
Document number: P0066
Date: 2015–09–28
To: SC22/WG21 EWG
Revises: N4221
References: N3918, N0345
Reply to: David Krauss

(david_work at me dot com)

Accessors and views with lifetime extension

Abstract
A new model associates an expression with the set of temporary objects needed to represent its
value. This enables lifetime extension to work transparently through accessor functions which
opt in using the export keyword. The same mechanism enables view classes and adaptors to
retain an underlying container. The current lifetime extension behavior is also more elegantly
described, and the “temporary expression” controversy is resolved. This solves EWG 120 and
many other dangling reference issues. When lifetime extension is impossible, lifetime analysis is
improved to enable diagnosis. No dedicated lifetime analyzer is needed; export annotations
take only three distinct values. Full polymorphic lifetime analysis is left open to future
development. Since the export keyword marks accessor functions, it also provides a notation to
eliminate the boilerplate associated with const- and rvalue- (&&) qualified overloads.

���1

1. Background 3..
1.1. Origins of lifetime extension
1.2. Status quo
1.3. Temporary expressions
2. Motivating examples 5..
2.1. Range-based for statement
2.2. Value-selection functions
2.3. Refactoring argument expressions
2.4. Views and ranges as handles
2.5. Return by output parameter and method chaining
2.5.1. Expression templates with rvalue semantics
2.6. Accessor boilerplate
2.6.1. Rvalue accessor conventions
2.7. Diagnosis of dangling references
2.7.1. Hard diagnosis in NSDMIs
3. Analysis 8..
3.1. Referents of glvalues
3.2. Referents of pointers
3.3. Reachability from class prvalues
3.3.1. Aggregate-initialized temporaries
3.3.2. Prvalue copies
3.3.3. Prvalues used as values
3.4. User-defined lifetime extension
3.4.1. Implicitly-declared member functions
3.4.2. Perfect forwarding
4. Proposal 12..
4.1. Function types
4.2. Function declarations
4.2.1. Automatic qualification
4.2.2. Reflection
4.3. Covariant accessors
4.3.1. Rvalue accessors
4.3.2. Const accessors
4.4. Name mangling
4.5. Library support
4.5.1. std::function
5. Usage 19..
5.1. export
5.2. export[=]
6. Polymorphic lifetime analysis 20..
7. Conclusion 22..
7.1. Acknowledgements

���2

1. Background
Lifetime extension applies when a reference is bound to a temporary object or its subobject.
Unfortunately, this rule has corner cases ranging from difficult to undecidable. Fundamentally it
requires tracking lvalues through expression evaluation, performing a runtime task at compile
time. In historical practice, lifetime extension only worked when initializing a reference by a
prvalue expression, or a class member access with a prvalue object operand. Since C++11,
std::initializer_list additionally behaves as if it were a reference-to-array type.
More recently, N3918 (Maurer, 2014) extends the range of suitable expressions to include
explicit casts and array subscripts. (It has not been formally adopted, but it is widely
implemented. Such extensions are within the latitude of the standard.)
This proposal takes the direction of N3918 to its limit. Not only casts, but any expression that
can obtain a reference to a prvalue may provide lifetime extension. Not only array subscripts, but
subscript operator overloads work.
Additionally, reference-like behavior as implemented by initializer_list is opened to the
user. The focus shifts to view and range classes, not the container that manages underlying
resources. Libraries are enabled to create wrappers that appear to own non-member objects on
the stack. initializer_list itself ceases to be a special case of core support, outside of type
deduction. This potentially opens a similar approach to arrays of runtime bound.
Compared to the previous revision, N4221:

• Strongly typed semantics are added for the qualifiers that denote accessor functions. This
parallels the ongoing removal of the underlying classic exception-specification semantics in
N4533 (Maurer, 2015).

• The rules for determining value ownership are simplified.

• Finer annotations differentiate classes that actually own values from intermediaries such as
iterators, which merely help to access values.

• Syntactic sugar is added for defining member accessor functions that propagate const
qualification and rvalue category from the object expression.

• The supporting material has been heavily revised.

1.1. Origins of lifetime extension
Lifetime extension is a very old C++ feature, originating before ISO standardization began.
Initializing a const& reference variable from a function result to avoid a copy has worked since
references were introduced. It has two ingredients: binding an rvalue to a const&, which is
needed for operator overloading, and assuming that that the temporary lives to the end of the
block. Temporaries all worked that way at first, a rule which was only reevaluated when
scalability reared its ugly head. (The term “temporary” originally had no temporal connotation.)
During the drafting of the ARM (1988-1989), Stroustrup blessed the idea of early destruction of

���3

temporary objects . Compilers then used different rules for temporary lifetimes, trading off 1

safety against efficiency. Basic interoperability required some form of lifetime extension rule.
The first paper to consider lifetime extension was N0345 (Bruns, 1994). It recommended
consistency between pass-by-reference argument subexpressions and named references used as
arguments. The proposed rule was broad:

“ For any statement explicitly binding a reference to a temporary, the lifetime of all
temporaries in the statement are extended to match the lifetime of the reference.

Presumably this was considered to extend too many lifetimes, leading to subtle problems. The
next working paper introduced the current system.

1.2. Status quo
Lifetime extension is already more flexible than often assumed. When a prvalue expression, or
an lvalue expression accessing a subobject of a prvalue, initializes a reference, the entire
temporary object backing the prvalue receives the storage duration of the reference. So, the
reference may bind to a slice of the actual object. If the temporary has member references, the
rule applies recursively to them.
struct b { int m; };
struct d : b { ~ d() { std::cout << "~\n"; } };
struct c { d const & r; };

int main() {
auto && whole = d{}; // Extend by binding object to a reference,
b && base = d{}; // or base subobject to a reference,
int && member = d{}.m; // or member subobject to a reference,
c aggregate = { d{} }; // or object to member reference,
std::initializer_list< c > il = { d{} };// or to reference inside an IL element.
std::cout << "wait for it\n";

} // Five d::~d() calls occur here.

