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Related Documents 

This proposal addresses the following open issues in LEWG status: 

839. Maps and sets missing splice operation 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#839 

1041. Add associative/unordered container functions that allow to extract elements 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3518.html#1041 

Changes in Revision 3 

 Added the mapped and value accessor functions and the empty state test function. 

 Removed the operator* and operator-> accessor functions. 

 Added an example of changing the key of a map element. 

 Changed the name of the node handle type from node_ptr to node_handle, removed 
its characterization as a smart pointer, and stressed that it is move-only. 

 Fixed several issues in the formal wording, including adding noexcept in several places. 

 Changed typedefs to alias declarations. 

 Improved wording about invalidation of references and pointers per CWG suggestion. 

 Added wording to specify that the container’s comparator is used by merge. 

 Strengthened the wording of the pair specialization restriction. 

 Added feature test macro. 

Changes in Revision 2 

 Added the key accessor function. 

 Added a discussion of concerns raised by previous versions. 

 Fixed several problems with the proposed wording. 

 Improved the organization overall, and improved the narrative in several places. 
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The Problem 

Node-based containers are excellent for creating collections of large or unmovable objects. 
Maps in particular provide a great way to create database-like tables where objects may be 
looked up by ID and used in various ways. Since the memory allocations are stable, once you 
build a map you can take references to its elements and count on them to remain valid as long 
as the map exists.  

The emplace functions were designed precisely to facilitate this pattern by eliminating the need 
for a copy or a move when creating elements in a map (or any other container). When using a 
list, map or set, we can construct objects, look them up, use them, and eventually discard them, 
all without ever having to copy or move them (or construct them more than once). This is very 
useful if the objects are expensive to copy, or have construction/destruction side effects (such 
as in the classic RAII pattern). 

No splice for old maps 

But what happens when we want to take some elements from one table and move them to 
another? If we were using a list, this would be easy: we would use splice. Splice allows logical 
manipulation of the list without copying or moving the nodes—only the pointers are changed. 
But lists are not a good choice to represent tables, and there is no splice for maps. 

What about move? 

Don’t move semantics basically solve all these problems? Unfortunately they don’t. Move is 
very effective for small collections of objects which are indirectly large; that is, which own 
resources that are expensive to copy. But if the object itself is large, or has some limitation on 
construction (as in the RAII case), then move does not help at all. And “large” in this context 
may not be very big. A 256 byte object may not seem large until you have several million of 
them and start comparing the copy times of 256 bytes to the 16 bytes or so of a pointer swap. 

But even if the mapped type itself is very small, an int for example, the heap allocations and 
deallocations required to insert a new node and erase an old one are very expensive compared 
to swapping pointers. When there are large numbers of objects to move around, this overhead 
can be very significant. 

And you can't move the key 

Yet another problem is that the key type of maps is const. You can’t move out of it at all. This 
alone was enough of a problem to motivate Issue 1041. We believe that the const key is a basic 
design flaw in the original map specification which we now have no way to fix because the 
value type is exposed directly by the API. We feel the solution we are proposing is the best 
possible given the need to preserve the current container design. 

Does anyone care? 

Yes! We know of several instances (at CppCon, on Stack Overflow, etc.) where people have 
asked for functionality that we are proposing and the current Library cannot provide. We 
believe that real people working on real problems very much need and want this functionality. 
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History 

Talbot's original idea for solving this issue was to add splice-like members to associative 
containers that took the source container and iterators, and dealt with the splice action under 
the hood. This would have solved the splice problem, but offered no further advantages. 

In Issue 1041, Alisdair Meredith suggested that we need a way to move an element out of a 
container with a combined move/erase operation. This solves another piece of the problem, 
but does not help if move is not helpful, and does not address the allocation issue. 

Hinnant then suggested that there should be a way to actually remove the node and hold it 
outside the container. This solves all of the problems, and it is this design that we are 
proposing. However, although it works fine, it introduces a theoretical problem because it 
requires casting the const key to a non-const key, which invokes undefined behavior. 

Wakely then proposed a refinement that we believe will help make the solution acceptable to 
the Committee and library vendors. 

The Solution 

Can you really splice a map? 

