
The [[pure]] attribute

Document number:... P0078R0

Date: .. 2015-09-25

Revises: .. N3744

Project: JTC1.22.32 Programming Language C++, Evolution Working Group

Reply to: Karl-Étienne Perron <Karl-Etienne.Perron@USherbrooke.ca>

Contents

1 Introduction ... 2

2 Motivation ... 2

3 In theory .. 2

4 pure in current programming languages ... 3

4.1 C++ .. 3

4.2 D .. 5

4.3 Fortran ... 5

4.4 Haskell and other functional languages ... 5

5 pure as a general computational concept .. 6

5.1 No side effects / Referential transparency ... 6

5.2 Reproducible ... 7

5.3 Avoiding states and mutable data / Having stable inputs .. 7

5.4 Returns ... 7

6 Redefining pure ... 7

7 Benefits and drawbacks ... 8

7.1 Benefits .. 8

7.2 Drawbacks ... 11

8 EWG feedback on N3744 .. 12

8.1 Transaction safety .. 12

8.2 Dynamic memory allocation ... 12

8.3 Warnings ... 12

8.4 pure vs const .. 13

9 Proposed wording .. 14

10 Acknowledgements .. 15

11 References .. 15

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3744.pdf
mailto:Karl-Etienne.Perron@USherbrooke.ca

2

1 Introduction

 The C++ programming language has long been associated with execution speed,

optimization and flexibility. However, there is still place for improvement in C++ as well

as any other programming language. This is the reason why many attempt to bring different

kinds of optimization to the C++ core language.

Papers such as N1664 [1] and N3744 [2] both tried to do so by proposing function

qualifiers such as nothrow and pure. Whereas nothrow’s purpose has ultimately been

achieved with noexcept, this paper’s goal is to clarify why the addition of a pure

attribute to the C++ language could be beneficial. More precisely, we aim to provide a new

clearer definition of the pure attribute for C++ based on both theoretical notions and the

feedback received from the EWG regarding N3744’s proposal of the same attribute.

Ultimately, this will allow us to propose a formal wording to add to the Working draft [32].

2 Motivation

 According to N1664 [1] in 2004, “…, it can sometimes be effectively impossible

for a C++ compiler to determine whether any particular optimization can be safely applied

in the context of a particular code fragment” [1]. This is the case with pure functions for

which compilers do need indications in order to apply optimization. The opportunity for

C++ to benefit from such optimization seemed a good idea ten years ago and still is today.

As a matter of fact, during the review of N3744 [2], the EWG voted on having some form

of the pure attribute and the result clearly showed the interest in having one:

 Poll 3: In favor of some form of [[pure]]

 SF 8 - 2 - 0 - 0 - 0 SA

[3]

Also, pure functions show great promise for the near future. During a recent telecom

regarding contract programming for C++, participants quickly agreed that the predicate

serving as a precondition should be pure. Therefore, we think it is in the best interest of

everyone to better define the concept of pure as it pertains C++, in order to be able to add

features such as a [[pure]] attribute.

3 In theory

 The purity of a function is a fundamental aspect of functional programming. In its

most theoretical (purest) form, this programming paradigm “treats computation as the

evaluation of mathematical functions and avoids changing-state and mutable data.” [4]. In

other words the purity of a function is defined by how much a function respects the

mathematical principles of a function. Mathematical functions are, by definition, a relation

between a set of inputs and an output [5] where “each input is related to exactly one output”

[6]. This means that we should always end up with the same result for the same input.

3

 This absolute relationship also means that nothing but the function itself may define

how the input is related to the output. For example, in a purely functional program, for a

given set of inputs, an additional input (say from the user or from reading a file) in the

middle of the function’s computation should not be required in order to produce the result

since such intervention may change the outcome. This is the reason why pure functions

should avoid using changing-state and mutable data since the modification of a variable’s

value may act as a form of extra input during computation. The possibility of having the

result changed even if we give a function the same arguments would mean that

mathematically, the same input is related to more than one output which is against the very

definition of a function.

4 pure in current programming languages

4.1 C++

 As of the writing of this paper, there are already ways to qualify C++ functions as

pure. However, the definition and mechanics are different in each implementation and

would certainly benefit from being standardized.

