
Function Aliases + Extended Inheritance = Opaque Typedefs

Document #: WG21/P0109R0
Date: 2015-09-25
Revises: N3741, N3515
Project: JTC1.22.32 Programming Language C++: EWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 Background 1
2 Motivation 2
3 Desiderata 4
4 Implicit type adjustment 5
5 Prior art 5
6 A hypothetical opaque alias syntax 7
7 The return type issue 7
8 Opaque class types 9

9 Opaque template aliases 10
10 Introducing function aliases 11
11 Extended inheritance 12
12 Summary and conclusion 12
13 Acknowledgments 12
14 Bibliography 12
15 Revision history 13

The doctor should be opaque to his patients and, like a mirror,
should show them nothing but what is shown to him.

— SIGMUND (né SIGISMUND) FREUD

Abstract

This paper proposes two core language additions to C++: (a) function aliases and (b) extended
inheritance. While individually useful, the combination of these two features provides the func-
tionality of an opaque typedef , a feature that has long been requested for C++.

1 Background

Although this paper is self-contained, it logically follows our discussion, begun several years ago in
N1706 and continued in N1891, of a feature oft-requested for C++: an opaque typedef , sometimes
termed a strong typedef .1 The earlier of those works was presented to WG21 on 2004-10-20
during the Redmond meeting, and the later work was presented during the Berlin meeting on
2005-04-06. Both presentations resulted in very strong encouragement to continue development
of such a language feature.2 Alas, the press of other obligations did not permit us to resume our
explorations until 2013.

With C++11 as a basis, those resumed explorations were published as N3515 and N3741.
Where our earlier thinking and nomenclature seemed still valid, we repeated and amplified our
earlier exposition; where we had new insights, we followed our revised thinking and presented for

Copyright c© 2015 by Walter E. Brown. All rights reserved.
1“I am not inventing a need for strong typedefs. We already have such a need. As evidenced by people constantly

asking for them” — Nicol Bolas, ”Re: [std-proposals] Thoughts on N4542 std::variant,” 2015-09-22.
2A later paper by Alisdair Meredith, N2141, very briefly explored the use of forwarding constructors as an implemen-

tation technique to achieve a strong typedef, and listed several “Issues still to be addressed.”

1

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
mailto:webrown.cpp@gmail.com
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1891.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2141.pdf

2 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

EWG discussion a high-level proposal for a C++1Y language feature to be known as an opaque
alias.3 Those papers were presented to and discussed by EWG at the Chicago meeting on 2013-
09-26.4 This presentation again resulted in strong encouragement to continue this feature’s
development. Taking EWG’s guidance into account, the present paper recapitulates and augments
those earlier explorations. New in this revision are:

• an updated title that is more descriptive of our current thinking,

• this expanded Introduction,

• discussion (in §5) of additional prior art that attempted to address the fundamental issues
under discussion,

• revisions and expansions to treat the requested feature as akin to inheritance5 rather than
as akin to aliasing,

• a proposal (§10) for a general C++ function alias language feature that appears useful in its
own right and that also appears useful as a strategy for declaring trampolines (defined in §7
below), and

• a proposal (§11) for an extension of traditional inheritance to allow native object types to
serve as base classes.

2 Motivation

It is a very common programming practice to use one data type directly as an implementation
technique for another. This is facilitated by the traditional typedef facility: it permits a program-
mer to provide an application-specific synonym or alias for the existing type that is being used as
the underlying implementation. In the standard library, for example, size_t is a useful alias for
a native unsigned integer type; this provides a convenient and portable means for user programs
to make use of an implementation-selected type that may vary across platforms.

We characterize the classical typedef (even if expressed as a C++11 alias-declaration) as a
transparent type facility: Such a declaration introduces a new type name, but not a new type.6

In particular, variables declared to have the newly-introduced alias type can just as easily be
variables declared to have the aliased type, and vice versa, with not the slightest change in
behavior.

This de facto type identity can have significant drawbacks in some scenarios. In particular,
because the types are freely interchangeable (implicitly mutually substitutable), functions may
be applied to arguments of either type even where it is conceptually inappropriate to do so. The
following very modest C++11 examples provide a framework to illustrate such generally undesirable
behavior:

1 using score = unsigned;
2 score penalize(score n) { return n > 5u ? n - 5u : score{0u}; }

4 using serial_number = unsigned;
5 serial_number next_id(serial_number n) { return n + 1u; }

3Citations that look [like.this] refer to subclauses of C++ draft N4527. We will generally omit cross-references from
quoted text.

