
Overload sets as function arguments

Andrew Sutton <asutton@uakron.edu>
Date: 2015-09-25
Document number: P0019R0

Introduction

Suppose I have a generic algorithm that transforms a sequence of values by
some function f. I want to write it like this:

template<typename I>
void apply_f(I first, I last)
{

transform(first, last, f);
}

Unfortunately, this doesn’t work if f names overloaded function or a function
template. That’s too bad because is the clearest possible expression of my
intent, and because it happens to work when f names a single function (of the
appropriate type).
Instead, I need to use a lambda algorithm with a concrete argument in order to
get the compiler to select an appropriate overload of f.

template<typename I>
void apply_f(I first, I last)
{

transform(first, last, [](auto const& x) { return f(x); }
}

This works, but it’s not as clear and concise as it could be. I would much prefer
to write the former.
This paper proposes the use of overload sets as function arguments and variable
initializers. In addition to the use of functions above, we would also like to use
operator names as well. For example, I want to call sort like this:

sort(first, last, operator>);

And I should be able to define function objects using the same technique:

auto gt = operator>;

This feature can be provided without introducing runtime overhead.

1



How it works

The mechanism that makes this language feature work is to synthesize a lambda
expression whenever an overload set is named. In this example:

template<typename I>
void apply_f(I first, I last)
{

transform(first, last, f);
}

The id-expression f (assuming it names an overload set) would correspond to
the following lambda expression:

[](auto&& x) -> auto&& { return f(std::forward<decltype(x)>(x)); };

Similarly, the use of operator>, either as an argument or as the initializer of a
variable would correspond to this lambda expression:

[](auto&& a, auto&& b) ->auto&& {
return std::forward<decltype(a)>(b) > std::forward<decltype(b)>(b);

};

Note that this transformation described below doesn’t work for unary operators.
We would need a mechanism to select between a unary and binary operator
when the lambda is instantiated. For such operators, we could synthesize a
polymorphic function object:

struct polymprhic_lambda
{

template<typename T>
T&& operator()(T&& x) const
{

return op std::forward<T>(x);
}

template<typename T, typename U>
T&& operator()(T&& a, U&& b) const
{

return std::forward<T>(a) op std:forward<U>(b);
}

}

Here op stands for the unary/binary operator.

2



Proposed wording

14.8.2.1 Deducing template arguments from a function call
[temp.deduct.call]

Editor’s note: We want to synthesize a lambda expression from an id-expression
in a very narrow set of cases. In particular, we must be performing deduction of
an id-expression that names an overload set against an unadorned type template
parameter or placeholder type (i.e., a plain T) and not, for example, a type of
the form R(*)(Args...). Otherwise, these rules would conflict with paragraph
6. Add the following after paragraphs at the end of this section.

If P has type T where T is a type template parameter and A is an id-expression
that names a set of overloaded functions, deduction is performed against the
expression defined by the following rules.

• If A is an unqualified identifier f, that expression is the lambda-expression:

[](auto&&... args)
{

return f(std::forward<decltype(args)>(args)...);
}

• If A is the qualified identifier N::f, that expression is the lambda-expression:

[](auto&&... args)
{

return N::f(std::forward<decltype(args)>(args)...);
}

• However, if E is an unqualified operator-function-id, of the form operator@,
the lambda closure type depends on the operator:

– If the operator-function-id is (), that expression is the lambda-
expression
[](auto&& a, auto...&& args)
{

return std::forward<decltype(a)>(a)(std::forward<decltype(args)>(args)...);
}

– Otherwise, if the operator is one of [], that expression is the lambda-
expression
[](auto&& a, auto&& b)
{

return std::forward<decltype(a)>(a)[std::forward<decltype(b)>(b)];
}

3



– Otherwise, if the operator is one of +, -, *, or &, that expression is
a prvalue object of unique, unnamed, non-union class type that is
equivalent to
struct closure_type
{

template<typename T>
T&& operator()(T&& x) const
{

return @ std::forward<T>(x);
}

template<typename T, typename U>
T&& operator()(T&& a, U&& b) const
{

return std::forward<T>(a) @ std::forward<U>(b);
}

}

– Otherwise, that expression is the lambda-expression
[](auto&& a, auto&& b)
{

return std::forward<decltype(a)>(a) @ std::forward<decltype(b)>(b);
}

• Otherwise, the program is ill-formed.

Issues

• The proposal is missing synthesis rules for pre/post-increment and decre-
ment.

• The wording does not currently allow for qualified operator names.
• The current proposal does not support for conversion-ids or
• The language mechanism requires the use of a library function. It would

be better if there there were a term form “the forwarded expression”, or
possibly language support to simplify forwarding (e.g., fwdexpr(e)).

Implementation experience

I started an implementation of this feature in GCC last year, but didn’t finish
it — not even close. Effectively, the implementation is capable of recognizing
when to synthesize the lambda expression from an id-expression, but not actually
synthesizing the lambda expression.

4



Related work

N3617 describes “lifting expressions”, which satisfy many of the same aims of this
proposal. However, it requires the lambda-introducer before the id-expression.
This extra annotation seems unnecessary to me.

N3617 goes further and suggests that we allow projection functions like this:

struct user
{

int id;
std::string name;

};

vector<user> users{ {4, "A"}, {1, "B"}, {3, "C"}, {0, "D"}, {2, "E"} };
sort(users.begin(), users.end(), ordered_by([]id));

I think that the current trend is that this problem be solved in the library and
not in the language. For example, the sort function could be extended to allow
the following:

sort(users.begin(), users.end(), &user::id);

I believe this would have the same effect as example given above, although it’s
not clear what ordered_by should actually do or how id resolves to the member
variable.

N3701 made brief mention of this feature, more or less in the form that it is
presented here. This paper incorporates the rules from N3617 for forming lambda
expressions from operators.

Acknowledgments

Thanks to Florian Weber for his comments and corrections on an early draft of
this document.

5

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3617.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3701.htm

	Overload sets as function arguments
	Introduction
	How it works
	Proposed wording
	14.8.2.1 Deducing template arguments from a function call [temp.deduct.call]

	Issues
	Implementation experience
	Related work
	Acknowledgments


