a contiguous sequence of objects. For simplicity, basic_string_view should simply 

be a type alias for array_view. Specifically of the form: 

template<class CharT, size_t Extent = dynamic_range> 

using basic_basic_string_view = array_view<CharT, Extent>; 

 

https://github.com/Microsoft/GSL


3 
 

This design decision allows code that deals with contiguous sequences to look and behave uniformly 

(whether they are of elements or characters). It also reduces the “API” surface that a C++ programmer 

must learn and remembered for users of basic_string_view and array_view. 

The design keeps the interface of basic_string_view interface as simple as possible. This, in turn, makes 

the requirement on containers that it can be a view over as simple as possible. The proposed type-alias 

form of basic_string_view can be used over a wide variety of string containers - such as CString, const 

char*, BSTR, QString or any of the other myriad of string types that are commonly used in C++ today – 

with minimal adaptation effort. That capacity – to decouple functions from the details of the string type 

being used – is a significant benefit that basic_string_view can bring to C++ programmers. 

Removing string-specific member functions 
The approach of using a type alias to array_view removes the opportunity for basic_string_view to have 

a range of string-specific functions. Instead, string-specific functionality can be offered as free functions. 

This design follows the general approach of the standard library, which is to separate algorithms such as 

find_first() from the containers or views they operate over, by making them free functions. The lack of 

member functions also makes it clearer to users of string_view parameters or variables that they cannot 

assume they are operating over a basic_string. basic_string_view is a type that decouples users from the 

details of underlying string container types.  

Zero termination 
basic_string_view is completely agnostic of zero-termination requirements/promises in the string data it 

contains. Again, this allows maximum flexibility for usage. 

A free function is provided for creating a string_view with a measured length from zero-terminated 

strings: ensure_z(). Using this function for initialization from string literals is zero-overhead, but makes 

the intent of a programmer clearer in the source code. For other variables, it will have the same runtime 

overhead as a strlen() (or equivalent operation). 

Character traits 
Although this proposal does not include character traits support in the proposed definition of 

basic_string_view, it is not prejudiced against such inclusion. It would certainly be possible to add an 

additional template parameter to the type alias if free functions that wanted to operate over 

basic_string_view would find a character traits template type argument helpful. 

Static and dynamic lengths  
By adopting the type-alias design, basic_string_view objects are capable of being declared as either 

having a static-size (fixed at compile-time) or dynamic-size (provided at runtime). Conversions between 

the two varieties are allowed with limitations to ensure bounds-safety is always preserved. Fixed-size 

basic_string_view can be implemented with no size overhead when compared to passing a single 

pointer. 

Supporting both mutable and const forms 
basic_string_view as a type-alias can also support either read-only or mutable access to the sequence it 

encapsulates. To access read-only data, the user can declare a basic_string_view<const char> (for 

example), and access to mutable data would use a basic_string_view<char>. While it is acknowledged 



4 
 

that the majority of basic_string_view usage would tend to be for read-only access, it is clearly useful to 

have mutable access to an existing string (particularly one of fixed-size). 

Convenience aliases 
There are a number of “convenience” aliases for the various combinations of character types and 

constness that are commonly useful with basic_string_view: 

template<size_t Extent = dynamic_range> 

using string_view = basic_string_view<char, Extent>; 

 

template<size_t Extent = dynamic_range> 
using cstring_view = basic_string_view<const char, Extent>; 

 

template<size_t Extent = dynamic_range> 

using wstring_view = basic_string_view<wchar_t, Extent>; 

 

template<size_t Extent = dynamic_range> 

using cwstring_view = basic_string_view<const wchar_t, Extent>; 

 

Specification 
template<class CharT, size_t Extent = dynamic_range> 

using basic_basic_string_view = array_view<CharT, Extent>; 
 

template<size_t Extent = dynamic_range> 

using string_view = basic_string_view<char, Extent>; 

 

template<size_t Extent = dynamic_range> 

using cstring_view = basic_string_view<const char, Extent>; 

 

template<size_t Extent = dynamic_range> 

using wstring_view = basic_string_view<wchar_t, Extent>; 

 

template<size_t Extent = dynamic_range> 
using cwstring_view = basic_string_view<const wchar_t, Extent>; 

 

// 

// ensure_z - creates a string_view for a zero-terminated character array. 

// Will fail fast if a null-terminator cannot be found before 

// the limit of size_type. 
// 

template<class T> 

basic_string_view<T, dynamic_range> ensure_z(T* const & sz, size_t max = 

std::numeric_limits<size_t>::max()); 

 



5 
 

template<class T, size_t N> 

basic_string_view<T, dynamic_range> ensure_z(T(&sz)[N]); 

 

template<class Cont> 

basic_string_view<typename std::remove_pointer<typename Cont::pointer>::type, 

dynamic_range> ensure_z(Cont& cont); 
 

// 

// to_string() allows explicit conversions from string_view to string 

// 

template<class CharT, size_t Extent> 

std::basic_string<typename std::remove_const<CharT>::type> to_string(const 

basic_string_view<CharT, Extent>& view); 

 

Acknowledgements 
This version of string_view was designed to support the C++ Core Coding Guidelines [4] and as such, the 

current version reflects the input of Herb Sutter, Jim Springfield, Gabriel Dos Reis, Chris Hawblitzel, Gor 

Nishanov, and Dave Sielaff. Łukasz Mendakiewicz, Bjarne Stroustrup, Eric Niebler and Artur Laksberg 

provided helpful review of this version of string_view during its development. 

Many thanks to Gabriel Dos Reis for review of this document during its initial development. 

References 
[1] J. Yasskin, "string_view: a non-owning reference to a string, revision 5” 09 January 2013. [Online]. 

Available: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3762.html  

[2] N. MacIntosh, "array_view: bounds-safe views for sequences of Objects” 25 September 2015.  

[3] string_view reference implementation: https://github.com/Microsoft/GSL 

 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3762.html
https://github.com/Microsoft/GSL

