
 Document number: P0082R0
 Date: 2015-09-24
 Project: Programming Language C++
 Reference: N4527, N3587
 Reply to: Alan Talbot
 cpp@alantalbot.com

For Loop Exit Strategies (Revision 1)

Abstract
This proposal suggests an enhancement to the iteration statements to allow the specification of
two blocks of code that execute on completion of a loop: one for normal termination (when the
loop condition is no longer met) and the other for early termination (when the loop is exited
with a break).

Changes in Revision 1
This version has been considerably rewritten, and now includes suggestions from several
people who commented on N3587. The examples have been clarified and the pseudo-wording
has been removed. I have also added if do and if while.

The Problem
I often find myself writing code that looks something like this:

auto it = cont.begin(); // Unfortunate that ‘it’ has to be out here.
for (; it != cont.end(); ++it)
{
 if (some_condition(*it)) break;
 do_something(*it);
}
if (it == cont.end()) // Extra test here.
{
 do_stuff();
}
else
{
 do_something_else(*it);
}

This is rather annoying, involves an unnecessary test, and hoists it out into the surrounding
scope. The problem gets much worse with range-based for loops. There it is not possible to
declare the loop variable outside the for statement, so the best I can do is something like this:

P0082R0

2

something_t last; // Extra construction here.
for (auto&& elem : cont)
{
 if (some_condition(elem))
 {
 last = elem; // Extra copy here

 goto EARLY;
}

 do_something(elem);
}
do_stuff();
goto DONE;
EARLY:
do_something_else(last);
DONE:

This is pretty awful. Note the extra construction in the outer scope that requires stating the
type. That might not even be possible (if the type isn’t default constructible or copyable). This is
clearly not an improvement over the conventional for version, so the point of range-based for
has been lost. In this case I would simply use the conventional version above.

In some cases I could eliminate the last variable and call do_something_else from inside
the loop, but that becomes impractical if there are a number of early exit points and
do_something_else is actually several lines of code rather than a simple function call. And I
would still need the goto.

What I’d really like to do is have the language provide me a way to optionally catch the two
cases, normal and early termination. This would be especially useful with range-based for
statements.

A Solution

Overview

Here is a solution that I think would be quite natural, and would be a simple, pure extension to
the language:

if

for (auto&& elem : cont)
{
 if (some_condition(elem)) break;
 do_something(i);
}

{ // Normal termination: the loop condition failed.
 do_stuff();
}
else // Early termination: a break was encountered.
{
 do_something_else(elem); // Note that elem is in scope here.
}

This is a very intuitive construct: the semantics of the if for statement retain the exact sense of
the if statement. The syntax is not too foreign—there are other examples of intermingled
statements in C++, e.g. the function try block, and Duff’s device. Note that the for statement is
not in parentheses—it is not an expression.

P0082R0

3

The declared variable remains in scope in both the normal termination and early termination
(else) blocks, and only one of the termination blocks is executed. Control transfers to the
normal termination block if and when the loop condition is no longer met (even if the loop body
is never executed), and to the early termination block if the loop exits with a break.

Python

Niels Dekker (quoting Sam Saariste) pointed out that Python has exactly this construct, but
without the early termination clause, and with else introducing the normal termination clause.
However, I do not recommend following the Python syntax because it is counterintuitive, to the
point that Summerfield calls the Python normal termination clause “rather confusingly
named.”1

Are braces required?

An interesting question is whether the normal termination block braces should be required.
Leaving them off could be confusing for the human reader, and Clark Nelson suggested that
they be required. However, they are not required in any other similar situation, so that could
also be confusing. Without them, this example would be legal:

if
 for (int i = 0; i < 10; ++i)
 if (foo(i)) break; // Loop body if statement.
 cout << "no foo" << '\n'; // Normal termination statement.
else
 cout << "foo at " << i << '\n'; // Early termination statement.

And the same care would have to be taken as with any nested if statements:

if
 for (int i = 0; i < 10; ++i)
 if (foo(i)) break; // Loop body if statement.
 else bar(i); // Loop body else clause.
else
 cout << "foo at " << i << '\n'; // Early termination statement.
cout << "done" << '\n'; // Next statement after the if-for.

Removing the first else gives a completely different meaning.

if
 for (int i = 0; i < 10; ++i)
 if (foo(i)) break; // Loop body if statement.
else
 cout << "foo at " << i << '\n'; // Loop body else clause.
cout << "done" << '\n'; // Normal termination statement.

I recommend not requiring them, but I’m happy to change the proposal to require them if there
is consensus that they improve readability.

P0082R0

4

Multiple breaks

The if for statement also provides for a graceful multiple break. Suppose I want to iterate over a
three-dimensional table and choose a particular cell. Today I would probably do something like
this:

vector<vector<vector<...>>> table = ...;
for (auto& x : table)
 for (auto& y : x)
 for (auto& z : y)
 if (some_condition(z))
 {
 do_something(z);
 goto DONE;
 }
DONE:

This is a little ugly, and gets even worse if you have different exit situations. (I could solve this
particular problem by writing a function that returns from the inner loop, but not all such
constructs are easily put into a function.) With if for you can do this:

for (auto& x : table)
 if for (auto& y : x)
 if for (auto& z : y)
 {
 if (some_condition(z))
 {
 do_something(z);
 break;
 }
 }
 else break;
 else break;

This scales well to more complicated cases since you can either continue or break on either
termination condition. I would expect that the compiler could collapse the repeated breaks into
a single jump, so the efficiency of the goto solution would be preserved.