4The notes of that discussion are available at http://wiki.edg.com/twiki/bin/view/Wg21chicago2013/
EvolutionWorkingGroup.

5“I disagree that it’s an alias. It’s definitely not a synonym. I can see this as a different sort of inheritance, but not an
alias or a typedef. . . . [H]ow is it not inheritance? It feels very much like inheritance.” — David Vandevoorde, during the
Chicago review, ibid.

6“A typedef-name is thus a synonym for another type. A typedef-name does not introduce a new type A typedef-
name can also be introduced by an alias-declaration. . . . It has the same semantics as if it were introduced by the
typedef specifier. In particular, it does not define a new type. . . ” ([dcl.typedef]/1–2).

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://wiki.edg.com/twiki/bin/view/Wg21chicago2013/EvolutionWorkingGroup
http://wiki.edg.com/twiki/bin/view/Wg21chicago2013/EvolutionWorkingGroup

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 3

The new aliases make clear the intent: to penalize a given score and to ask for the next_id
following a given serial_number. However, the use of type aliases in the above code have made it
possible, without compiler complaint, to penalize a serial_number, as well as to ask for the
next_id of a score. One could equally easily penalize an ordinary unsigned, or ask for its
next_id, since all three apparent types (unsigned, next_id, and serial_number) are really
only three names for a single type. Therefore, they are all freely interchangeable: an instance of
any one of these can be deliberately or accidentally substituted for an instance of either of the
other types.

As a result, the programmer’s intentions are unenforceable. As pointed out in a WG21 reflector
message, “The typedef problem is one that we know badly bites us ever so often . . . vis-a-vis
overloading.”7 We see the results of such type confusion among even moderately experienced
users of the standard library.

For example, each container template provides a number of associated types such as iterator
and sizetype. In some library implementations, iterator is merely an alias for an underlying
pointer type. While this is, of course, a conforming technique, we have all too often seen
programmers treating iterators as interchangeable with pointers. With their then-current
compiler and library version, their code “works” because the iterator is implemented via a
typedef to pointer. However, their code later breaks because an updated or replacement library
uses some sort of struct as its iterator implementation, a choice generally incompatible with
the user’s now-hardcoded pointer type.

Even when there is no type confusion, a classical typedef can still permit inapplicable functions
to be called. For example, it probably is reasonable to add two scores, to double a score, or to
take the ratio (quotient) of two scores. However, it seems meaningless to allow the product of two
scores,8 yet nothing in the classical typedef interface could prevent such multiplication.

A final example comes from application domains that require representation of coordinate
systems. Three-dimensional rectangular coordinates are composed of three values, not logically
interchangeable, yet each aliased to double and so substitutable without compiler complaint.
Worse, applications may need such rectangular coordinates to coexist with spherical and/or
cylindrical coordinates, each composed of three values each of which is commonly aliased to
double and so indistinguishable from each other. As shown in the example below, such a large
number of substitutable types effectively serves to defeat the type system: an ordinary double is
substitutable for any component of any of the three coordinate systems, permitting, for example,
a double intended to denote an angle to be used in place of a double intended to denote a radius.

1 typedef double X, Y, Z; // Cartesian 3D coordinate types
2 typedef double Rho, Theta, Phi; // spherical 3D coordinate types

4 class PhysicsVector {
5 public:
6 PhysicsVector(X, Y, Z);
7 PhysicsVector(Rho, Theta, Phi);
8 · · ·
9 }; // PhysicsVector

If the above typedefs were opaque rather than traditional, we would expect a compiler to
diagnose calls that accidentally provided coordinates in an unsupported order, in an unknown
coordinate system, or in an unsupported mixture of coordinate systems. While this could be

7Gabriel Dos Reis, WG21 reflector message c++std-sci-52, 2013-01-10. Lightly reformatted.
8The pattern in this example follows that of the customary rules of commensuration as summarized in The Interna-

tional System of Units (SI). Per SI, for example, two lengths can be summed to produce another length, but the product
of two lengths produces a length-squared (i.e., an area), not a length. Applying this principle to our score example, the
product of two scores should yield a score-squared. In the absence of such a type, the operation should be disallowed.

http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf

4 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

accomplished by inventing classes for each of the coordinates, this seems a fairly heavy burden.
The above code, for example, would require six near-identical classes, each wrapping a single
value9 in the same way, differing only by name.

3 Desiderata

From extended conversations with numerous prospective users, including WG21 members, we
have distilled the key characteristics that should distinguish between a classical typedef and what
we will term an opaque alias feature.