4.1.1 .Net

 The .Net framework has allowed the use of a “PureAttribute” class in C++/CLI

(and the framework’s other languages as well) since version 4 [7]. The official

documentation states that this attribute “indicates that a type or method is pure, that is, it

does not make any visible state changes.” [7]. Based on the above theoretical definition,

the .Net framework seems to share the idea of avoiding the use of changing-state and

mutable data. However, this definition only seems to consider state change as an outcome

of the function and not the other way around, that is, a pure function should not change the

state of anything as a result of its computation, but is free to use mutable data in order to

produce a result. As stated earlier, a function which uses mutable data may produce

different outputs given the same input. Consider this function:

int plus_five(int &x)

{

return x + 5;

}

Here, the value of x at the time of input could be changed by another thread (therefore, a

change not caused by the function itself) before the computation of the addition. Even

worse, this definition does not restrict a pure function from producing multiple outputs

given the same input which is theoretically wrong.

4.1.2 GCC and other compilers

 With GCC, programmers have the possibility of using __attribute__((…))

as a way of qualifying functions.

Since version 2.96, GCC has an __attribute__((pure)) keyword which

indicates that “... functions have no effects except the return value and their return value

depends only on the parameters and/or global variables.” [8]. This is an interesting

definition since it explicitly applies the mathematical idea of inputs and output to the

4

concrete use of a function’s arguments and return value. It also states that function should

not have any effect other than returning the return value, which means that it should not

visibly change the state of anything outside the function. However, we presumably still

have the same problem of being able to use mutable and state-changing data as inputs,

especially here where it is clearly stated that global variables are a viable form of (read-

only) input. There is no mention of whether or not global variables must be global const

variables. This is where GCC gets confusing when talking about pure because there is

also an __attribute__((const)) keyword which is an even purer form of

__attribute__((pure)). The official documentation declares that const functions:

… do not examine any values except their arguments, and have no

effects except the return value. Basically this is just slightly more

strict class than the pure attribute below, since function is not

allowed to read global memory. Note that a function that has

pointer arguments and examines the data pointed to must not be

declared const. Likewise, a function that calls a nonconst function

usually must not be const. It does not make sense for a const

function to return void. [8]

It seems strange that the purest form of the pure attribute in GCC is not labeled pure,

but const. As stated, the main difference between them is the fact that a const function

may not read global memory which effectively solves our problem of having mutable data

as inputs. Also, this definition makes an interesting point that functions must produce an

output. Mathematical functions must, by definition, produce an output to be associated with

the given inputs. Otherwise, the function would serve no purpose.

Other compilers such as LLVM/Clang [9] and ILE C/C++[10] also include

attributes the same way GCC does. Both keywords are, therefore, applicable to those as

well. In fact, “almost all major compilers (except MSVC, apparently) support extensions

that allow one to mark a function as pure.” [11].

The ARM compiler is a little bit more restrictive about __pure and is comparable

to GCC's __attribute__((const)). Declaring a function with __pure:

asserts that a function declaration is pure […] the result depends

exclusively on the values of its arguments; the function has no side

effects; [...] For example, pure functions: cannot call impure

functions; cannot use global variables or dereference pointers,

because the compiler assumes that the function does not access

memory, except stack memory; must return the same value each

time when called twice with the same parameters. [12]

This definition is interesting for a few reasons. First, it is stated that “the result

depends exclusively on the values of its arguments”. Whereas most definitions state that

the result depends on the argument itself, here we let go of the container and use the content

as the input instead. This solves our problem of a parameter being mutable. It is highly

probable that this was implied in other definitions, but the fact that this is mentioned clearly

in this one is appreciable. Second, stating that a pure function can only access the stack

memory leaves less ambiguity regarding the type of variables which a pure function may

5

or may not take in as parameters. Finally, the fact that the function must return the same

value when called twice (or more) with the same parameters is also the first time it has

been specified.

4.2 D

D already has a pure keyword. The documentation for the language states that:

Pure functions are functions which cannot access global or static,

mutable state save through their arguments. […] a pure function

is guaranteed to mutate nothing which isn't passed to it, and in

cases where the compiler can guarantee that a pure function

cannot alter its arguments, it can enable full, functional purity (i.e.

the guarantee that the function will always return the same result

for the same arguments). To that end, a pure function: does not

read or write any global or static mutable state; cannot call

functions that are not pure; can override an impure function, but

an impure function cannot override a pure one; is covariant with

an impure function; cannot perform I/O. [13]

This definition is really close to the theoretical definition of pure. As a matter of fact, it

explicitly says that the function will always return the same result for the same arguments

as per the mathematical (pure) definition of a function while clearly preventing the use of

any form of mutable data from outside or within the function's parameters (i.e. no side

effects). It also lists a few other logical characteristics about pure functions.