This implements a kind of static type erasure: An invisible, perhaps inaccessible object provides
underlying functionality to an interface handle. The most familiar application of this technique is
the C++03 scope guard idiom . C++11 auto type deduction has obviated the need for a scope 2

guard base class, but other applications exist. With some compiler help, initializer_list
follows the same pattern: The invisible object is the underlying array, the functionality is the
provision of storage, and the interface handle is initializer_list. Without lifetime
extension by slicing, the array size would need to be part of a user-visible type, i.e. as a template
argument. This design pattern has the potential to reduce template bloat by allowing view-
adaptor classes to avoid encapsulating the underlying object. (See below for deeper analysis.)

 Design and Evolution of C++, Stroustrup, 1994, §6.3.2 (p143). ARM stands for The C++ Annotated 1

Reference Manual, the initial informal standard, not Acorn RISC Machine.

 Change the Way You Write Exception-Safe Code — Forever, Alexandrescu and Marginean, 2000.2

���4

http://www.drdobbs.com/cpp/generic-change-the-way-you-write-excepti/184403758?pgno=2

1.3. Temporary expressions
The current specification of lifetime extension is subject to several defect reports, clustered
around CWG DR 1299, with a tentative resolution in N3918. The current general strategy in
[class.temporary] §12.2/5 requires statically resolving the referent object initializing a reference 3

to see if it is temporary, but excludes objects which don’t appear to be propagating to the full-
expression value, such as function arguments. Expressions which may propagate lifetime
extension are temporary expressions. The problem is that such propagation may be specified
without using anything so suspicious.
struct self_ref { self_ref & me = * this; }; // no reference parameter…
self_ref & q = self_ref{}.me; // … but still no lifetime extension in practice

In this example, the object is bound to the implicit this parameter of its own constructor, which
could be construed as a disqualification, but it this is not the intended specification nor the
practice. A similar example without a nonstatic data member initializer shows implementation
variance:
struct ref { foo const & f; }; // No constructor at all.
foo const & q = ref{ foo{} }.f; // Lifetime extension for ref or only foo?

Given this example, EDG applies lifetime extension to the value of foo{} but not to the
ref{…}. Clang and GCC apply no lifetime extension.
In both examples, the initializer is a temporary expression per N3918: a class member access
with a prvalue object expression. One possible resolution is that reference member accesses
should not be temporary expressions. However, since binding a member reference and accessing
a member each apply lifetime extension, disqualifying their combination would be inconsistent
from the user’s perspective.
The biggest shortcoming of the temporary expression approach is the lack of a provision for
encapsulation. N3918 blesses static_cast and const_cast as temporary expressions, but a
library as_const function can only return a dangling reference. Array subscripts are blessed,
std::array subscripts are not.

2. Motivating examples
Most cases of accidental dangling references could be fixed by adding lifetime extension. Here
are several different scenarios.

2.1. Range-based for statement
Dangling references are most dangerous when they are least expected. The range-based for
statement (§6.5.4) uses an internal, anonymous reference variable bound to the range-init
expression. This binding must perform sufficient lifetime extension to maintain the validity of
the range.

 References are to the working draft N4527 unless otherwise noted.3

���5

The user may wish to apply some sort of transformation to the range. An adaptor object is used
for the range-init, with its own iterators passing through to an underlying object. Unfortunately,
attempting to compose such adaptors in a range-init will fail with a dangling reference, because
they are all temporaries and only one can get a lifetime extension. As illustrated by EWG 120:
std::vector<int> vec;
for (int val : vec | boost::adaptors::reversed
 | boost::adaptors::uniqued)

; // Error: result of (vec | boost::adaptors::reversed) died.

It is already possible to dance around this problem by some combination of aggregate
initialization, and moving the containers into the adaptor.
template< typename underlying >
struct reversed {

underlying u;
using iterator = std::reverse_iterator

<typename std::decay_t<underlying>::iterator>;
iterator begin(), end();

};
for (int val : reversed<reversed<std::vector<int>&&>&&>{{{1, 2, 3}}})

; // OK: all three temporaries receive lifetime extension.
for (int val : reversed<reversed<std::vector<int>>>{{{1, 2, 3}}})

; // OK: each adaptor encapsulates the underlying object.

The first solution requires that the adaptor has no constructor or factory function, which is
onerous. The second solution requires additional move operations, which loses efficiency. In
practice, encapsulation needs to happen selectively depending on the value category of the
argument, which adds a dimension of template metaprogramming.

2.2. Value-selection functions
Value-semantic functions may inadvertently return prvalues by reference.
void foo(obj & in) {

int const & smaller = std::min(in.value, 5); // Dangling reference.

There is nothing conceptually wrong with either foo or std::min; the C++ language is at fault.
Rather than require the user to declare a constant variable to hold 5, the temporary object’s
lifetime should extend as if it was bound directly.

2.3. Refactoring argument expressions
Any good programming language should allow a long line of code to be easily broken into
smaller lines. Binding a reference and passing it should be the same as passing the referent.
Indeed, it’s only in such a context that it makes sense to apply the term “temporary” to a referent.
Instead, C++ requires the user to reason about which subexpressions generate objects responsible
for significant state, and to preferentially name those objects.

���6

2.4. Views and ranges as handles
Objects that observe the state of an external container are an important direction in the evolution
of the standard library. Examples include std::experimental::string_view and Ranges,
both of which essentially encapsulate an iterator and an end condition (which may be another
iterator). Ordinary iterators and pointers fall into the same category.
Declaring a range, view, or pointer object, and initializing it from a prvalue container, guarantees
a dangling reference.
std::string_view v = std::string("hello");

This is problematic because the only way to return content from a function is by returning a
container, but the better way to inspect content is a container-agnostic handle. The concern of
data storage is foisted upon the programmer. If the library wishes not to commit to a particular
container type, then users must use auto to agnostically retain function results.
The problem is likely to get worse, but it’s not new. We’ve all seen this beginner mistake:
char const * s_ptr = std::string("hello").c_str();

Lifetime extension would prevent such headaches. The only challenge is to avoid extending
temporaries that do not need it.