In brief, the principal utility of an opaque alias is to define a new type that is distinct from and
distinguishable from its underlying type, yet retaining layout compatibility10 with its underlying
type. The intent is to allow a programmer to control:

1. substitutability of an opaque alias for its underlying type, and
2. overloading (including operator overloading) based on any parameter whose type is or

otherwise involves an opaque alias.

Unlike the traditional relationship of a derived class to its underlying base class, we desire that
both class and (perhaps especially) non-class types be usable as underlying types in an opaque
alias.

Some consequences and clarifications, in no particular order:

• is_same<opaque-type,underlying-type>::value == false.
• typeid(opaque-type) != typeid(underlying-type).
• sizeof(opaque-type) == sizeof(underlying-type).
• For each primary or composite type trait11 is_x, is_x<opaque-type>::value == is_x<under-

lying-type>::value.
• Consistent with restrictions imposed on analogous relationships such as base classes

underlying derived classes and integer types underlying enums, an underlying type should
be (1) complete and (2) not cv-qualified. We also do not require that any enum type, reference
type, array type, function type, or pointer-to-member type be allowed as an underlying type.

• Overload resolution should follow existing language rules, with the clarification that a
parameter of an opaque type is a better match for an argument of an opaque type than is a
parameter of its underlying type.

• Mutual substitutability should be always permitted by explicit request, using either construc-
tor notation or a suitable cast notation, e.g., reinterpret_cast. Such a type adjustment
conversion between an opaque type and its underlying type (in either direction) is expected
to have no run-time cost.12

• A type adjustment conversion should never cast away constness.
• Pointers/references to an opaque type are to be explicitly convertible, via a type adjustment,

to pointers/references to the underlying type, and conversely. This may imply that an
underlying type should be considered reference-related13 to its opaque type, and conversely,

• A template instantiation based on an opaque type as the template argument is distinct from
an instantiation based on the underlying type as the argument. No relationship between
such instantiations is induced; in particular, neither is an opaque type for the other.

9A typical C++11 implementation of std::duration<> exemplifies a family of such wrappers around a single value.
10Specified in [basic.types]/11, [dcl.enum]/8, and [class.mem]/16–17.
11These traits are defined in [meta.unary.cat] and [meta.unary.comp], respectively.
12“No temporary is created, no copy is made, and constructors . . . or conversion functions . . . are not called”

[expr.reinterpret.cast]/11.
13Specified in [dcl.init.ref]/4.

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 5

4 Implicit type adjustment

We have found it both convenient and useful, when defining certain kinds of opaque types, to
allow that type to model the is-a relationship with its underlying type in the same way that public
inheritance models it with its base class. Therefore, in addition to the explicit substitutability
described in the previous section, we propose controlled implicit unidirectional substitutability.

When permitted by the programmer, an instance of the opaque type can be implicitly used as
an instance of its underlying type.14 Such implicit type adjustment is expected to have the same
run-time cost (i.e., none) as the explicit type adjustment that is always permitted.

We have found three levels of implicit type adjustment permissions to suffice, and propose to
identify them via the conventional access-specifiers:

• private: permits no implicit type adjustment.

• public: modelling is-a, permits implicit type adjustment everywhere.

• protected: modelling is-implemented-as, permits implicit type adjustment only as part of
the opaque type’s definition.

Even if modelling is-a, an opaque alias induces no inheritance relationship. In particular, is_
base_of<opaque-type,underlying-type>::value and is_base_of<underlying-type,opaque-type>
::value are each false. Classes marked final can thus serve as underlying types.

5 Prior art

We have become aware of several attempts to provide our desired feature via a C++ library. As
described below, these efforts are remarkably similar in their goals, their implementation tech-
niques, and their perceived weaknesses. This list is intended to be indicative, not comprehensive;
we are aware of additional attempts that share essential characteristics with one or more of the
following.

Boost. A macro implementing a kind of opaque alias has been distributed for over a decade
as part of the Boost serialization library by Robert Ramey. Internal documentation summarizes
its behavior as “BOOST_STRONG_TYPEDEF(T,D) creates a new type named D that operates as a
type T.”15 Using this paper’s nomenclature, we would say that D denotes an opaque type whose
underlying type is denoted by T.

The macro’s code is relatively short and straightforward. In essence, it creates a class named
for the opaque type, wrapping an instance of the underlying type and providing a fixed set of basic
functionality for construction, copying, conversion, and comparison. There is no mechanism for
adjusting this set of operations.