4.3 Fortran

Fortran95 has “pure procedures”: “we add the PURE keyword to the

SUBROUTINE or FUNCTION statement—an assertion that the procedure (expressed

simply): alters no global variable; performs no I/O; has no saved variables (variables with

the SAVE attribute that retains values between invocations) and for functions, does not

alter any of its arguments.” [14]. This definition mostly revolves around the fact that a pure

function must not have side effects. However, we still have the problem of being able to

use global variables as inputs.

4.4 Haskell and other functional languages

 Haskell is claimed to be a “pure functional language.” [15]. While this is not

entirely true, it does provide a mostly pure code base whilst retaining a small portion of

practical, yet impure code (such as I/O) [15][16]. The official Haskell web site claims that

the language is pure since “Every function in Haskell is a function in the mathematical

sense (i.e., "pure"). Even side-effecting[sic] IO operations are but a description of what to

do, produced by pure code. There are no statements or instructions, only expressions which

cannot mutate variables (local or global) nor access state like time or random numbers.”

[17]. The official wiki also says this: “Languages that prohibit side effects are called pure.

[...] Purely functional programs typically operate on immutable data. [...] Pure

computations yield the same value each time they are invoked.” [16]. Overall, functional

purity in Haskell means that functions have no side effects, will produce the same output

if given the same inputs and cannot use and/or change mutable data and states (even local

6

variables). This is, in fact, very close to the theoretical definition of functional purity. As a

matter of fact, it may even be a bit too restrictive since even creating a local variable (a

temporary variable for instance) will not necessarily affect the purity of a function. For

instance, when applied to C++:

int plus_temp_five(int x)

{

 const int five{5};

 return x + five;

}

The local variable “five” would never change the outcome of the function's computation

and would not change the state or value of any data outside the function. Once we would

be done with the function, the local variable would also be “deleted” from memory which

means that no observable side effects would have occurred, that is, the program's

environment will be the same after as it was before.

5 pure as a general computational concept

 Functional purity does not have to be tied down to a particular set of languages. In

general, pure is usually defined based on many characteristics. Whilst not all sources

agree exactly on what gives a function its purity, here is what is generally said about pure

functions.

5.1 No side effects / Referential transparency1

The fact that a pure function should not have any side effect is mainly accepted by

everyone. Based on the idea that the purest functions possible are mathematical functions,

a function is an absolute and strict relationship between inputs and exactly one output

[5][6]. Some even speak of a property called “referential transparency” [4][16][18], that is,

since a mathematical function puts a given set of inputs in equality with a particular output,

it should be mathematically possible to simply replace a call to the function by the output.

 However, not everyone agrees on what actually constitutes a side effect. For some,

creating and modifying a local variable (local to the function only) is a form of side effect

[17]. Others state that pure functions must not produce observable side effects, that is, side

effects which alter the overall state of the system, but solely based on what's expected from

it [18][19][20][21]. For example: “An observable side effect is one which is modelled in

the semantics [What's monitored and expected]. In typical models of programming

languages, memory consumption is not modelled, so a computation that requires 1TB of

storage can be pure, even though if you try to run it on your PC it would observably fail.”

[21]. Also, it should be noted that “observable” means observable from either the caller's

perspective or any other threads which may be affected by the function’s computation. A

pure function should be a black box to the caller. Within the box, a function should be

1 [4][7][8][9][10][11][12][13][15][16][18][19][20][22][25][27][29][30]

7

allowed to change and alter the system if needed as long as it replaces the system in its

previous state when it returns [19][21].

5.2 Reproducible2

By extension to the previous point and once again taken from the idea of purely

mathematical functions, one of the most fundamental aspect of a pure function seems to be

the fact that regardless of any factor, the function will always return the same result. This

makes the function memoizable. Should this requirement not be met, a pure function would

actually disregard its mathematical nature: a set of inputs would be associated with more

than one possible outcome [6].

5.3 Avoiding changing-state and mutable data / Having stable inputs3

Allowing a pure function to handle mutable data does not make the function impure

by itself. However, there are many risks involved and the function is very likely to display

an impure behaviour. Therefore, possibility of impurity should still be considered as

impurity. As stated earlier in this paper, there can be a problem if mutable data is given to

the function and then altered halfway through the function's computation by another mean

(other than the function itself). For example: “If an argument is call by reference, any

parameter mutation will alter the value of the argument outside the function, which will

render the function impure.” [19]. In order to overcome this problem, it seems necessary

to specify that “arguments are fully determined before any output is generated.” [20].