2.5. Return by output parameter and method chaining
In Java, it is valid to initialize an object by calling a sequence of chained methods. In C++ this
only works if the object is placed on the heap.
Point r = new Point().setX(5).setY(42); // OK in Java.
Point & r = (*new Point).setX(5).setY(42); // OK in C++.
Point & r = Point().setX(5).setY(42); // Runtime failure, dangling reference.

Since C++11, the standard library fully supports rvalue iostream objects in expressions, but the
resulting expression cannot be retained.
std::istream & f = std::ifstream(path) >> header; // Dangling reference.

Users familiar with environments that manage memory by garbage collection and reference
counting tend to be surprised that C++ RAII has so little insight even within the local scope.
Java, Ruby, Python, C#, and Objective-C fall into this category. Moreover, object lifetime
management is a selling point and a focus in the ongoing evolution for most of these languages.

2.5.1. Expression templates with rvalue semantics

Expression template libraries benefit from conserving memory and minimizing intermediate
temporaries. If temporaries could be retained as persistent storage for results, expensive copy
operations could be eliminated.
A library designed this way would also be able to recycle memory from named objects passed
into an expression through std::move.

���7

2.6. Accessor boilerplate
Member functions that return a reference into their own object tend to be implemented with a lot
of repetition, for the sake of propagating const-qualification. Xvalues and ref-qualifiers add a
new dimension, although such overloads are seldom provided in current practice.
A function that references a value owned by the current object is always covariant with the value
category of the implicit object parameter. There should be a boilerplate-free way to achieve this
parity with ordinary data member access expressions.

2.6.1. Rvalue accessor conventions

When rvalue accessor overloads are provided, there is widespread disagreement about whether to
return by value or by rvalue reference. Values are safer; references are faster. The standard
library offers little guidance at present, but std::get(std::tuple&&) offers one precedent
for return by reference, and std::experimental::optional::get() is another.

2.7. Diagnosis of dangling references
Beyond warning on temporary expressions bound to reference return values, compilers generally
do not look for dangling reference problems. Functions that return xvalues are assumed to be
safe. Not only is this a pitfall for beginners, it is a source of subtle problems in templates where a
subexpression expected to be an xvalue turns out to be a prvalue, or a full-expression expected to
be a lifetime-extended prvalue turns out to be an xvalue with a prvalue subexpression.

2.7.1. Hard diagnosis in NSDMIs

The recent resolution to CWG DR 1696 and 1815 forbids temporary expressions from nonstatic
data member initializers and constructor mem-initializers ([class.base.init] §12.6.2/8, ¶11),
because they would create dangling references. This solution does not cover aggregate members
containing references nor initializer_lists; instead they gain undefined behavior because
the resolution removes the text that would specify their lifetimes. Clang, the only current
implementation of these resolutions, diagnoses all the cases equally. In this case, it appears that
the language specification is lagging behind the implementation. Optimal diagnosis is based not
on a particular initializer being a temporary expression, but on the actual application of lifetime
extension which would certainly create a dangling reference. The current standard (with or
without N3918) lacks conceptual terms to reason about this.

3. Analysis
Dangling references may be remedied by applying lifetime extension to all the temporary objects
that are reachable from the result of a full-expression. The candidate objects are those
representing prvalue subexpressions. The nodes in the reachability graph are the results of all the
expressions and conversions. The edges are determined by the operators, according to simple
rules.

���8

The following subsections will consider properties of the various operators. These are distilled
into a general rule in the following Proposal section.

3.1. Referents of glvalues
Aside from typeid, which has no reach, the built-in operators and conversions which yield
glvalues follow a consistent pattern:

• Any glvalue expression has at most one glvalue operand, after its required lvalue-to-rvalue
conversions, and considering discarded operands as cast to void. If there is such a glvalue
operand, the expression refers to the same complete object.

• The one possible exception is an access (dot operator) to a nonstatic member with reference
type. However, if the initializer of the member reference involves this, it may refer into the
object expression (the left-hand side). It is safest to assume it does, and treat this case
uniformly as if the member reference was a member object.

• An assignment expression additionally has a prvalue on the right-hand side. This is not
reachable unless it has pointer or class type. These cases are considered in the next subsections.
A pointer-to-member access also has an unreachable prvalue right-hand-side.

• A glvalue with only a prvalue operand is either a cast which refers to its operand, or a pointer
indirection (unary *) which refers to the referent of its operand.

• A nullary glvalue expression is an id-expression and may be assumed not to refer to a prvalue.

• Operators whose behaviors are defined in terms of other operators, such as compound
assignment and subscripts, are treated in terms of the more fundamental operations.

In summary, if an expression is a glvalue and it has at least one operand, the first operand is
reachable.

3.2. Referents of pointers
The case of pointer indirection is useful because it describes the behavior of arrays. N3918
includes a special case for a subscript ([]) expression applied to an array prvalue, but rules
similar to the above generalize to all built-in pointer expressions and conversions.
In this subsection, the terms “referent” and “refers to” relate to indirection of pointer values, not
lvalues of pointer objects. New-initializers are always unreachable and will be ignored.

• Any prvalue or assignment expression of pointer type has at most one operand which is a
pointer prvalue, after any required array-to-pointer or lvalue-to-rvalue conversion, and
ignoring discarded operands. If this operand exists, the result refers to the same complete
object, and any other operand is an integer prvalue.

• The operand of an array-to-pointer conversion is reachable from its result.

• A prvalue expression of pointer type, with a sole operand that is not a pointer prvalue or null
pointer constant, is either a reinterpret_cast applied to an integer prvalue, which may be
considered to refer to nothing, or a unary & expression applied to an lvalue, to which it refers.

���9

• A nullary prvalue pointer expression is nullptr or this and may be assumed to have no
reach.

• A glvalue of pointer type with an operand of glvalue pointer type refers to the same object,
hence it has the same referent, unless it is an assignment expression.

• The referent of a pointer assignment expression is the referent of the right-hand side. Only by
extreme convolution may prvalues appear in the left-hand side of a pointer assignment
expression, so it is reasonable to consider them reachable by lifetime extension, by default.