With the benefit of considerable hindsight, Ramey has posted an evaluation of his experience
in creating and using the macro. He writes in significant part:16

Here’s the case with BOOST_STRONG_TYPEDEF. I have a "special" kind of integer. For
example a class version number. This is a number well modeled by an integer. But I
want to maintain it as a separate type so that overload resolution and specialization
can depend on the type. I needed this in a number of instances and so rather than re-
implementing it every time I made BOOST_STRONG_TYPEDEF. This leveraged on another

14Implicit type adjustment in the other direction is never permitted, so some degree of opacity will always be present.
15In header boost/strong_typedef.hpp, c© 2002 by Robert Ramey.
16Robert Ramey: “[std-proposals] Re: Any plans for strong typedef.” . 2013-01-11 Lightly reformatted and with some

typos corrected.

6 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

boost library which implemented all the arithmetic operations so I could derive from
this. So it was only a few lines of macro code and imported all the "numeric" capabilities
via inheritance. Just perfect.
But in time I came to appreciate that the things I was using it for weren’t really normal
numbers. It makes sense to increment a class version number — but it doesn’t make
any sense to multiply two class version numbers. Does it make sense to automatically
convert a class version number to an unsigned int? Hmmmm — it seemed like a
good idea at the time, but it introduced some very sticky errors in the binary archive.
So I realized that what I really needed was more specific control over the numeric
operations rather than just inheriting the whole set for integers. So I evolved away from
BOOST_STRONG_TYPEDEF.
No question that BOOST_STRONG_TYPEDEF has value and is useful. But it’s also not the
whole story. It’s more of a stepping stone along the way to more perfect code.

true_typedef. In 2003, Matthew Wilson published an article describing true_typedef, “A
template wrapper that provides type uniqueness for otherwise synonymous types” [Wil03]. He
summarizes the problem being addressed:

One of the few legitimate criticisms of C++ is the fact that typedefs are always weak.
One can define two types from the same base type and, without constraint (or even a
compiler warning!), mix these types. Not only can this lead to problems in erroneous
assignment of one type to another, or between a typedef and its base type, but it also
precludes the use of overloaded functions based on such types.

The current version of the code is available at http://www.stlsoft.org/. While a template rather
than a macro, code inspection reveals that, like the Boost library described above, this project
also creates a class named for the opaque type, wrapping an instance of the underlying type and
providing a fixed set of functionality. While the set seems considerably larger than that provided
by Boost, there is again no mechanism for adjusting this set of operations.

“strong typedef for integer/floating point types.” In a brief blog post, Akira Takahashi
presents class templates tagged_real and tagged_int as his solution to the need for opaque
aliases when the underlying type is an arithmetic type [Tak12]. Each template again wraps
an underlying type, with yet another fixed set of functionality. Template instantiations are
distinguished via the use of a tag type.

DESALT_NEWTYPE. Finally, DESALT_NEWTYPE, by Oyama Koichi, seems to be the most
recent library attempt that features a macro-based approach to opaque aliases.17 Unfortunately,
internal documentation indicates that the library is incomplete and we are informed that the
project has been abandoned due to lack of motivation.18 However, in two private emails, a transla-
tor has communicated Koichi’s thoughts as to the project’s scope and remaining weaknesses:19

Suppose, there are string objects of plain text and encrypted text. I don’t want to mix
up these objects. I want to make these mixed up code into an error at compile time. So
I wanted a different type with same interfaces and behaviors. But it’s tedious to wrap
original type and write forwarding functions for all members.
So, initially, I wrote some simple thing that does “derive by private and offers all base
class members as derived class’s public member”. But when I wrote that, I realized it’s

17See header newtype.cpp at https://github.com/dechimal/desalt as of 2013-09-07.
18Ryoe Ezoe: “Prior art of N3741 opaque alias” (personal correspondence), 2013-09-07.
19Ryoe Ezoe: “Re: Prior art of N3741 opaque alias” (personal correspondence), 2013-09-07 and 2013-09-08. Trans-

lation of private remarks by Oyama Koichi. Lightly reformatted and with some errors corrected. Italized remarks were
inserted by the translator.

http://www.stlsoft.org/
https://github.com/dechimal/desalt

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 7

incomplete for member functions which have original type as a parameter or return
type, or non-member functions which is associated to the original type by ADL.
So my code got additional features like automatically wrapping the parameters and
return types he means defining the forwarding function that replace the occurrence of
original type in parameter and return type by new type, or forwarding by explicitly
specifying the signature. But even if it automatically wraps std::vector<int>, it
doesn’t take care of std::vector<int>::iterator, so in reality, it’s still inconvenient.