It turns out that what we need is not actually a splice in the sense of list::splice. Because ele-
ments must be inserted into their correct positions, a splice-like operation for associative con-
tainers must remove the element from the source and insert it into the destination, both of 
which are non-trivial operations. Although these will have the same complexity as a conven-
tional insert and erase, the actual cost will typically be much less since the objects do not need 
to be copied nor the nodes reallocated. 

Overview 

This design allows splicing operations of all kinds, moving elements (including map keys) out of 
the container, and a number of other useful operations and designs. It is an enhancement to 
the associative and unordered associative containers to support the manipulation of nodes. 
This is a pure addition to the Standard Library. 

Extract 

The key to the design is a new function extract which unlinks the selected node from the con-
tainer (performing the same balancing actions as erase). The extract function has the same 
overloads as the single parameter erase function: one that takes an iterator and one that takes 
a key type. They return an implementation-defined type which we refer to as the node handle. 
The node handle can be thought of as a special type of container which holds the node while in 
transit. Note that extracting a node naturally invalidates all iterators to it (since it is no longer 
an element of the container). Extracting a node from a map of any type invalidates pointers and 
references to it; this does not occur for sets. 

Node Handle 

The node handle is a move-only type that holds and provides access to the element (the 
value_type) stored in the node, and provides non-const access to the key part of the element 
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(the key_type) and the mapped part of the element (the mapped_type). If the node handle 
is allowed to destruct while holding the node, the node is properly destructed using the 
appropriate allocator for the container. The node handle contains a copy of the container’s 
allocator. This is necessary so that the node handle can outlive the container. The container has 
a type alias for the node handle type (node_type). 

The node handle type will be independent of the Compare, Hash or Pred template parameters, 
but will depend on the Allocator parameter. This allows a node to be transferred from 
set<T,C1,A> to set<T,C2,A> (for example), but not from set<T,C,A1> to set<T,C,A2>. 
Even though the allocator types are the same, the container’s allocator must also test equal to 
the node handle’s allocator or the behavior of node handle insert is undefined. 

Insert 

There is also a new overload of insert that takes a node handle and inserts the node directly, 
without copying or moving it. For the unique containers, it returns a struct which contains the 
same information as the pair<iterator, bool> returned by the value insert, and also has a 
member which is a (typically empty) node handle which will preserve the node in the event that 
the insertion fails: 
 

struct insert_return { 

 iterator position; 

 bool inserted; 

 node_type node; 

}; 

(We examined several other possibilities for this return type and decided that this was the best 
of the available options.) For the multi containers, the node handle insert returns an iterator to 
the newly inserted node. 

Inserting a node into a map of any type invalidates all pointers and references to it; this does 
not occur for sets. 

Merge 

There is also a merge operation which takes a non-const reference to the container type and 
attempts to insert each node in the source container. Merging a container will remove from the 
source all the elements that can be inserted successfully, and (for containers where the insert 
may fail) leave the remaining elements in the source. This is very important—none of the 
operations we propose ever lose elements. (What to do with the leftovers is left up to the 
user.) The insertions are done using the comparator of the destination (the container on which 
merge is called), as with any other insertion. 

This operation is worth a dedicated function because although it is possible to write fairly 
efficient client code that does the same thing, it is not quite trivial to do so in the case of the 
unique containers. (See the Inserting an entire set example below for details.) Furthermore, in 
some cases the merge operation does not need to balance the source container until the merge 
is complete. 
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Exception safety 

If the container’s Compare function is no-throw (which is very common), then removing a node, 
modifying it, and inserting it is no-throw unless modifying the value throws. And if modifying 
the value does throw, it does so outside of the containers involved. 

If the Compare function does throw, insert will not yet have moved its node handle argument, 
so the node will still be owned by the argument and will remain available to the caller. 

Concerns 

Several concerns have been raised about this design. We will address them here. 

Undefined behavior 

The most difficult part of this proposal from a theoretical perspective is the fact that the 
extracted element retains its const key type. This prevents moving out of it or changing it. To 
solve this, we have provided the key accessor function, which provides non-const access to the 
key in the element held by the node handle. This function requires implementation "magic" to 
ensure that it works correctly in the presence of compiler optimizations. One way to do this is 
with a union of pair<const key_type, mapped_type> and pair<key_type, 

mapped_type>. 