• Operators whose behaviors are defined in terms of other operators are treated in terms of the
more fundamental operations, as before.

Generalizing from these observations, an operand of a pointer-typed expression is either a
reachable lvalue, an unreachable pointer with a reachable referent, or an unreachable integer
prvalue. The array-to-pointer conversion also reaches its source.
To simplify this further, note that prvalues of integer and pointer type need not be backed by
objects in the first place. If a backing object does exist, it is trivially destructible so its lifetime
may be ignored. So, consider them as reachable, with any resulting lifetime extension nullified
by the as-if rule. Then, an operand of a pointer expression is either a reachable lvalue, a
reachable pointer with a reachable referent, or a reachable integer prvalue. In short, any operand
of a built-in pointer-type expression or conversion is reachable.

3.3. Reachability from class prvalues
The only built-in operations that produce prvalues of class type are aggregate initialization and
trivially-copyable lvalue-to-rvalue conversion. Operator overloading and initialization by
constructor are handled as function calls; see §3.4 below.

3.3.1. Aggregate-initialized temporaries

An explicit type conversion expression (e.g. T{x, y}, [expr.type.conv] §5.2.3) implemented by
aggregate initialization ([dcl.init.aggr] §8.5.1) reaches the initializers of members of reference,
pointer, or class type. The existing rule for named declarations is simply extended to temporaries.
Brace-or-equal initializers of member declarations (a.k.a. NSDMIs) evade elegant semantics. See
CWG DR 1696 and 1815. Ideally NSDMIs would be eligible for lifetime extension when
participating in aggregate initialization, but that would be inconsistent with their treatment by
constructors. This proposal follows the DR 1696 recommendation to forbid NSDMIs from
binding a prvalue to a reference, regardless of whether the class is an aggregate. This is extended
to forbid implying any lifetime extension, not limited to initializers of reference members.
Note that a pointer prvalue may refer to a temporary, and it may also be backed by a temporary
object in its own right.
/* Create an int temporary initialized with 5, place its address in an int const* temporary, and  
 preserve both temporaries. */
int const * const & p = & static_cast< int const & >(5);

In this respect, a pointer behaves like a class with a nonstatic member reference.

���10

/* Create an int temporary initialized with 5, bind it to the int const& member of a class-type
 temporary, and preserve both temporaries. */
struct { int const & r; } const & p = { 5 };

3.3.2. Prvalue copies

An lvalue-to-rvalue conversion result of trivially-copyable class type (unions included) reaches
its glvalue source if the class contains any nonstatic member of a type that bears a referent, such
as a reference or a pointer. This quality is recorded by marking its implicit copy and move
constructors with export; see below. In turn, any class may be considered to bear a reference on
the basis of this export decoration. (This rule applies by default to non-trivial classes as well.)
struct tci { int i; } // tci holds an int and it is purely value-semantic.
struct tcp : tci { // tcp holds an int and an int*, adding reference semantics.

int * p = & i;
};
struct d : tcp { // d ensures that any reference is a self-reference, restoring value semantics…

d(int in) { i = in; }
d(d const & in) { i = in.i; } // … which requires defining a copy constructor.

};
tci a = d{1}; // Lifetime of d{1} is not extended.
tcp b = d{2}; // Lifetime of d{2} is extended and b refers into it.
d c = d{3}; // Lifetime of d{3} is not extended.

3.3.3. Prvalues used as values

Lifetime extension of class objects may be expensive, so it should be avoided where
unnecessary, when the class object is used only for its value and its identity is inconsequential.
Any constructor can save the value of this, but a copy or move constructor should provide for
copy elision when its argument is a temporary. Behavioral dependence on copy elision renders a
program unportable. Therefore, it is best to exclude copy/move elision candidates ([class.copy]
§12.8/31) from lifetime extension, while otherwise performing normal reachability analysis and
lifetime extension.
struct a { int const & r; } obj = a{ 5 }; // 5 is extended; a{…} is not.

In this example, a{ 5 } and 5 are both reachable prvalue subexpressions, but only 5 receives
lifetime extension because copy elision strips a{ 5 } of its object-ness.
This rule does not need to be restricted to classes. As in the previous section, the same principle
applies to pointers. (As noted in §3.2 above, the lifetime of an unreachable POD object is
unobservable, so the as-if rule could strip such a lifetime extension anyway.)

3.4. User-defined lifetime extension
User-visible hooks are needed to define reachability for function calls, overloaded operator
expressions, and initialization by constructor call. The result of such an operation reaches
argument expressions that initialize specially designated (i.e. export) parameters. The implicit

���11

this parameter of a constructor is identical to its result; there is no such thing as undoing its
reachability.

3.4.1. Implicitly-declared member functions

As mentioned in §3.3.2, a trivially-copyable class is determined to bear a reference if it contains
a member that bears a reference, and if so, its trivial member functions are marked with export.
This rule extends to nontrivial classes by computing each export designation as the sum
(maximum) of the export designations of the corresponding subobject operations, much as
noexcept specifications are computed.

3.4.2. Perfect forwarding

C++ encourages passing value-semantic parameters by reference, for the sake of efficiency.
Unfortunately, this muddles the distinction between values and references. A reference parameter
bound to a prvalue argument should behave like pass-by-value when the parameter is used within
the function as a value (per §3.3.3 above): The argument should propagate reachability analysis,
but be individually exempt from lifetime extension.
At least one solution has been proposed, in N3538 Pass by Const Reference or Value (Crowl, rev.
2, 2013). The idea is to add a declarator ptr-operator with | instead of &, expressing that the user
does not care whether a parameter really is a reference. However, this only attacks the low-level
problem of optimality across ABIs. The natural extension to perfect forwarding (presumably
spelled ||) was not explored, at least in any registered document, probably because modifiable
access with ambiguous aliasing would harm interoperability — although even for |, mutable
already cancels const.
Considering the alternative as a dead end, a slightly modified “by value” export[=] specifier is
proposed, which is intended to resemble a by-value lambda capture, or evaluation in general. The
effect is to exempt any prvalue bound directly to the parameter from lifetime extension.
Association by value is considered as a lesser degree of association, as it enables lifetime
extension for a subset of the eligible objects. A parameter of an implicit special member function
may be designated export[=] if the class has a nonstatic member with a matching export[=]
member function. This is the default qualification for classes with member pointers and
references, as they are copied by value. Full export-level qualification of a special member
function can only originate from an actual specifier. It would carry the semantic meaning of a
class containing a self-reference, which continues to refer to the old object after a copy/move —
an impossible design pattern.