It is a serious flaw that it can’t automatically take care of the container’s member
function which takes iterator as an argument. As I wrote earlier, it makes it hard to
create a new type like encrypted_string from std::string.

6 A hypothetical opaque alias syntax

For the sake of discussion, let us assume an opaque alias facility via the following variation of
alias-declaration syntax:

1 using identifier = access-specifier type-id opaque-definition

Much like a classical typedef, such a declaration introduces a new name (the identifier) for an
opaque type that implicitly shares the definition of the underlying type named by the type-id.
Thus, every opaque alias constitutes a definition; there are no forward declarations of an opaque
type. However, as illustrated below, we will allow an opaque type to serve as the underlying type
in a subsequent opaque alias.

Note that the access-specifier is not optional. We make this recommendation because (1) none
of the access-specifiers is an obvious default and (2) the presence of an access-specifier serves as
a syntactic marker to distinguish an opaque alias from a traditional type alias.

The opaque-definition syntax will be clarified via the examples in subsequent sections.

7 The return type issue

Consider the following near-trivial example, sufficient to illustrate what we refer to as the return
type issue:

1 using opaq = public int;
2 opaq o1 = 16;
3 auto o2 = +o1; // what’s the type of o2?

As the comment indicates, the issue is to decide the type of the variable o2 at line 3.

Since we have not (yet) provided any functions with opaq parameters, we appeal to the
substitutability (type adjustment) property described above and find a built-in function,20 declared
for overload resolution purposes as int operator+(int). This is the function to call in evaluating
the example’s initializer expression. Accordingly, the expression’s result type is int, leading to
variable o2 being deduced as int.

But this is probably not the intended outcome, and certainly not an expected outcome. After
all, unary operator+ is in essence an identity operation; it certainly seems jarring that it should
suddenly produce a result whose type is different from that of its operand.

This issue has been one of the consistent stumbling blocks in the design of an opaque typedef
facility. In particular, we have come to realize that no single approach to the return type issue will
consistently meet expectations under all circumstances:

20Specified in [over.built]/9.

8 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

• Sometimes the underlying-type is the desired return type.
• Sometimes the opaque-type is the desired return type.
• Sometimes a distinct third type, as declared in the underlying function, is the desired return

type.
• Occasionally, a fourth type, distinct from the above three, is the desired return type.
• Indeed, sometimes the operation should be disallowed, and so there is no correct return type

at all.

Thus, we must allow a programmer to exercise control over the return type. Further, by analogous
reasoning, we must allow a programmer to exercise control over the parameters’ types.21

Returning to our example, what can a programmer do to obtain the expected result type
of opaq instead of the underlying int type? Since we allow overloading on opaque types, the
programmer can introduce a forwarding function into the example:22

1 using opaq = public int {
2 opaq operator+(opaq o) { return opaq{ +int{o} }; }
3 };
4 opaq o1 = 16;
5 auto o2 = +o1; // type of o2 is now opaq

As shown above, the purpose of such a forwarding function (which we will term a trampoline
in this context) is to adjust the type(s) of the argument(s) prior to calling the underlying type’s
version of the same function, and to adjust the type of the result when that call returns.

While it is a common pattern for the trampoline’s return type to be the opaque type, we note
that this need not hold in general. A trampoline can easily use the result of the underlying
function call to produce a value of any type to which it is convertible. Indeed, under certain
common circumstances, calls to trampolines can be elided by the compiler.

Each of the trampolines we have written during our explorations follows a common pattern,
namely:

• Adjust the type or otherwise convert the opaque-type argument(s) to have the underlying
type, and analogously for arguments whose types involve the opaque type.

• Then call the corresponding underlying function,23 passing the adjusted argument(s).
• Finally, adjust the type or otherwise convert that call’s result to a corresponding value of the

specified result type.

Because of its frequency, we propose a shorthand to ease programmer burden in producing such
trampolines: a function taking one or more parameters of an opaque type may be defined via
= default, thereby instructing the compiler to generate the boilerplate forwarding code for us.
Moreover, as suggested above, we expect a compiler to take advantage of its aliasing knowledge to
elide the trampoline in all such cases, instead calling the corresponding underlying function and
type-adjusting the return type as specified.24

As a final convenience to the programmer, we propose that the compiler be always permitted to
generate constructors and assignment operators for copying and moving whenever the underlying
type supports such functionality and the programmer has not provided his own versions. Should
the programmer wish the opaque type to be not copyable, he can define his own version with
= delete. The programmer can similarly define a trampoline with = delete whenever a particular
combination of parameter types ought be disallowed.

