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Overloaded and qualified std::function
std::function supports exactly one function signature at a time. Multiple, overloaded 
signatures have many uses: exposing several functionalities of a class, discriminating between 
access as const, non-const, rvalue, lvalue, etc. Several third-party libraries address the niche, 
but the role of const is controversial and ref-qualifiers receive little attention. This proposal 
replaces std::function<R(P...)> with std::function<Sig...>, where Sig is any type 
allowed for member functions. The const dilemma is resolved without breakage. A quality 
prototype implementation is provided.1

1. Background
Upon reviewing N4159 last November, LEWG resolved (issue 34) to pursue several extensions 
to std::function, including accepting target objects that can only be called as rvalue 
expressions, e.g. std::move( target ) ( arg1, arg2 ), and supporting non-copyable 
target types. This proposal covers the first; for the second please see N4543.
Several libraries in circulation provide polymorphic call wrappers with multiple signatures. 
There even exists the CxxFunctionBenchmark to track which is the fastest. Since const is more 
useful when overloaded against non-const, and && is much more useful with an alternative &, 
this feature is treated simultaneously.
N4159 also raises the issue of const safety in function. For example, this works:
struct delay_buffer {

int saved = 42;    
int operator () ( int i ) { return std::exchange( saved, i ); }    

};
const std::function< int( int ) > f = delay_buffer{}; // No heap allocation.  
assert ( f( 1 ) == 42 );
assert ( f( 5 ) == 1 ); // A const object has changed state.                     

This example is troublesome because the object f is truly const (it’s not only getting accessed 
that way), and the target object being allocated within it should also be truly const. The 
normative problem is that the call operator is const-qualified ([func.wrap.func.inv] 
§20.9.12.2.4  ) but the Callable requirement is applied directly to the value of the target object, 2

not to a const-qualified access path to it ([func.wrap.func.con] §20.9.12.2.1/8).

 https://github.com/potswa/cxx_function; no relation to CxxFunctionBenchmark by Tongari J.1

 Citations in “[cross.ref] §1.2/3” format refer to the working draft N4527.2
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1.1. N4348, Making std::function safe for concurrency
N4348 proposes to mandate a const-qualified access path to the target during dispatching. The 
motivation is not as stated above. Instead, it focuses on [res.on.data.races] §17.6.5.9/3, a library-
wide requirement that functions with no non-const parameters (e.g. function::operator()) 
must not cause the modification of any objects, even through a required callback invocation. 
Unfortunately, treating the target object as const is a non-solution:
1. An even bigger issue, [res.on.data.races]/2, is ignored. The difference is that ¶3 restricts 

modifications through access paths starting with the target object, whereas ¶2 restricts all 
accesses through access paths not starting with the target object. So, given N4348, 
std::cout << "hello"; would be allowed, but still illegal within a target object. (Or 
even a pure accessor like std::cout.good().)

2. Starting from a const-qualified target object access constrains the user very minimally. 
Wrapping a target with std::reference_wrapper strips qualification even if function 
adds it. Indeed, these two call wrappers are equivalent under [res.on.data.races] so any 
const-oriented solution should apply equally to both of them. Indirection through any 
ordinary pointer within the target undoes the solution, as the user obtains a means to unsafe 
modifications. So, many cases afoul of ¶3 will not be caught.

3. It is a breaking change. Well-established use cases must migrate to the new adaptor 
std::const_unsafe_fun, which simply encapsulates a const_cast. When used with 
std::function, it is (at least) a safe cast, despite the name. The adaptor is proposed to be 
immediately deprecated, but without any alternative but to do the const_cast internally. 
So, it foists busywork upon users.

4. The const_cast solution disregards actual race conditions in an attempt to get on the right 
side of an arbitrary rule. The purpose of [res.on.data.races] is to prevent data races, but 
const_unsafe_fun does nothing to encourage the user check for a race and add 
synchronization. Usage gets tagged as “unsafe” regardless of its synchronization (and 
probably falsely), and left at that. So, it distracts from the actual problem.

Most race conditions can only be solved by synchronization. Any sort of synchronization inside 
std::function would add too much overhead just by its presence, even if it never blocked. 
User-supplied callbacks and target objects must be exempt from library implementation rules. 
Users do deserve a solution, because accesses to std::cout in a multithreaded program do 
embody data races — regardless of function. Unfortunately, that requires a critical sections 
library, which is not presented here. This author did consider the problem and posted a critical 
section adaptor class for function objects on std-proposals. However, although that was tricky, 
developing guidelines and educating on the correct usage of critical sections is even harder. A 
collaborator with such experience is invited to help pursue std::critical_section. 

���2

https://groups.google.com/a/isocpp.org/d/msg/std-proposals/ytFmviWm1RY/u0BJBG-0k9sJ


2. Qualified signatures
A signature given to std::function is used verbatim to define its call operator. When a target 
object is adopted, it is checked for compatibility as per Callable ([func.wrap.func] §20.9.12.2/2), 
with the additional constraint that any cv-qualifier-seq or ref-qualifier in the signature is applied 
to the function object. If no ref-qualifier is present, then & is used. The critical expression 
becomes:

INVOKE(declval<F cv-qualifier-seqopt ref-qualifier>(), declval<ArgTypes>()..., R)

This changes classic functions such as std::function<void()> so that the call operator loses 
const qualification, and rendering std::function<void()> const& uncallable. This 
breakage is remedied by an auxiliary call operator with the const qualifier, but potentially with 
a [[deprecated]] attribute. The fix applies only to signatures with no qualifiers, so 
std::function<void()&> does not implement an auxiliary void() const& signature. The 
auxiliary function essentially encapsulates a const_cast<function*>(this) expression.