4. Proposal
Within the initializer of an object or reference with static, thread, or automatic storage duration,
certain prvalues are represented by objects with the same storage duration as the declared entity.
These prvalues are identified by the relationship of lifetime association with the enclosing full-

���12

expression. Prvalues in other contexts or lacking this relationship, or which are eligible for copy/
move elision ([class.copy] §12.8/31), are represented when necessary by temporary objects.4

The result of an expression not involving a function call ([expr] §5) is lifetime-associated with an
operand value, and the result of a conversion ([conv] §4, [over.best.ics] §13.3.3.1) is associated
with its source value, if the result is a glvalue of object type or if it has class or object pointer
type ([basic.compound] §3.9.2/3). Expression operands are associated after any conversions
required by the expression, including those in [expr] §5/9-10 and list-initialization conversions
([over.ics.list] §13.3.3.1.5), and treating discarded-value expressions ([expr] §5/11) and any
object expression in a static class member access expression ([expr.ref] §5.2.5/4.1) as prvalue
expressions of type void. Lifetime association is transitive, so an expression result may be
indirectly associated with any subexpression. However, no association applies to an operand of a
typeid expression or to a new-initializer.

4.1. Function types
In addition to a return type and a parameter type list, a function type also has one lifetime
qualifier per parameter, including the implicit object parameter for member functions
([over.match.funcs] §13.3.1/3). Each qualifier is either lifetime-unqualified, lifetime-qualified by
value, or fully lifetime-qualified.
The result of a function call, or an initialization by a constructor, is lifetime-associated with the
values that initialize its lifetime-qualified parameters. Arguments passed by value (or to a by-
value qualified parameter) are ineligible for lifetime extension, although they may carry lifetime-
association to their subexpressions.
template< typename ret, typename arg >
ret fn(export arg);

// string temporary "A" is extended. Presumed meaning: fn returns a reference to its parameter.
std::string && r = fn< std::string &&, std::string && >("A");

// Temporary "B" is not extended because string s move constructor doesn’t propagate association.
std::string s = fn< std::string &&, std::string && >("B");

// Temporary "C" is not extended because it is passed by value. The reference must come from elsewhere.
std::string && t = fn< std::string &&, std::string >("C");

// Temporary "D" is extended. The return value of fn is as well.
std::string && u = fn< std::string, std::string && >("D");
/* In this last case, fn is a factory function. Like a constructor, it has the prerogative to associate

arguments to its result. With a return value class like string, with well-defined copy and move
constructors that do not propagate association, associating arguments is fairly senseless. */

Function types are partially ordered with respect to lifetime qualification. One function type is
more lifetime-qualified than another if each of its lifetime qualifications is stricter, provided that

 With these constraints, the term “temporary object” may easily be replaced by a storage duration. See 4

also CWG DR 1634.

���13

both lifetime-unqualified types are the same. An object of pointer to function type or pointer to
member function type may be implicitly converted to a more lifetime-qualified type. An explicit
static_cast may convert such a value to a type with different lifetime-qualification. Neither
of these conversions may change qualifications that are not immediate to the type, such as within
parameters of pointer-to-function parameters or within pointers to pointers to functions. (Thus, a
caller may explicitly grant or refuse a scoped lifetime to a passed-by-reference prvalue object, by
casting a function before calling it. However, a caller may not rewrite lifetime requirements that
are intrinsic to interfaces used by other parts of the program.) Reference-to-function type
conversions correspond to pointer type conversions as usual.
int&& (*f)(export int&&) // OK, implicit conversion adds qualification.

= [](int&& i) -> int&& { return std:move(i); };

int&& (*bad)(int&&) = f; // Error, cannot implicitly remove qualification.
int&& (*ok)(int&&) // OK, explicit conversion removes qualification.

= static_cast< int&& (*)(int&&) >(f);

int&& (**ppf)(export int&&) // Error, cannot add nested qualifications.
= static_cast< int&& (**)(export int&&) >(& ok);

4.2. Function declarations
parameters-and-qualifiers:  

(parameter-declaration-clause) accessor-specifieropt cv-qualifier-seqopt  
ref-qualifieropt exception-specificationopt attribute-specifier-seqopt

lambda-declarator:  
(parameter-declaration-clause) lifetime-specifieropt mutableopt 

exception-specificationopt attribute-specifier-seqopt trailing-return-typeopt

parameter-declaration:  
attribute-specifier-seqopt lifetime-specifieropt decl-specifier-seq declarator  
(etc. for other parameter-declaration production rules)

accessor-specifier:  
export [const] — const-covariant synonym for export[&]  
lifetime-specifier

lifetime-specifier:  
export — synonym for export[&]  
export [] — explicit non-qualification  
export [=] — associate result to parameter value  
export [&] — associate result to parameter object  
export [auto] — compute association from return  
export [identifier] — transfer association from another signature

A parameter is fully lifetime-qualified if it is declared with an export[&], export, or
export [const] specifier. It is lifetime-qualified by value if declared with the export[=]
specifier. One may be explicitly declared as lifetime-unqualified by the export[] specifier. An
accessor-specifier or lifetime-specifier following a parameter-declaration-clause qualifies an