We do not feel that this poses any technical or philosophical problem. One of the reasons the 
Standard Library exists is to write non-portable and magical code that the client can’t write in 
portable C++ (e.g. <atomic>, <typeinfo>, <type_traits>, etc.). This is just another such example. 
All that is required of compiler vendors to implement this magic is that they not exploit 
undefined behavior in unions for optimization purposes—and currently compilers already 
promise this (to the extent that it is being taken advantage of here). 

This does impose a restriction on the client that, if these functions are used, std::pair cannot be 
specialized such that pair<const key_type, mapped_type> has a different layout than 
pair<key_type, mapped_type>. We feel the likelihood of anyone actually wanting to do 
this is effectively zero, and in the formal wording we restrict any specialization of these pairs. 

Note that the key member function is the only place where such tricks are necessary, and that 
no changes to the containers or pair are required. 

Limitations on implementation 

Matt Austern, Chandler Carruth and others have expressed concern that this change limits the 
implementation options for the associative containers. But these limits already exist. §23.2.4 
Associative containers [associative.reqmts] ¶9, and §23.2.5 Unordered associative containers 
[unord.req] ¶14, effectively require implementations to use node-based designs. So while non-
node-based implementations are valid and useful, the Committee has not chosen to 
standardize such implementations, so we can rely on node-based containers. 
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Allocator considerations 

All allocation is done by the container. The node handle preserves the allocator type and state 
to ensure that nodes are not exchanged between allocator-incompatible containers, and to 
ensure that destruction of the element, should the need arise, is done by the correct allocator. 

Implementation experience 

Hinnant has implemented almost all of this design and feels there is also a great deal of 
implementation and positive field experience in this area. We believe this is strong evidence 
that it is implementable and practical. 

Examples 

Moving elements from one map to another 
 

map<int, string> src {{1,”one”}, {2,”two”}, {3,”buckle my shoe”}}; 

map<int, string> dst {{3,”three”}}; 

 

dst.insert(src.extract(src.find(1))); // Iterator version. 

dst.insert(src.extract(2));   // Key type version. 

auto r = dst.insert(src.extract(3)); // Key type version. 

 

// src == {} 

// dst == {“one”, “two”, “three”} 

// r.position == dst.begin() + 2 

// r.inserted == false 

// r.node == “buckle my shoe” 

We have moved elements of src into dst without any heap allocation or deallocation, and 
without constructing, destroying or losing any elements. The third insert failed, returning the 
usual insert return values and the orphaned node. 

Inserting an entire set 
 

set<int> src{1, 3, 5}; 

set<int> dst{2, 4, 5}; 

 

dst.merge(src); // Merge src into dst. 

 

// src == {5} 

// dst == {1, 2, 3, 4, 5} 

Here is what you would have to do to get the same functionality with similar efficiency: 
 

for (auto i = src.begin(); i != src.end();) 

{ 

 auto p = dst.equal_range(*i); 

 if (p.first == p.second) 

  dst.insert(p.first, src.extract(i++)); 

 else 

  ++i; 

} 
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However, this user code could lose nodes if the comparator throws during insert. The merge 
operation does not need to do the second comparison and can be made exception-safe. 

Surviving the death of the container 

The node handle does not depend on the allocator instance in the container, so it is self-
contained and can outlive the container. This makes possible things like very efficient factories 
for elements: 
 

auto new_record() 

{ 

 table_type table; 

 table.emplace(...); // Create a record with some parameters. 

 return table.extract(table.begin()); 

} 

 

table.insert(new_record()); 

Moving an object out of a set 

Today we can put move-only types into a set using emplace, but in general we cannot move 
them back out. The extract function lets us do that: 
 

set<move_only_type> s; 

s.emplace(...); 

move_only_type mot = move(s.extract(s.begin()).value()); 

Failing to find an element to remove 

What happens if we call the value version of extract and the value is not found? 
 

set<int> src{1, 3, 5}; 

set<int> dst; 

 

dst.insert(src.extract(1)); 

dst.insert(src.extract(2)); // Returns {src.end(), false, node_type()}. 

 

// src == {3, 5} 

// dst == {1} 

This is well defined. The extract failed to find 2 and returned an empty node handle, which 
insert then trivially failed to insert. 