5.4 Returns4

It seems pretty counter intuitive to have a pure function without any value to return:

“Pure functions cannot reasonably lack a return type.” [22]. A function which receives

inputs, but does not return an answer or produce any kind of side effects is quite simply a

computational black hole and lacks any real purpose. Of course, this is incompatible with

the theoretical definition of a pure function.

6 Redefining pure

 Based on the theoretical principles and the other definitions and characteristics of a

pure function we studied above, the following is what we consider a pure function should

be. This is our recommendation to WG21 on how to approach the pure attribute.

A pure function is a function which:

 for the same set of arguments, will always return the same value;
(because a mathematical function is the purest form of function possible)

 produces an output using solely the values given to it via its argument list;

2 [4][9][10][12][13][15][18][19][25][26][27][29][30]

3 [4][7][11][13][14][15][17][19][20][25][26][27][31]

4 [8][9][10][11][12][20][22][27][29]

8

(because other forms of input may cause different outputs for the same arguments which

would make the function impure)

 is only given arguments that cannot be externally altered during the function's

computation;
(because inputs which can be altered during computation may cause different outputs for

the same arguments which would make the function impure)

 causes no observable side effects;
(because a call to a mathematical function can be replaced directly by its result without

altering the final result)

 does not call impure functions;
(because calling impure functions may result in side effects with the pure function as its

cause)

 outputs its result solely through its return value;
(because any other mean of output would be an observable side effect)

 has a non-void return type;
(because a mathematical function cannot return nothing)

 cannot fail to return and returns to its point of invocation.
(because a mathematical function must return and only where it has been called)

7 Benefits and drawbacks

 With this paper, we hope to bring even more optimization possibilities to the C++

programming language. As a matter of fact, adding a pure attribute would have many

benefits, but also a few drawbacks.

7.1 Benefits

7.1.1 Subexpression elimination / Memoization5

 Probably the most obvious use for a pure attribute is the exploitation of its

referential transparency characteristic as a way to reduce computational time: “By

definition, it is sufficient to evaluate any particular call to a pure function only once.

Because the result of a call to the function is guaranteed to be the same for any identical

call, each subsequent call to the function in code can be replaced with the result of the

original call.” [23]. Ultimately we “get the same result; only the efficiency might change”

[16]. The ARM Information Center [23] has a great example of how memoization may

reduce the amount of computing necessary:

5 [4][9][11][12][16][18][22][23][26][27][28]

9

As shown, the amount of assembly instructions produced is reduced by 45% when

declaring the same function as pure.

7.1.2 Composition and abstraction6

 Code composition and abstraction are probably two of the most useful and intuitive

aspects of programming. Pure functions are inherently compatible with both.

It is very easy to see why pure functions are ideal to use for composition. A function

that has no side effects can be used by absolutely any piece of code at any given moment

since the function does not rely on anything external to itself for its computation. This

means that the pure function will have the same behaviour regardless of the calling code’s

design.

They are also very useful when it comes to abstraction. Since a pure function

communicates with the outside world solely via its arguments list and its return value, there

is virtually no need for the calling code to know how exactly the function produces its

result.

6 [4][16][22][26][27]

10

7.1.3 Concurrency and thread safety / Code reorganization7

 Expanding on the idea that pure functions are perfect for composition and

abstraction, they are also thread safe and can be relocated within the code with ease.

 Given that pure functions will always yield the same result if called with the same

arguments, that they cannot have side effects and that their data is either local or immutable

[24], there is no danger in calling the function with multiple thread in order to gain speed:

“If we know that a function relies on nothing other than its parameters, then we (or the

compiler) might be able to execute the function in a new thread, or even a different CPU”

[25].

 For the same reasons, pure functions may bring benefits to compilers’ code

reorganization optimizations. Since the function will always give the same output

regardless of states and execution order, the compiler is free to call pure functions

whenever it deems optimal without the risk of altering the end results: “If there is no data

dependency between two pure expressions, then their order can be reversed…” [4].