���14

implicit object parameter. Only named nonstatic member functions (excluding constructors and
destructors) may have accessor-specifiers.
All declarations of a function shall specify identical lifetime qualification. No diagnostic is
required for this rule (particularly between different TUs).
A virtual override may be less lifetime-qualified than the overridden function, but not otherwise
differently qualified. The qualifiers of the function statically chosen by overload resolution are
used for a given call.
For implicitly-declared special member functions, an export specifier is applied to a function
parameter if the result of the corresponding operation on any of the class members (copy/move
construction/assignment) would be lifetime-associated with its source. The accessor-specifier of
an implicitly-declared assignment operator is export. As with noexcept specifications, these
specifiers are also implied when a member is defaulted on its first declaration. Unlike
noexcept, an explicitly-specified lifetime-specifier or accessor-specifier may differ from its
default. (Disabling a default export is accomplished by export[].)
struct s {

int & r;
s(export int & in) : r(in) {}

s(s const & in) = default; // in is implicitly fully lifetime-qualified
s(export s && in) = default; // in is explicitly fully lifetime-qualified
// in is explicitly not lifetime-qualified. The implicit object parameter is implicitly fully qualified:
s & operator = (export[] s const & in) = default;
// Neither in nor the implicit object parameter are implicitly qualified:
s & operator = (s && in);

};

4.2.1. Automatic qualification

The remaining two forms provide calculated lifetime qualification. The export[auto] specifier
provides automatic computation. It inspects all the return statements in the function, and
applies to its parameter the strongest lifetime association found between a return value and an
expression naming that parameter. Such an expression may be an id-expression, this, or
(perhaps implicitly, [class.mfct.non-static] §9.3.1/3) *this. The expression *this is considered
atomically: When it initializes a lifetime-qualified by value parameter (such as when it is used as
the source of a copy-constructed value), the lifetime association of the implicit object parameter
is by value. Otherwise, a lifetime-associated this implies full lifetime qualification.
struct bound {

int bound_arg;

int plus_by(int i) export[auto] // export[auto] resolves to export[].
{ return bound_arg + i; }

int & inc_by(int i) export[auto] // export[auto] resolves to export[&].
{ return bound_arg += i; }

template< typename ptmf, typename ... param >

���15

decltype(auto)
apply(ptmf fun, export[auto] param && p) export[auto] {

return (this->*fun)(bound_arg, std::forward< param >(p) ...);
}

};

int const & a = bound{ 1 }.plus_by(1); // 1. No lifetime extension for bound{1}.
int const & b = bound{ 2 }.inc_by(2); // 2. Lifetime extension for bound{2}.
int const & c = bound{ 1 }.apply(& bound::plus_by); // Same as 1.
int const & d = bound{ 2 }.apply(& bound::inc_by); // Same as 2.

struct haz_ptr {
int * ptr; // Pointer member causes move constructor parameter to be export[=].

// Returning by value causes export[auto] to deduce export[=] from return *this.
haz_ptr operator ++ (int) export[auto] {

struct inc { haz_ptr *self; ~ inc() { ++ self->ptr; } }
guard{ this };// Use scope guard to change state after constructing return value.

return * this;
}
// Returning by reference causes export[&] to be deduced from return *this.
haz_ptr & operator ++ () export[auto] {

++ ptr;
return * this;

}
};

A function declarator containing the export[auto] specifier denotes a placeholder function
type. As with return type deduction, the function type shall not be used before it is deduced.
Deduction occurs at the end of the function-body, so such functions cannot recurse. There shall
be at least one return statement. A constructor declaration shall not use this specifier.

4.2.2. Reflection

The export[identifier] specifier provides for reflective abstract manipulation. When used in a
deduced context in a template declaration, the identifier is declared in a special name space of
lifetimes. As with labels, this environment is separate from and invisible to ordinary name
lookup, and the visibility of such a declaration extends backward to preceding parameter-
declarations. The declared name is bound to the corresponding qualification from the function
type. When used elsewhere, it applies the extracted qualification. (Note that such manipulations
should seldom be necessary. They are firmly in the domain of reflective metaprogramming.)
template< typename ret, typename ... param >
struct implicit_object_to_parameter

// Declare names for lifetime qualifications of a function type as it is decomposed.
< ret(export[param_life] param ...) export[this_life] > {

 typedef ret (* type)
// Reassemble a new lifetime-qualified function type.
(export[this_life] obj *, export[param_life] arg ...);

};

���16

4.3. Covariant accessors
A lifetime-qualified implicit object parameter indicates that a member function’s return value
references data owned by its object. If the object is expiring, then the data certainly is as well.
The same property applies, as the user specifies, to non-modifiability via const. The reference
types of the implicit object argument and the return value are covariant because they
conceptually refer to parts of the same abstract value. This is also the idea expressed by export,
so export implements such covariance.

4.3.1. Rvalue accessors

When an accessor-specifier appears with an lvalue (&) ref-qualifier, and the return type is
declared with the & qualifier, an additional rvalue accessor overload may be implicitly declared
with both & punctuators transformed to &&. The specific preconditions are:
1. The declarator D1 contained in the function declarator as per [dcl.fct] is a declarator-id, i.e.

the declaration is of a member function and not something like a pointer to a function.
2. The ref-qualifier of the function declarator is &.
3. No member function is explicitly declared in the class with a ref-qualifier of &&, and the

same name, parameter list, and cv-qualifier-seq.
4. The function declarator has an accessor-specifier.
5. According to [dcl.ref], the function declarator appears as D1 in a declarator of the form  

 & attribute-specifier-seqopt D1  
i.e. the function return type is immediately declared as a reference.

6. If the reference declarator from the previous rule is the complete declarator, the decl-
specifier-seq of the declaration specifies a non-reference type or a dependent type .5

If the implicit object parameter of the implicitly-declared function is lifetime-qualified, the return
type is transformed by modifying the & punctuator identified in precondition #5 into &&.
Otherwise, the return type is unmodified. For templates, this must occur during specialization of
the signature.
If an implicitly-declared rvalue accessor is a virtual function, the program is ill-formed.
A specialization of an implicitly-declared rvalue accessor template participates in overload
resolution only if it satisfies precondition #6, which forbids reference collapsing.
The user may also declare an rvalue accessor as explicitly defaulted. This is allowed even if the
preconditions relating to the return type (#5-6) are unmet for the original function. Conversely,
“= default” is allowed for any function declaration mentioning “&& export” given a
corresponding “& export” overload. The return type, lifetime-specifiers, accessor-specifier, and

 1) Throughout this proposal, assume that any trailing-return-type is substituted for its decl-specifier-seq. 5

2) The decl-specifier-seq may indicate a reference type R yet provide for a covariant rvalue accessor only
if the function returns a reference to pointer to [member] function returning reference type, e.g.  
R (*& fn () export &) (). 3) Function types are not reference types, but formation of an rvalue
reference to function type will result in an ill-formed program or template substitution failure.