If extract is called on a multi container, and there is more than one element that matches the 
argument, the first matching element is removed. 
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Changing the key of a map element 

This is a very useful operation that is not possible today without deleting the element and 
constructing a new one. While doing this with a node handle does require the insertion and 
tree balancing overhead, it does not cause any memory allocation or deallocation. 
 

map<int, string> m{{1,”mango”}, {2,”papaya”}, {3,”guava”}}; 

 

auto nh = m.extract(2); 

nh.key() = 4; 

m.insert(move(nh)); 

 

// m == {{1,”mango”}, {3,”guava”}, {4,”papaya”}} 
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Proposed Wording 

Add a new section to clause 20 [utilities] 

20.X Node handle [associative.node] 

20.X.1 Class node overview [associative.node.overview] 

1 A node handle is an object that accepts ownership of a node from an associative container. It may 

be used to transfer that ownership to another container of a sufficiently similar type. 

2 It is a move-only type associated with the container's value_type and allocator_type. It is 

independent of the container's Compare template parameter (for the associative containers) and 

Hash and Pred template parameters (for the unordered associative containers). 

3 Class node_handle is for exposition only. An implementation is permitted to provide 

equivalent functionality without providing a class with this name. 

4 If a user-defined specialization of std::pair exists for pair<const Key, T> or 

pair<Key, T>, where Key is the container’s key_type and T is the container’s 

mapped_type, the behavior of operations involving node handles is undefined. 
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class node_handle 

{ 

 using container  = unspecified; 

public: 

   using value_type = container::value_type; 

   using key_type  = container::key_type; 

   using mapped_type = container::mapped_type; // Not present for set containers 

   using allocator_type = container::allocator_type; 

 

private: 

   unspecified   container_node_type; // Exposition only 

   container_node_type*  ptr_;    // Exposition only 

   allocator_type   alloc_;   // Exposition only 

public: 

   constexpr node_handle() noexcept; 

   constexpr node_handle(nullptr_t) noexcept : node_handle() { } 

   ~node_handle(); 

 

   node_handle(node_handle&& np) noexcept; 

   node_handle& operator=(node_handle&& p) noexcept; 

   node_handle& operator=(nullptr_t) noexcept; 

 

 value_type& value() const noexcept; 

 key_type& key() const noexcept; 

 mapped_type& mapped() const noexcept; // Not present for set containers 

 

   allocator_type get_allocator() const noexcept; 

   explicit operator bool() const noexcept; 

   bool empty() const noexcept; 

   void swap(node_handle&) 

 noexcept(allocator_traits<allocator_type>::propagate_on_container_swap::value || 

            allocator_traits<allocator_type>::is_always_equal::value); 

 

}; 

 

void swap(node_handle& x, node_handle& y) noexcept(noexcept(x.swap(y))); 

 

bool operator==(const node_handle& x, nullptr_t) noexcept; 

 

bool operator!=(const node_handle& x, nullptr_t) noexcept; 

 

bool operator==(nullptr_t, const node_handle& y) noexcept; 

 

bool operator!=(nullptr_t, const node_handle& y) noexcept; 
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20.X.2 node_handle constructors, copy, and assignment [associative.node.cons] 
 

constexpr node_handle() noexcept; 

 

 Effects:  Constructs a node_handle object that owns nothing. 

   Postconditions: static_cast<bool>(*this) == false. 
               get_allocator() == allocator_type(). 

 

node_handle(node_handle&& np) noexcept; 

 

   Effects:  Constructs a node_handle object initializing ptr_ with np.ptr_. 

          Move constructs alloc_ with np.alloc_. Sets np.ptr_ to nullptr. 
 

node_handle& operator=(node_handle&& p) noexcept; 

 

   Requires:  Either 
 allocator_traits<allocator_type>::propagate_on_container_move_assignment 

   is true, or alloc_ == p.alloc_. 
  

   Effects: If ptr_ != nullptr, destroys the value_type in the 

   container_node_type pointed to by ptr_ by calling 

 allocator_traits<allocator_type>::destroy, then deallocates ptr_ by calling 

 allocator_traits<allocator_type>::deallocate, and then assigns p.ptr_ to ptr_. If 

   allocator_traits<allocator_type>::propagate_on_container_move_assignment is 

   true, move assigns p.alloc_ to alloc_. Assigns nullptr to p.ptr_. 
 