Do and while

Diego Sánchez pointed out that this approach works equally well with while and do:

if
 while (auto p = get_next())
 {
 if (some_condition(p)) break;
 do_something(p);
 }
else
 do_something_else(p);

P0082R0

5

Specifics
I am proposing to add a new if form to the iteration statements in section 6.5. I will provide
formal wording in a revision of this proposal if there is sufficient interest to proceed.

if
 for (...) // Normal for loop, either conventional or range-based.
 {
 // For loop block.
 // Braces are not required for a single statement.
 }
{ // Normal termination block.
 // Executed if loop “succeeds” by exiting normally.
 // May be omitted entirely if the else is present.
 // Loop iteration variable is in scope.
 // (In a range-based for statement, it’s value is undefined here.)
 // Braces are not required for a single statement.
}
else
{ // Early termination block.
 // Executed if loop “fails” by exiting prematurely with a break.
 // May be omitted entirely if the normal termination block is present.
 // Loop iteration variable is in scope.
 // Braces are not required for a single statement.
}

If and only if the early termination (else) substatement is present, then the normal termination
substatement may be omitted. If the for statement declares a loop variable or variables, the
scope of the name(s) declared includes the normal termination substatement and the early
termination substatement. In the case of a range-based for loop, the value of the loop variable
is undefined in the normal termination substatement. (It is in scope simply for consistency with
conventional if for statements.)

if
 while (...)
 {
 }
{
}
else
{
}

The while statement has the same semantics and syntax as the for statement, including the
scope of a loop variable, if any.

if
 do
 {
 } while (...);
{
}
else
{
}

The do statement has the same semantics and syntax as the for statement.

P0082R0

6

Other Possible Solutions

Then

If C++ had a then keyword, a very clean syntax would be possible:

for (auto&& elem : cont)
{
 if (some_condition(elem)) break;
 do_something(i);
}
then // Normal termination: the loop condition failed.
{
 do_stuff();
}
else // Early termination: a break was encountered.
{
 do_something_else(elem); // Note that elem is in scope here.
}

Unfortunately it is very difficult to add a (reasonably spelled) new keyword to the language.
And adding then (regardless of spelling) poses the problem that people would expect it to work
with if statements. Sarfaraz Nawaz suggested using do rather than then. This avoids these
problems, but makes the construct confusing to use with do loops. Dwayne Robinson suggested
using finally. The main problems with this are that it is a new keyword, and that its meaning
would be subtly different from the meaning in Java.

Statements as expressions

Niall Douglas, Mike Spertus and others have suggested that the for statement in effect become
a boolean expression. This is certainly intriguing. It would make the syntax slightly more
“normal” than this proposal, while retaining the same basic syntax, and it allows for some
interesting constructs, such as assigning the “result” of a loop statement to a variable.

However, it introduces a concept that is completely foreign to C++ (statements as expressions),
which would presumably have wide-ranging and subtle consequences. It also seems more
complicated than the proposed solution. For these reasons, I am not recommending this
approach, but I have no objection to it, and if there is interest I am happy to explore it further.

Catching breaks

Another possibility suggested by Daveed Vandevoorde, Nick Maclaren and others is to allow
break and continue “catch” blocks:

P0082R0

7

for (auto&& elem : cont)
{
 if (some_condition(elem)) break ONE;
 if (another_condition(elem)) break TWO;
 do_something(i);
}
continue // Normal termination: the loop condition failed.
{
 do_stuff();
}
break ONE // Early termination: break ONE was encountered.
{
 do_action_one(elem); // Would elem be in scope here?
}
break TWO // Early termination: break TWO was encountered.
{
 do_action_two(elem); // Would elem be in scope here?
}

This has several advantages. It allows for multiple breaks with different behavior, and it would
be useful with switch statements. It would be very nice if the name could be optional if there is
only one break catch block. For this to be fully useful, the loop variable would need to be in
scope in all the catch blocks.

My main concern is that it is a fairly significant change to the language. However, my personal
needs would be very well met by this approach, and I would be happy to go in this direction if
there is consensus that it is preferred.

Importance
It is a good question to ask, is this worth it? Are the instances where this construct improves
readability, encapsulation and performance sufficiently common and compelling? The reaction
to the first version of this paper tells me that the answer is resoundingly yes. People really seem
to like this idea, and every person who read the paper and responded represents many, many
others out there who are not involved in this process.

Acknowledgements
Beman Dawes reviewed an early draft of this proposal and suggested several excellent
clarifications. Clark Nelson reviewed the final draft of the first version and caught several
mistakes.

A number of people made insightful comments about the first version of this proposal. Thanks
to Niels Dekker, Niall Douglas, Folkert van Heusden, Nick Maclaren, Sarfaraz Nawaz, Dwayne
Robinson, Sam Saariste, Diego Sánchez, Mike Spertus, and Daveed Vandevoorde for their
contributions.

Notes
1: Summerfield, Mark. Programming in Python 3 – A Complete Introduction to the Python
Language, p. 151, Addison-Wesley, 2009.

	Abstract
	Changes in Revision 1
	The Problem
	A Solution
	Overview
	Python
	Are braces required?
	Multiple breaks
	Do and while

	Specifics
	Other Possible Solutions
	Then
	Statements as expressions
	Catching breaks

	Importance
	Acknowledgements
	Notes