���17

exception-specification need not match that of the preempted implicit declaration. Such a
template specialization may be called even if the decl-specifier-seq specifies a reference type.
(Note, if the return type is as-implicit and the dependent type specifies an rvalue reference, the
function will propagate rvalue category from the object expression.)
Definitions of rvalue accessor functions follow the rules of special member functions: an implicit
definition is provided when one is ODR-used or explicitly defaulted after its first declaration. An
implicitly-defined rvalue accessor acts as a forwarding call wrapper to the original lvalue-
qualified function. If the implicit object parameter of the original function is lifetime-qualified,
and the return type of the rvalue accessor is not an lvalue reference type, the result is treated as
an xvalue. Otherwise, the result initializes the return value normally.

4.3.2. Const accessors

The export [const] accessor-specifier indicates to use a common function body for const
and non-const accessor overloads, and to generate a covariant return type. It is ill-formed
unless:
1. The declarator D1 contained in the function declarator as per [dcl.fct] is a declarator-id, i.e.

export [const] can only decorate a member function.
2. The cv-qualifier-seq of the declarator does not include const.
3. No member function is explicitly declared in the class with the same ref-qualifier, name, and

parameter list, but with an added const cv-qualifier.
4. The function return type is declared with a placeholder type or it is a reference or pointer

type. If the decl-specifier-seq is dependent, this constraint applies upon specialization.
A function declaration with export [const] is treated as two non-implicit declarations (or
definitions) differing in that one includes const in its cv-qualifier-seq, and one does not. Both
use the export lifetime specifier. The return type of the non-const function is as declared, and
the declared return type of the const overload is modified as follows:
1. If the declarator immediately enclosing the function declarator is a pointer or reference

declarator, its modified type T is replaced with T const. This has no effect if T is a
reference type.

2. Otherwise, if the return type is a pointer type T* or reference type T& or T&&, its referent T is
replaced with T const.

3. Otherwise, by logical deduction, the declared return type must be decltype(auto) or
auto, and it is not modified.

There is no requirement that the unmodified type T lack const qualification. If it is already
qualified, there is no covariance.
A function declaration generated by export [const] may cause the implicit declaration of an
rvalue accessor, or may explicitly declare an rvalue accessor.
A function definition declared export or export const may match an export [const]
declaration, but an export [const] definition can only match an export [const]
declaration.

���18

4.4. Name mangling
The export specifier modifies function types as does the strongly-typed noexcept function
specifier, so this proposal affects ABIs analogously to N4533.
Function overloads cannot differ only in lifetime qualification, so lifetime qualifiers need not be
included in mangled function names. However, lifetime-qualified function types may appear in
parameter lists and template argument lists, which do require mangling.
Mangled names will change when they include template arguments containing the types of
standard library functions, for example the return types of specializations of std::mem_fn over
std::vector::back or std::bind over std::get, as qualification is added to such
standard library functions. However, such things seldom occur in binary library interfaces.
Observation of the types of standard library member functions is never kosher.

4.5. Library support
Reference-semantic standard getter functions such as std::get and std::array::front are
lifetime-qualified. Enumeration of all cases is beyond the scope of this proposal.
Forwarding call wrappers, such as the call operators of std::reference_wrapper and the
bind expression class, may uniformly apply export[auto] for all lifetime-specifiers and the
accessor-specifier. (A reference_wrapper does not need an accessor-specifier, though.)
Arguments which are retained in a wrapper, such as by functions std::bind or std::async,
or classes std::function or std::tuple, should be lifetime-qualified by export[auto] as
well.

4.5.1. std::function

std::function must be specialized over signatures with lifetime qualifiers. (For such
qualifications in general, see P0045 §2.) The given signature applies to its member call operator.
The behavior differs only at call sites that observe lifetime extension, so type-erased dispatch
islands need not be parameterized over lifetime qualification. The signature may apply a lifetime
qualifier to the implicit object parameter, indicating that the return value may reference the type-
erased functor object.
The generic conversion constructor of std::function is declared explicit if the
encapsulated function call would be lifetime-associated with a parameter that does not have
lifetime qualification. Thus, implicit and explicit conversions between std::function types
work analogously to conversions between function types.

5. Usage
Lifetime qualification describes dependence between different variables. It need not be used for
functions and class interfaces involving only self-contained values. Otherwise, export[auto]
should deduce the right thing when each return statement mentions all its input parameters.
Apply export[auto] to any reference, pointer, or similar parameter that can reach the return
value. Mention it with perfect forwarding when the return value could refer somewhere.

���19

This proposal does not demand immediate adoption everywhere. It is a non-breaking change, and
opting-in to the feature will be done on a case by case basis. Generic and foundational facilities
should be updated first, and see the highest impact. More ordinary, value-heavy classes should
care less, aside from reference-semantic accessors which this proposal sugars.
Failing the easy cases, and given the motivation to apply annotation, the “hard” usage is:

5.1. export

If destroying a given parameter after the function return would invalidate the result value, then
mark that parameter as export.
This covers the most familiar cases: parameters that are accessed by an accessor function,
references retained by a constructor, returning *this for method chaining, a container parameter
that yields an iterator, range, or view, etc.
It is harmless to apply export to accessors that return by value. For a template member function
that could specialize to return a pointer (or pointer-like) value that ultimately reaches a live
temporary, it is better to export the owning parameter.