   Returns: *this. 
 

node_handle& operator=(nullptr_t) noexcept; 

 

   Effects:  If ptr_ != nullptr, destroys the value_type in the 

   container_node_type pointed to by ptr_ by calling 
 allocator_traits<allocator_type>::destroy, 

   then deallocates ptr_ by calling allocator_traits<allocator_type>::deallocate, 

 and then sets ptr_ to nullptr. 
 

   Returns: *this. 

20.X.3 node_handle destructor [associative.node.dtor] 
 

~node_handle(); 

 

   Effects:  If ptr_ != nullptr, destroys the value_type in the 

   container_node_type pointed to by ptr_ by calling 

 allocator_traits<allocator_type>::destroy, then deallocates ptr_ 

 by calling allocator_traits<allocator_type>::deallocate. 
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20.X.4 node_handle observers [associative.node.observers] 
 

value_type& value() const noexcept; 

 

   Requires: empty() == false. 

   Returns: A reference to the value_type in the container_node_type.  
 

key_type& key() const noexcept; 

 

   Requires: empty() == false. 

   Returns: A non-const reference to the key_type member of the value_type in the 
container_node_type. 

 

mapped_type& mapped() const noexcept; 

 

   Requires: empty() == false. 

   Returns: A reference to the mapped_type member of the value_type in the 
container_node_type. 

 

allocator_type get_allocator() const noexcept; 

 

 Returns: alloc_. 
 

explicit operator bool() const noexcept; 

 

Returns: ptr_ != nullptr. 
 

bool empty() const noexcept; 

 

Returns: ptr_ == nullptr. 

20.X.5 node_handle modifiers [associative.node.modifiers] 
 

void swap(node_handle& p) 

  noexcept(allocator_traits<allocator_type>::propagate_on_container_swap::value || 

           allocator_traits<allocator_type>::is_always_equal::value); 

 

Requires:  If allocator_traits<allocator_type>::propagate_on_container_swap is false, 

then alloc_ == p.alloc_. 
 

   Effects:  Calls swap(ptr_, p.ptr_). If  

   allocator_traits<allocator_type>::propagate_on_container_swap is true calls 

   swap(alloc_, p.alloc_). 

20.X.6 node_handle non-member functions [associative.node.nonmember] 
 

void swap(node_handle& x, node_handle& y) noexcept(noexcept(x.swap(y))); 

 

Effects: Equivalent to x.swap(y). 
 

bool operator==(const node_handle& x, nullptr_t) noexcept; 

 

Returns: x.empty(). 
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bool operator!=(const node_handle& x, nullptr_t) noexcept; 

 

   Returns: !(x == nullptr). 
 

bool operator==(nullptr_t, const node_handle& y) noexcept; 

 

Returns: y.empty(). 
 

bool operator!=(nullptr_t, const node_handle& y) noexcept; 

 

   Returns: !(nullptr == y). 
 

23.2.4 Associative containers [associative.reqmts] 

In ¶ 8: change “a denotes a value of X,” to “a and s denote values of X,”. 

Add to ¶ 9: 

For set and multiset, the extract members invalidate only iterators to the removed element; 

references and pointers to the removed element remain valid. For map and multimap, the 

extract members invalidate iterators, references and pointers to the removed element, and the 

insert members that take a node_handle invalidate references and pointers to the inserted 

element. 

Add to table 101:  

Expression 
X::node_type 

Return type 
unspecified node_handle class. 

Assertion/note/pre-/post-condition 
see 20.X. 

Complexity  

compile time 

Expression 
X::insert_return_type 

Return type 

A MoveConstructible, MoveAssignable, DefaultConstructible class type used to describe the 

results of inserting a node_handle, including at least the following fields: 
  bool inserted; 

  X::iterator position; 

  X::node_type node; 

Assertion/note/pre-/post-condition 

For an attempt to insert an empty node_handle, inserted is false, position is end(), and node is 

empty. If insertion took place, inserted is true, position points to the inserted element, and node is 

empty. If insertion failed, inserted is false, node owns the node previously owned by np, and position 

points to an element with an equivalent key to *node. 
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Complexity  

compile time 

Expression 
a_uniq.insert(np) 

Return type 
X::insert_return_type   

Assertion/note/pre-/post-condition 

Precondition: a_uniq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect. Otherwise, inserts *np if and only if there is no element in the container 

with key equivalent to the key of *np. Postcondition: np is empty. 