21Such granularity becomes especially important when there are at least two parameters, and (as in the earlier example
of score multiplication) not all combinations of {opaque-type, underlying-type} are to be supported as parameter types.

22We use constructor syntax for brevity, but reinterpret_cast would seem more descriptive of the actual effects.
23If there is no corresponding underlying function to be called, the program is of course ill-formed.
24When such elision takes place, the address of the trampoline (if taken) would be the same as the address of the

underlying function.

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 9

The following example employs many of these proposed features:

1 using energy = protected double {
2 energy operator+ (energy , energy) = default;
3 energy& operator*=(energy&, double) = default;
4 energy operator* (energy , energy) = delete;
5 energy operator* (energy , double) = default;
6 energy operator* (double , energy) = default;
7 };

9 energy e{1.23}; // okay; explicit
10 double d{e}; // okay; explicit
11 d = e; // error; protected disallows implicit type adjustment here

13 e = e + e; // okay; sum has type energy
14 e = e * e; // error; call to deleted function
15 e *= 2.71828; // okay

17 using thermal = public energy;
18 using kinetic = public energy;

20 thermal t{· · ·}; kinetic k{· · ·};
21 e = t; e = k; // both okay; public allows type adjustment
22 t = e; t = k; // both in error; the adjustment is only unidirectional

24 t = t + t; k = k + k; // okay; see next section
25 e = t + k; // okay; calls the underlying trampoline

8 Opaque class types

We described and illustrated above how to address the return type issue for free functions.
When the underlying type is a class, we additionally consider the analogous issue for member
functions.25 It seems clear that each accessible member function ought have a corresponding
trampoline as a member of the opaque type. Since all member functions of the underlying type
are known to the compiler, we can take advantage of this and therefore propose that the compiler,
by default, generate default versions of these trampolines.26

Each such default-generated member trampoline will:

• Adjust the type of each argument of opaque type, including the invoking object, to the
underlying type, and analogously for arguments whose types involve the opaque type.

• Then call the underlying type’s corresponding member function, passing the type-adjusted
argument(s).

• Finally, if the underlying function’s return type is the underlying type, adjust the call’s result
so as to have the opaque type; otherwise return the call’s result unchanged.

This behavior means that the type of each default-generated member trampoline is isomorphic to
that of the corresponding underlying member function, with each occurrence of the underlying
type replaced by the opaque type. In case this is not what is wanted, the programmer may

25Trampolines for non-member functions can continue to be handled as described in the previous section.
26This behavior is also possible for an opaque type whose underlying type is itself an opaque type because all the

underlying type’s trampolines are known. Such circumstances give rise to default-generated trampolines that forward to
other trampolines, with transitive elision encouraged where feasible.

10 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

(as always) write his own member trampoline, thereby inhibiting the default generation of that
trampoline and of any overloads of that trampoline. We propose the following syntax:

1 using opaque-type = access-specifier underlying-class {
2 desired-member-trampoline-signature = default;
3 friend desired-nonmember-trampoline-signature = default;
4 };

A member trampoline may not be thusly defined unless it has an accessible corresponding under-
lying member function. Two or more distinct trampolines may forward to the same underlying
function. If the = default behavior is not what is desired, the programmer may instead supply
(a) a brace-enclosed body27 or (b) an = delete definition.

As is the case for non-member trampolines, each member trampoline is treated as an overload
of the underlying function to which it forwards.

If an opaque type has an underlying type that directly inherits from a base class, we pro-
pose that is_base_of<base-type,opaque-type>::value be true. Note that, as proposed earlier,
is_base_of<opaque-type,underlying-type>::value remains false. The effects of dynamic dis-
patch involving an opaque type are as yet unclear.