7.1.4 Tests8

 Pure functions are easier to test: “…it's very easy to unit test a pure function since

there is no context to consider. Just focus on inputs / outputs.” [26]. Tests are really useful

when you want to ensure that your code behaves as expected. It is also a great way of

documenting your code. However, some functions are tougher to test than others. When

testing impure functions, you must ensure that each state and possibility is covered. This

can be long and painful to plan and even when we think we covered every possibility, a

new one appears. Since pure functions always produce a precise output for a certain input,

it is easier to know whether they work or not: “When you are not sure that it is working

correctly, you can test it by calling it directly from the console, which is simple because it

does not depend on any context. It is easy to make these tests automatic ― to write a

program that tests a specific function. Nonpure functions might return different values

based on all kinds of factors, and have side effects that might be hard to test and think

about.” [27].

7.1.5 Other benefits9

 Apart from the big benefits listed above, pure functions also offers other

advantages.

 If a programmer really tries to use pure functions in his code, that will force him

to “think locally”. Given that pure functions should not use global variables or rely on

mutable data, one should feel more inclined to using local variables which should make

the overall code simpler and easier to understand:

A pure function can only access what you pass it, so it’s easy to see

its dependencies. We don’t always write functions like this. When

7 [4][7][17][23][25][26]

8 [23][25][26][27]

9 [18][23][24]

11

a function accesses some other program state, such as an instance

or global variable, it is no longer pure. Take global variables as

an example. These are typically considered a bad idea, and for

good reason. When parts of a program start interacting through

globals, it makes their communication invisible. There are

dependencies that, on the surface, are hard to spot. They cause

maintenance nightmares. The programmer needs to mentally keep

track of how things are related and orchestrate everything just

right. Small changes in one place can cause seemingly unrelated

code to fail. [18]

 Not only is it easier to keep track of our code with pure functions, but when we

have a clear indication in order to tell whether a function is pure or not, it makes it easier

to understand what is happening “under the hood”. With a clear keyword qualifying a

function as pure, it may help in better understanding how the execution of a program will

behave after compilation and will reduce the overall cognitive load:

The first is self-documentation. A person trying to understand a

code base, once they see that a function is pure, they know it only

depends on its arguments, has no side effects, and there's no

monkey business going on inside it. This greatly reduces the

cognitive load of dealing with it. A big chunk of functions can be

marked as pure, and just this benefit alone is enough to justify

supporting it. [24]

7.2 Drawbacks

7.2.1 I/O and side effects restrictions10

 As useful as pure functions seem to be, they also bring us some trouble. The most

problematic drawbacks are in fact what makes pure functions useful in the first place.

Without the ability to cause side effects, pure functions cannot read a file or prompt the

user for an input which is sometimes quite useful. Pure functions cannot benefit from

impure functions since calling an impure function would mean that the pure function would

cause side effects. Also, pure functions lack the possibility of using really efficient, but

mutable data structures [16]. In certain cases, this could mean that using pure functions

would be, in fact, slower and less practical than using their impure counterparts: “In many

cases, nonpure functions are precisely what you need. In other cases, a problem can be

solved with a pure function but the nonpure variant is much more convenient or efficient.”

[27].

7.2.2 Debugging11

 GCC has the ability to warn you about which functions are viable candidates for

either pure or const attribute qualifying. This is mainly done through code optimization

analysis. However, such analysis frequently misses pure functions [11]. This is the reason

10 [16][27]

11 [11][28]

12

why it is up to the programmer to qualify the function or not. Imagine that we falsely

qualify an impure function as pure. Based on what the compiler knows about pure

functions, it might bring some “optimizations” to the code. In reality, this will probably

result in an incoherent program execution which should be troublesome to debug: “… using

this attribute incorrectly can lead to a nearly impossible to locate bug as actually seeing the

redundant use of the function removed by the compiler requires looking at the assembly!

Oh, and this type of bug will rarely show in a debug build since only highly optimized

builds will have the bug.” [28].

8 EWG feedback on N3744

 The EWG already debated a pure attribute when they reviewed N3744 [2].

However, it seems that much confusion and issues arose from the review. Given our

analysis and brand new definition, we will try and give a clearer explanation on what pure

means.

8.1 Transaction safety

 One of the first question to be asked, the EWG wondered if pure functions are

transaction-safe by nature. Based on our analysis of functional purity, it must said that pure

functions are transaction safe since they do not have side effects and must clean their

environment before returning. This means that should anything happen during a pure

function’s computation which requires cancellation, its natural characteristics should result

in few or no rollbacks.

8.2 Dynamic memory allocation

 Given that what is considered to be an observable side effect is ambiguous, it is

normal to question whether or not dynamically allocating memory in a pure function should

be prohibited. As stated earlier, observable depends on what is monitored and by whom.