Complexity  

logarithmic 

Expression 
a_eq.insert(np) 

Return type 
iterator   

Assertion/note/pre-/post-condition 

Precondition: a_eq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts *np and returns the iterator 

pointing to the newly inserted element. If a range containing elements equivalent to *np exists in a_eq, *np 

is inserted at the end of that range. 

Postcondition: np is empty. 

Complexity 

logarithmic 

Expression 
a.insert(p, np) 

Return type 
iterator   

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts *np if and only if there is no 

element with key equivalent to the key of *np in containers with unique keys; always inserts *np in containers 

with equivalent keys. Always returns the iterator pointing to the element with key equivalent to the key of *np. 

*np is inserted as close as possible to the position just prior to p. Postcondition: np is empty. 

Complexity 

Logarithmic in general, but amortized constant if *np is inserted right before p. 

Expression 
a.extract(k) 
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Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the first element in the container with key equivalent to k. Returns a node_handle owning the element 

if found, otherwise an empty node_handle. 

Complexity 
log(a.size()) 

Expression 
a.extract(q) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the element pointed to by q. Returns a node_handle owning the element at q. 

Complexity 

Amortized constant 

Expression 
a.merge(s) 

Return type 
void 

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == s.get_allocator(). 

Attempts to extract each element in s and insert it into a using the comparison type of a. In containers with 

unique keys, if there is an element in a with a key equivalent to the key of an element from s, then that element is 

not extracted from s. Pointers and references to the moved elements of s now refer to those same elements but as 

members of a. Iterators referring to the moved elements will continue to refer to their elements, but they now 

behave as iterators into a, not into s. 

Complexity  

N log(a.size() + N) (N has the value s.size()) 

 

23.2.5 Unordered associative containers [unord.req] 

In ¶ 11: change “a is an object of type X,” to “a and s are objects of type X,”. 

Add to ¶ 14: 

For unordered_set and unordered_multiset, the extract members invalidate only 

iterators to the removed element; references and pointers to the removed element remain valid. 

For unordered_map and unordered_multimap, the extract members invalidate iterators, 

references and pointers to the removed element, and the insert members that take a 

node_handle invalidate references and pointers to the inserted element. 
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Add to table 102: 

Expression 
X::node_type 

Return type 
unspecified node_handle class. 

Assertion/note/pre-/post-condition 
see 20.X. 

Complexity  

compile time 

Expression 
X::insert_return_type 

Return type 

A MoveConstructible, MoveAssignable, DefaultConstructible class type used to describe the results of inserting a 

node_handle, including at least the following fields: 
  bool inserted; 

  X::iterator position; 

  X::node_type node; 

Assertion/note/pre-/post-condition 

For an attempt to insert an empty node, inserted is false, position is end(), and node is empty. 

If insertion took place, inserted is true, position points to the inserted element, and node is empty. 

If insertion failed, inserted is false, node owns the node previously owned by np, and position points to an 

element with an equivalent key to *node. 

Complexity  

compile time 

Expression 
a_uniq.insert(np) 

Return type 
X::insert_return_type   

Assertion/note/pre-/post-condition 

Precondition: a_uniq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect. Otherwise, inserts *np if and only if there is no element in the container 

with key equivalent to the key of *np. Postcondition: np is empty. 

Complexity 

Average case O(1), worst case O(a_uniq.size()). 

Expression 
a_eq.insert(np) 

Return type 
X::insert_return_type   
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Assertion/note/pre-/post-condition 

Precondition: a_eq.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts *np and returns the iterator 

pointing to the newly inserted element. 

Postcondition: np is empty. 

Complexity 

Average case O(1), worst case O(a_eq.size()). 

Expression 
a.insert(q, np) 

Return type 
iterator 

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == np.get_allocator(). 

Effects: If np is empty, has no effect and returns a_eq.end(). Otherwise, inserts *np if and only if there is no 

element with key equivalent to the key of *np in containers with unique keys; always inserts *np in containers 

with equivalent keys. Always returns the iterator pointing to the element with key equivalent to the key of *np. 

The iterator q is a hint pointing to where the search should start. Implementations are permitted to ignore the 

hint. 

Postcondition: np is empty. 

Complexity 

Average case O(1), worst case O(a.size()). 