5.2. export[=]

If the result type is reference-semantic (it refers to or reaches some non-owned object), and the
result and a given parameter may both reach object(s) from the same owner, then mark that
parameter as export[=].
This covers most operations on iterators, smart pointers, query classes, and similar objects used
for navigating data structures. The term “referent” and “identified by” are used loosely. The
purpose of this sort of association is to connect a chain of navigation operations back to an
accessor method of the actual owning container.
export[=] may be considered as advanced usage. In the worst case, using export instead will
only cause some pointer-like objects to live longer, and such objects tend to be small and passive.
(Owning and shared-ownership smart pointers are not passive, but implementing such things is
advanced usage.)

6. Polymorphic lifetime analysis
Lifetime extension is a feature unique to C++, to the author’s knowledge. Static analysis of
variable lifetimes for diagnostic purposes has been studied in full-scale systems since the
mid-1990’s. This deeper analysis attaches annotations to object types, introducing a sort of
polymorphism where compatibility of annotated types is determined by annotation “subtyping.”
The subject of such analysis is to determine that no reference outlives its referent. In addition to
basic safety, ideally it extends the reach of ordinary programmers, to write well-disciplined code
leveraging scoped memory pools or “regions.” Region-based memory management offers the
best of garbage collection and heap allocation.

���20

Initial success was accomplished by extending the functional language ML. The goal was to
introduce regions to reduce reliance on mark-sweep garbage collection. Later, the C-derived 6

Cyclone language applied the same technique to improve the safety, determinism, and
performance of heap allocation. Recently, the Rust language was established specifically as a 7

competitor to C++, with lifetime annotations and analysis in the initial feature set. However, it is
still early days for the wider software development community, and best practices in Rust are
still being developed.
In the past year, Microsoft has been developing similar lifetime diagnostics in MSVC. The
compiler determines most annotations automatically, which the user may amend with the
[[lifetime(other_variable)]] attribute.
The current proposal extends to encompass rich lifetime annotations, following the attribute
initiative. Whereas lifetime-association is currently defined as a relationship between a result and
its operands, it may also apply between operands alone.
lifetime-specifier:  

export  
export (lifetime-association-seq)  
export (auto)

lifetime-association-seq:  
lifetime-association  
lifetime-association-seq , lifetime-association

lifetime-association:  
lifetime-id = &opt

lifetime-id:  
identifier  
this  
return

In this schema, the optional (=) indicating evaluation is extended to allow a sequence of
parameter names. Each parameter is potentially “assigned from” any other parameter, with this
standing for the implicit object. To avoid awkwardness, return explicitly nominates the return
value for association, whereas currently it is the only alternative. An explicit & punctuator
specifies that an address is used, which is currently the default. The lifetime-id: identifier
production preserves the existing lifetime-specifier: export[lifetime-id] production. When used
in a deduced context for reflection, it likewise allows pattern-matching on more sophisticated
lifetime associations.
/* Take a reference-semantic object, a first list of objects, and a second list of pointers to objects.  

Store the value of the object in the first list and the address of the object in the second list.  
Static analysis will guarantee that the object’s referents life as long as the first list, and the object
itself lives as long as the second list. */

void add(export[objlist =, ptrlist = &] foo & obj,

 Tofte and Talpin. Region-Based Memory Management. Information and Computation, 132 (1997).6

 Grossman et. al. Region-Based Memory Management in Cyclone. ACM PLDI, 2002.7

���21

http://www.cs.umd.edu/projects/cyclone/papers/cyclone-regions.pdf

std::list< foo > & objlist, std::list< foo * > & ptrlist) {
objlist.push_back(obj);
ptrlist.push_back(& obj);

}

/* Take a function returning void with at least one parameter. Return a call wrapper function which
returns the first argument. */

template< typename p0, typename ... p >
auto return_arg1_fn(void (*f)(export[L0] p0, export[L] p ...))

// Preserve preexisting lifetime specifiers, and add an association from first param to return value:
-> p0 && (*)(export[L0, return = &] p0, export[L] p ...) {

static auto fglob = f;// For illustration ;v) (This global deserves a lifetime annotation!)

return + [](p0 a0, p ... a) { // Lifetimes could be annotated here…
fglob(a0, std::forward< p >(a) ...));
return std::forward< p0 >(a0);

}; // … but the implicit conversion on function pointers works just as well.
}

Lifetimes should remain ordered, despite this extension, so function-type conversions (§4.1
above) will continue to work. Ordering is a cornerstone of the overall analysis scheme.

7. Conclusion
Temporary lifetime extension has long provided a uniquely proactive solution using shallow,
opportunistic lifetime analysis. It has considerable untapped potential. This proposal attempts to
describe an incremental step in code expressiveness and compiler insight. It is yet
unimplemented, and it was heavily revised and extended at the last minute to account for the
possibility of deeper lifetime analysis, which was revealed days before the submission deadline.
This is essentially a preview and a strawman intended to encourage review and to guide
prototype development.
The benefits include

• fewer surprising dangling references (it bears repeating),

• better dangling-reference error diagnosis,

• better adaptor templates that need not perform complete encapsulation,

• improved language uniformity, and

• more diverse scope-based facilities in the future of the C++ language and its libraries.

7.1. Acknowledgements
Richard Smith provided helpful review and insight, especially on inroads in this issue by N3918
and lifetime qualification of non-reference parameters. He previously explored the design space.

���22

At EWG review in Urbana 2014, Chandler Carruth raised the issues of generic and dynamic call
wrappers, namely std::function. Ville and others raised virtual functions. Gaby suggested
that exception specifications are a poor model. These concerns pointed the way forward.

Revision history
N4221, 2014-10-10: Initial revision.
P0066, 2015-09-28: Use strong typing instead of analogy to weak exception-specifications.  

Move the export keyword after function parameter attributes.  
Add export[auto] and export[identifier] for reflection.  
Add export[const] and covariant accessors for convenience.  
Add export[=] for efficiency.  
Remove qualified type restrictions and decay rules of lifetime specifiers.  
Simplify lifetime association rules.  
Outline essential library support.  
Rewrite and expand text.

���23