In general for functions, we mean observable from the caller’s point of view. This means

that an observable side effect is one which can be seen outside of the function’s lifetime.

However, if a pure function requires dynamic storage while two or more threads are

running concurrently, a pure function could cause other functions to experience

bad_alloc exceptions. This is a form of side effect hence why dynamic memory

allocation should be prohibited in pure functions.

8.3 Warnings

 It has been discussed that trying to implement ways to warn programmers about

functions being possibly pure or impure would somehow be difficult. Warnings indicating

which functions should or should not be qualified as pure would be helpful to

programmers who want to optimize their program’s execution. Also, as stated earlier in

this paper, enforcing a way to tell the programmer that an impure function has falsely been

qualified as pure may help save much time and efforts during debugging.

13

8.4 pure vs const

During N3744’s [2] review, many members of the EWG were confused about the

difference between GCC’s pure and const attributes which also led to questions about

what should be considered as viable arguments for a pure function.

Of course any lvalues passed by-value are eligible since by-value arguments are

local copies which will be destroyed after the function’s computation and therefore can be

altered without that being considered as a side effect.

However, we need to be careful when talking about pointers and arguments passed

by-reference. These types of argument should not be used in pure functions since their

mutable nature will most likely lead to impurity. It should be noted however that depending

on the level of purity you require, arguments passed by const indirection can be used by

pure functions. When we say level of purity, we are talking about the subtle difference

between GCC’S pure and const attributes. const is the “purest” form of pure, that

is, the only inputs allowed are the argument’s values.

With const, we may use pointers and such, but since we cannot access global

memory, we are left with the literal values of the arguments which are rarely useful on their

own. An example of pure (const) functions that may use pointers is a function used for

pointer arithmetic.

With pure, we may access global memory. This means that a pointer to const, for

example, can be dereferenced in order to produce an output. Since the value pointed to by

the pointer cannot change, the characteristics for functional purity will still apply.

However, theoretically, this could make a function impure. For example, if we only change

what a pointer to const points to between two calls to the same pure function, the

arguments’ value will technically still be the same, but the output will differ which

theoretically means that the function is impure. It really depends on what you consider to

be an “input”. If we digress a bit from functions’ mathematical roots and forget about pure

functions requiring inputs to be passed through its arguments list, const global variables

accessed through indirection could be considered as inputs therefore preserving a

function’s purity.

When N3744 [2] was reviewed, the EWG voted on whether we should support the

equivalent of either const (the aggressive approach to pure) which can be memoized or

pure (the conservative approach) which causes no side effects or even both. The results

were:

• Poll 4: Conservative approach.

SF 3 - 2 - 5 - 0 - 0 SA

 • Poll 5: Aggressive approach:

SF 6 - 1 - 3 - 0 - 0 SA

 • Poll 6: Support both, with different attributes.

SF 4 - 2 - 3 - 1 - 0 SA

[3]

14

As we can see, const received more support in general. Having both attributes with

different meaning has been criticized for leading to too much confusion.

9 Proposed wording

 Now that we have revisited the theory behind pure functions, offered a new

theoretical definition and addressed what had caused confusion in previous proposition of

such attribute, it is time to propose our own concrete wording of how a pure attribute

could fit in the C++ programming standard language. Note that here, our definition of

pure is inspired by its purest most theoretical form (similar to GCC’s const or ARM’s

own pure attribute).

Incorporate the following new subclause into the WG21 Working Draft [32] under

the Attributes section [dcl.attr]. (Note the proposed wording is greatly inspired by N3744’s

[2] own proposed wording and sometimes reuse similar to complete statements)

7.6.x Pure attribute [dcl.attr.pure]

1. A function f is said to be pure if it embraces the mathematical nature of

functions, that is, (a) with the same argument values, f will always return the

same answer, (b) f will only communicate with client code via its argument list

and return value (c) always returning to its point of invocation and (d) f will

not cause side effects observable outside of its lifetime. A statement S in the

body of a function g is said to be pure if S, when executed, exhibits behavior

that is not inconsistent with a pure g. The opposite of a pure function or

statement is said to be impure. Every function or statement is impure until

specified as pure.