9 Opaque template aliases

There is no conceptual problem in extending opaque aliases in the direction of a C++11 alias-
template.28 Here is our example from an earlier section, rewritten in template form:

1 template <class T = double>
2 using energy = protected double {
3 energy operator+ (energy , energy) = default;
4 energy& operator*=(energy&, T) = default;
5 energy operator* (energy , energy) = delete;
6 energy operator* (energy , T) = default;
7 energy operator* (T , energy) = default;
8 };

10 energy<> e{1.23}; // okay; explicit
11 double d{e}; // okay; explicit
12 d = e; // error; protected disallows implicit type adjustment here

14 e = e + e; // okay; sum has type energy<>
15 e = e * e; // error; call to deleted function
16 e *= 2.71828; // okay

18 template <class T = double> using thermal = public energy<T>;
19 template <class T = double> using kinetic = public energy<T>;

21 thermal<> t{· · ·}; kinetic<> k{· · ·};
22 e = t; e = k; // both okay; public allows type adjustment
23 t = e; t = k; // both in error; the adjustment is only unidirectional

25 t = t + t; k = k + k; // okay; each calls a default-generated trampoline
26 e = t + k; // okay; calls the underlying trampoline

27For example, such type adjustments as std::shared_pointer<opaque-type> to or from std::shared_
pointer<underlying-type> are likely more complicated than a compiler should be asked to handle via = default.

28Specified in [temp.alias].

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 11

10 Introducing function aliases

Following the precedent set by namespace aliases and type aliases, we propose to introduce a
function alias to C++.

The idea behind a function alias is far from new. Stroustrup described it in his D&E book [Str94,
§12.8, pp. 273-5] as a “renaming” feature in the context of resolving name clashes due to multiple
inheritance: “The semantics of this concept are simple, and the implementation is trivial; the
problem seems to be to find a suitable syntax.” He states that such a proposal “was presented
at the standards meeting in Seattle in 1990” and that, although there was initially “a massive
majority,” the feature was ultimately not adopted: “At the next meeting, . . . we agreed that such
name clashes were unlikely to be common enough to warrant a separate language feature.”

We agree with Stroustrup’s conclusion: “Synonyms can be useful and occasionally essential.
However, their use should be minimized to maintain clarity and commonality of code used in
different contexts.” We now (re)raise the proposal29 because, in addition to the above name clash
issue, we have found at least two other use cases for such a feature.

Our first additional use case arises from algorthms that “have two versions: one that takes
a function object of type Compare and one that uses an operator<” [alg.sorting]/1. Via use of
a function alias and other modern C++ features, we believe we can and should unify these two
versions. The following example illustrates the basic idea:

1 template< class RA, class R = std::less<> >
2 void
3 sort(RA b, RA const e, R lt = {})
4 {
5 using operator<() = lt; // operator < has type R
6 // Remaining code in this scope uses infix < in place of calls to lt().
7 // (A future proposal may suggest synthesis of other relational
8 // operators from an operator< declared in this fashion.)
9 }

More important to this paper’s goals, however, is that function aliases present a viable
mechanism for specifying the trampolines as defined in §7. This would make it clear that aliasing
is involved, rather than any artificial forwarding function initially suggested above.

Syntactically, we propose that a function alias nominally consist of a using keyword followed
by a function-definition [dcl.fct.def.general]/1 in which the function-body consists of an equal sign
followed by a (possibly qualified) function name and a terminating semicolon. Optionally, the
declarator may consist solely of a declarator-id, in which case the associated return type and
parameters shall implicitly be those of the function-body. We also envision a possible additional
shorter form, for programmer convenience, that takes advantage of implicit type adjustment such
as that permitted by public inheritance.

Semantically, we propose that the usual name lookup rules apply to each call of a function
alias. If lookup finds a funcion alias, a second lookup, this time of the aliased function, is carried
out. Modulo overload resolution (whose rules need to be adjusted slightly to take this new alias
into account), the program is ill-formed if (a) this second lookup is unsuccessful, (b) any argument
can not be treated as being of the corresponding parameter type in the aliased function, or (c) the
aliased function’s return type can not be treated as being of the return type declared in the alias.
Of course, further lookups would be required if the aliased function were itself discovered to be
another alias.

29Anyone who has copies of the relevant 1990-vintage committee papers is requested to share them with the author.

12 P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs

It is an open question whether we wish to permit a free function to alias a member function, or
conversely.

11 Extended inheritance

As Stroustrup wrote, “In the absence of virtual functions, a user could use objects of a derived
class and treat base classes as implementation details” [Str94, §2.9.1, p. 49]. This is precisely
the situation giving rise to the common request for an opaque typedef . The only part that seems
to be missing is the ability to inherit from a native object type, e.g., from an int. During the
Chicago review, Stroustrup commented, “ I’ve used inheritance to fake this, which I can’t do . . .
for integers for historical reasons, but one way to look at it would be ‘what would you get if we
allowed inheritance from int’?”