Expression 
a.extract(k) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes an element in the container with key equivalent to k. Returns a node_handle owning the element if 

found, otherwise an empty node_handle. 

Complexity 

Average case O(1), worst case O(a.size()). 

Expression 
a.extract(q) 

Return type 
node_type 

Assertion/note/pre-/post-condition 

Removes the element pointed to by q. Returns a node_handle owning the element at q. 

Complexity 

Average case O(1), worst case O(a.size()). 
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Expression 
a.merge(s) 

Return type 
void 

Assertion/note/pre-/post-condition 

Precondition: a.get_allocator() == s.get_allocator(). 

Attempts to extract each element in s and insert it into a using the comparison type of a. In containers with 

unique keys, if there is an element in a with key equivalent to the key of an element from s, then that element is 

not extracted from s. Pointers and references to the moved elements of s now refer to those same elements but as 

members of a. Iterators referring to the moved elements and all iterators referring to a will be invalidated, but 

iterators to elements remaining in s will remain valid. 

Complexity  

Average case O(N), where N is s.size(). Worst case O(N * a.size() + N). 

 

23.4.4.1 Class template map overview [map.overview] 

Add to class map: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& np); 

iterator           insert(const_iterator hint, node_type&& np); 

template<class Comp> 

void merge(map<Key, T, Comp, Allocator>& source); 

template<class Comp> 

void merge(map<Key, T, Comp, Allocator>&& source); 

23.4.5.1 Class template multimap overview [multimap.overview] 

Add to class multimap: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& np); 

iterator insert(const_iterator hint, node_type&& np); 

template<class Comp> 

void merge(multimap<Key, T, Comp, Allocator>& source); 

template<class Comp> 

void merge(multimap<Key, T, Comp, Allocator>&& source); 
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23.4.6.1 Class template set overview [set.overview] 

Add to class set: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& np); 

iterator           insert(const_iterator hint, node_type&& np); 

template<class Comp> 

void merge(set<Key, Comp, Allocator>& source); 

template<class Comp> 

void merge(set<Key, Comp, Allocator>&& source); 

23.4.7.1 Class template multiset overview [multiset.overview] 

Add to class multiset: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& np); 

iterator insert(const_iterator hint, node_type&& np); 

template<class Comp> 

void merge(multiset<Key, Comp, Allocator>& source); 

template<class Comp> 

void merge(multiset<Key, Comp, Allocator>&& source); 

23.5.4.1 Class template unordered_map overview [unord.map.overview] 

Add to class unordered_map: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& np); 

iterator           insert(const_iterator hint, node_type&& np); 

template<class Hsh, class Prd> 

void merge(unordered_map<Key, T, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_map<Key, T, Hsh, Prd, Allocator>&& source); 
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23.5.5.1 Class template unordered_multimap overview [unord.multimap.overview] 

Add to class unordered_multimap: 
 

typedef unspecified node_type; 

  

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& np); 

iterator insert(const_iterator hint, node_type&& np); 

template<class Hsh, class Prd> 

void merge(unordered_multimap<Key, T, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_multimap<Key, T, Hsh, Prd, Allocator>&& source); 

23.5.6.1 Class template unordered_set overview [unord.set.overview] 

Add to class unordered_set: 
 

typedef unspecified node_type; 

typedef unspecified insert_return_type; 

  

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

insert_return_type insert(node_type&& np); 

iterator           insert(const_iterator hint, node_type&& np); 

template<class Hsh, class Prd> 

void merge(unordered_set<Key, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_set<Key, Hsh, Prd, Allocator>&& source); 

23.5.7.1 Class template unordered_multiset overview [unord.multiset.overview] 

Add to class unordered_multiset: 
 

typedef unspecified node_type; 

 

node_type extract(const_iterator position); 

node_type extract(const key_type& x); 

 

iterator insert(node_type&& np); 

iterator insert(const_iterator hint, node_type&& np); 

template<class Hsh, class Prd> 

void merge(unordered_multiset<Key, Hsh, Prd, Allocator>& source); 

template<class Hsh, class Prd> 

void merge(unordered_multiset<Key, Hsh, Prd, Allocator>&& source); 

 

Feature Test Macro 

The suggested feature test macro for addition to SD-6 is: 
 

 __cpp_lib_node_extract 