2. [Example: A function f is not pure if:

 its arguments are not passed by value

 it accesses global memory for reading or writing

 it has a void return type

 it calls an impure function

 the calling code or other threads can “perceive” changes brought by f,

that is, if:

i. it relies on and/or alters variables and/or data structures that are

not local to itself

ii. it dynamically allocates memory

iii. it throws an exception, but does not catch it

- end example]

3. The attribute-token pure specifies that a function or statement is well-

behaved. [Footnote: The pure attribute is unrelated to the C++ terms pure

virtual and pure-specifier ([class.abstract]). — end footnote] The attribute

shall appear at most once in each attribute-list and no attribute-argument-clause

shall be present. The attribute may be applied to the declarator-id in a function

declaration. The first declaration of a function shall specify the pure attribute

15

if any declaration of that function specifies the pure attribute. If a function is

declared with the pure attribute in one translation unit and the same function

is declared without the pure attribute in another translation unit, the program

is ill-formed; no diagnostic required.

4. [Note: When applied to a theoretically pure function, the pure attribute does

not change the meaning of the program, but may result in generation of more

efficient code. When applied to an arbitrary statement S, the pure attribute

does not change the meaning of the program, but specifies that the

implementation may assume (without further analysis) that, when executed, S

will not cause the containing function to be impure. — end note]

5. If an impure function f is called where f was previously declared with the pure

attribute, it can be assumed that calls with the same arguments yield the same

result.

10 Acknowledgements

 Thanks to Walter E. Brown and Patrice Roy for their support and giving me the

opportunity to write this paper.

11 References

1. Walter E. Brown, Marc F. Paterno: “Toward Improved Optimization Opportunities

in C++0X”, 2004-07-16.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf

2. Walter E. Brown: “Proposing [[pure]]”, 2013-08-30.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3744.pdf

3. WG21 Chicago, 2013

4. Wikipedia, “Functional programming”, retrieved on 2015-07-11.

https://en.wikipedia.org/wiki/Functional_programming

5. Maths Is Fun, “Functions”, retrieved on 2015-07-12

https://www.mathsisfun.com/sets/function.html

6. Wikipedia, “Functions (mathematics)”, retrieved on 2015-07-12.

https://en.wikipedia.org/wiki/Function_(mathematics)

7. Microsoft, “Pure Attribute Class”, retrieved on 2015-07-11.

https://msdn.microsoft.com/en-

us/library/system.diagnostics.contracts.pureattribute(v=vs.110).aspx?cs-save-

lang=1&cs-lang=cpp#code-snippet-1

8. Richard M. Stallman and the GCC Developer Community, “Using the GNU

Compiler Collection“, 2015.

https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf

9. Mattt Thompson, “__attribute__”, 2013-01-14.

http://nshipster.com/__attribute__/

10. IBM, “The pure function attribute”, retrieved on 2015-07-11.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1664.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3744.pdf
https://en.wikipedia.org/wiki/Functional_programming
https://www.mathsisfun.com/sets/function.html
https://en.wikipedia.org/wiki/Function_(mathematics)
https://msdn.microsoft.com/en-us/library/system.diagnostics.contracts.pureattribute(v=vs.110).aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-1
https://msdn.microsoft.com/en-us/library/system.diagnostics.contracts.pureattribute(v=vs.110).aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-1
https://msdn.microsoft.com/en-us/library/system.diagnostics.contracts.pureattribute(v=vs.110).aspx?cs-save-lang=1&cs-lang=cpp#code-snippet-1
https://gcc.gnu.org/onlinedocs/gcc-5.2.0/gcc.pdf
http://nshipster.com/__attribute__/

16

http://www-

01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzarg/fn_attrib_pure.htm%2

3fn_attrib_pure?lang=fr

11. Pimiddy, “Pure functions in C/C++”, 2012-04-20.

https://pimiddy.wordpress.com/2012/04/20/pure-functions-in-cc/

12. ARM, “__attribute((pure)) function attribute”, 2011.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacigdac.

html

13. D Programming language, “Functions”, retrieved on 2015-07-11.

http://dlang.org/function.html#pureﾭ functions2/33

14. Wikipedia, “Fortran 95 language feature”, retrieved on 2015-07-11.

https://en.wikipedia.org/wiki/Fortran_95_language_features#Pure_Procedures

15. Joel Spolsky and others, “Pure Functional Language: Haskell”, 2010.

http://stackoverflow.com/questions/4382223/pure-functional-language-

haskell/4#4

16. Haskell Wiki, “Functional programming”, retrieved on 2015-07-11.

https://wiki.haskell.org/Functional_programming#Purity

17. Haskell, 2015.

https://www.haskell.org/

18. Arne Brasseur, “Functional programming: Pure functions”, 2014-09-17.

https://learnable.com/topics/all?utm_source=sitepoint&utm_medium=link&utm_c

ontent=top-nav

19. Wikipedia, “Pure functions”, retrieved on 2015-07-10.

https://en.wikipedia.org/wiki/Pure_function

20. Shelby More III, “terminology What is functional, declarative and imperative

programming”, 2011-12-02.