We believe that this capability has been lacking because it has not been clear how to provide
operations on such a derived type. Function aliases as proposed above seem to fill that role, and
therefore we propose an extension to the rules of inheritance such that any native object type
(not an array, not cv-qualified) can serve as a base class. Such a derived class needs no member
functions, but does need trampoline-like capability; we believe that function aliases as proposed
above can serve that role.

12 Summary and conclusion

This paper has outlined a new solution to accommodate the long-standing desire for opaque types
in C++. We have identified a number of desiderata and fundamental properties of such a feature,
and provided realistic examples of its application.

We believe the proposed language extensions to be viable new tools, complementing traditional
type and other aliases, that allow programmers to address practical problems. We invite feedback
from WG21 participants and other knowledgeable parties. We especially invite implementors to
collaborate with us in order to experiment and gain experience with these proposed new language
features.

13 Acknowledgments

Many thanks to all readers of early drafts of this paper for numerous helpful discussions and
insightful reviews of this work and its predecessors.

14 Bibliography

[N1706] Brown, Walter E.: “Toward Opaque typedefs in C++0X.” ISO/IEC JTC1/SC22/WG21
document N1706 (pre-Redmond mailing), 2004-09-10. Online: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf.

[N1891] Brown, Walter E.: “Progress toward Opaque typedefs for C++0X.” ISO/IEC
JTC1/SC22/WG21 document N1891 (post-Tremblant mailing), 2005-10-18. Online:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1891.pdf.

[N2141] Meredith, Alisdair: “Strong Typedefs in C++09 (Revisited).” ISO/IEC JTC1/SC22/WG21
document N2141 (post-Portland mailing), 2006-11-06. Online: http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2006/n2141.html.

[N3515] Brown, Walter E.: “Toward Opaque Typedefs for C++1Y.” ISO/IEC JTC1/SC22/WG21
document N3515 (mid Portland/Bristol mailing), 2013-01-11. Online: http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1706.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1891.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2141.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2141.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf

P0109R0: Function Aliases + Extended Inheritance = Opaque Typedefs 13

[N3741] Brown, Walter E.: “Toward Opaque Typedefs for C++1Y, v2.” ISO/IEC JTC1/SC22/WG21
document N3741 (pre-Chicago mailing), 2013-05-16. Online: http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2013/n3741.pdf.

[N4527] Smith, Richard: “Working Draft, Standard for Programming Language C++.” ISO/IEC
JTC1/SC22/WG21 document N4521 (post-Lenexa mailing), 2015-05-22. Online: http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf.

[SI] Bureau International des Poids et Mesures: “The International System of Units (SI).” 8th
edition, 2006. Online: http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf.
Also available in French.

[Str94] Stroustrup, Bjarne: The design and evolution of C++. Addison-Wesley, 1994. ISBN: 0-
201-54330-3.

[Tak12] Takahashi, Akira: “strong typedef for integer/floating point types.” In Japanese C++
Programmers Activity, 2012-11-27. Online: http://cppjp.blogspot.com/2012/11/strong-
typedef-for-integerfloating.html.

[Wil03] Wilson, Matthew: “True typedefs.” Dr. Dobb’s, 2013-05-16. Online: http://www.drdobbs.
com/true-typedefs/184401633.

15 Revision history

Version Date Changes

1 2013-01-11 • Published as N3515.

2 2013-08-30 • Fixed copy/paste errors in example code. • Added bullet and footnote re type
traits (§3). • Tweaked formatting, punctuation, and grammar. • Published as N3741.

3 2015-09-25 • Retitled to reflect latest thoughts. • Updated the introduction (§1). • Discussed
Wilson’s, Takahashi’s, and Koichi’s projects (§5). • New: Abstract, §10, and §11. • Nu-
merous editorial tweaks. • Published as P0109R0.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4527.pdf
http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
http://cppjp.blogspot.com/2012/11/strong-typedef-for-integerfloating.html
http://cppjp.blogspot.com/2012/11/strong-typedef-for-integerfloating.html
http://www.drdobbs.com/true-typedefs/184401633
http://www.drdobbs.com/true-typedefs/184401633
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3515.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3741.pdf

	Title
	Contents
	Abstract
	1 Background
	2 Motivation
	3 Desiderata
	4 Implicit type adjustment
	5 Prior art
	6 A hypothetical opaque alias syntax
	7 The return type issue
	8 Opaque class types
	9 Opaque template aliases
	10 Introducing function aliases
	11 Extended inheritance
	12 Summary and conclusion
	13 Acknowledgments
	14 Bibliography
	15 Revision history