http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-

imperative-programming

21. Gilles, “What exactly does semantically observable side effect mean”, 2014-02-27.

http://cstheory.stackexchange.com/questions/21257/whatexactlydoessemantically

observablesideeffectmean

22. Diego Pettenò, ”Implications of pure and constant functions”, 2008-06-10.

https://lwn.net/Articles/285332/

23. ARM, “RealView Compilation Tools Compiler User Guide: 5.3.3. __pure”, 2010.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0205j/CJACCJIJ

.html

24. Walter Bright, “Pure Functions”, 2008-09-21.

http://www.drdobbs.com/architecture%ADand%ADdesign/pure%ADfunctions/22

8700129

25. Eric White, “Pure Functions”, 2006-10-03.

http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/purefunctions.aspx

26. Nico Espeopn, “Pure functions in JavaScript”, 2015-01-25.

http://nicoespeon.com/en/2015/01/purefunctionsjavascript/

27. Marijn Haverbeke, ”Eloquent JavaScript”, 2014-12-14.

http://eloquentjavascript.net/1st_edition/chapter3.html

28. Nolan O’Brien, “__attribute__ directives in Objective-C”, 2014-03-10.

http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzarg/fn_attrib_pure.htm%23fn_attrib_pure?lang=fr
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzarg/fn_attrib_pure.htm%23fn_attrib_pure?lang=fr
http://www-01.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzarg/fn_attrib_pure.htm%23fn_attrib_pure?lang=fr
https://pimiddy.wordpress.com/2012/04/20/pure-functions-in-cc/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacigdac.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0491c/Cacigdac.html
http://dlang.org/function.html#pureﾭfunctions2/33
https://en.wikipedia.org/wiki/Fortran_95_language_features#Pure_Procedures
http://stackoverflow.com/questions/4382223/pure-functional-language-haskell/4#4
http://stackoverflow.com/questions/4382223/pure-functional-language-haskell/4#4
https://wiki.haskell.org/Functional_programming#Purity
https://www.haskell.org/
https://learnable.com/topics/all?utm_source=sitepoint&utm_medium=link&utm_content=top-nav
https://learnable.com/topics/all?utm_source=sitepoint&utm_medium=link&utm_content=top-nav
https://en.wikipedia.org/wiki/Pure_function
http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming
http://stackoverflow.com/questions/602444/what-is-functional-declarative-and-imperative-programming
http://cstheory.stackexchange.com/questions/21257/whatexactlydoessemanticallyobservablesideeffectmean
http://cstheory.stackexchange.com/questions/21257/whatexactlydoessemanticallyobservablesideeffectmean
https://lwn.net/Articles/285332/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0205j/CJACCJIJ.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0205j/CJACCJIJ.html
http://www.drdobbs.com/architecture%ADand%ADdesign/pure%ADfunctions/228700129
http://www.drdobbs.com/architecture%ADand%ADdesign/pure%ADfunctions/228700129
http://blogs.msdn.com/b/ericwhite/archive/2006/10/03/purefunctions.aspx
http://nicoespeon.com/en/2015/01/purefunctionsjavascript/
http://eloquentjavascript.net/1st_edition/chapter3.html

17

https://blog.twitter.com/2014/attribute-directives-in-objective-c

29. Geeks for geeks, “Pure functions”, retrieved on 2015-07-11.

http://www.geeksforgeeks.org/purefunctions/

30. Gleb Bahmutov, “Test if a function is pure”, 2014-11-12.

http://bahmutov.calepin.co/testifafunctionispure.html

31. Wikipedia, “Variable (mathematics)”, retrieved on 2015-07-12.

https://en.wikipedia.org/wiki/Variable_(mathematics)#Notation

32. Richard Smith, “Working Draft, Standard for Programming Language C++”,

2015-05-22.

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf

https://blog.twitter.com/2014/attribute-directives-in-objective-c
http://www.geeksforgeeks.org/purefunctions/
http://bahmutov.calepin.co/testifafunctionispure.html
https://en.wikipedia.org/wiki/Variable_(mathematics)#Notation
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4527.pdf