// Error, Target does not support given signature:                                    
std::function< void() const > cf = []() mutable {};

std::function< void() > f = []{}; // OK                                 
f(); // OK                                                             
auto const & fcr = f;
fcr(); // Deprecation warning: Legacy, loss of const safety.                            

std::function< void() const > cfgood = []{}; // OK                      
auto const & fcrgood = cfgood;
fcrgood(); // OK                                                       

2.1. const compatibility
The const-unsafe behavior happens when a user passes a std::function by const& reference 
instead of by value or forwarding. This may be widespread. Therefore we must consider whether 
the legacy support should be normatively [[deprecated]], §D-deprecated, or merely 
discouraged. Note that a conforming implementation cannot reject a program for making a 
deprecated call, because attributes are limited to hint-level semantics. Conversely, it is the 
implementation’s prerogative to add a warning (such as by [[deprecated("uh-oh")]]) to 
any suspicious standard library function; this does not affect conformance.
Whenever the const-correctness issue is diagnosed, users should be informed of three solutions. 
Adapted from the documentation of the prototype library:
1. Pass the function by value or forwarding so it is not observed to be const.

This has always been the canonical usage of std::function (and all Callable objects). 
This fix can be applied per call site, usually without affecting any external interface.

2. Add a const qualifier to the signature. This explicitly solves the problem through greater 
exposition and tighter constraints. It requires that the target object be callable as const.
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This is usually a good idea in any case, for functions that are not stateful. Ideally, 
function< void() const > should represent a function that does the same thing on 
each call. Having function< void() > const means that a call may change some state, 
but the wrapper doesn’t have permission to do so. (This is the crux of the issue.)
If the target needs to change, but only in a way that doesn't affect its observable behavior, 
consider using mutable instead. Note that lambdas allow mutable, but the keyword is 
somewhat abused: the members of the lambda are not mutable. It only makes the call 
operator non-const. A class must be explicitly defined with a mutable member.

3. Consistently remove const from the reference which gets called. Non-const references are 
the best way to share mutable access to values. More const is not necessarily better. Again, 
this reflects greater exposition and tighter constraints.
If a user must use a const_cast, do so within the target call handler, not on the function 
wrapper which gets called. This allows the hack to be applied once and for all, and affecting 
the narrowest set of objects. The validity of const_cast depends on whether or not the 
affected object is truly const, and even when the wrapper is, the target may not be.

These recommendations should truly improve the quality of the affected code. Regardless, the 
status quo may be maintained indefinitely by selecting a lesser level of deprecation.

2.2. volatile

Objects of volatile-qualified class type exist, albeit rarely. There are volatile-qualified 
member overloads in std::atomic. Such signatures are allowed for function as well. Calling 
a wrapper by a volatile access path invokes no particular special semantics aside from using a 
likewise-qualified access path to the target object. The wrapper may run slightly slower if it 
inadvertently applies volatile to itself, but this should not be construed as a measure of safety. 
It is unlikely that the object model, the strict aliasing rule, and data race avoidance would permit 
asynchronously reconstructing the target object (even changing its type) across all platforms.

2.3. Conversions
Safety is generically guaranteed in conversions between std::function specializations 
differing only in qualifiers, but this operation consumes resources. As with any valid conversion 
between std::function specializations, the target becomes doubly wrapped and dispatch will 
proceed through two indirect calls (or any number, depending how many conversions are 
dynamically executed).
std::function< void(int) > a = [](int){};
std::function< void(long) > b;
for (;;) { // Memory leak since C++11                                       

b = a;    
a = b;    

}

Such a loop cannot happen between, say, <void(int)> and <void(int) const>, so this is 
not a pressing issue. Adding const safety per §2.1 will never lead to memory leaks. Strongly-
typed noexcept (N4533) creates new function types but does not verify the exception safety of 
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function bodies, so cyclic wrapping of noexcept(true) and noexcept(false) is possible, 
if not particularly likely. Likewise between <void(int)> and <void(int)&>.
To allow implementations to combat such leaks, target_type() should be unspecified when it 
would refer to a different std::function specialization. A runtime check could traverse nested 
wrappers and eliminate any complete cycle. It would only need to run (or exist) in the corner 
case of a suspicious conversion. (The prototype library does not implement such measures.)

3. Overloading
Rather than a single template type parameter, std::function accepts a type parameter pack. 
The signature of each type defines one call operator overload, and the function specialization 
exposes the complete overload set. Target objects are checked against all the overload signatures 
as described in §2 Qualified signatures.
std::function< void( int ), void( std::string ) > fis;
fis = [] ( auto && msg ) { std::cout << msg << '\n'; }; // OK           
fis( 42 );
fis( "hello, world!" );
fis({ -1ULL }); // Error: narrowing conversion. (Perfect forwarding is not applied.)         

fis = []( int ){}; // Error: cannot convert std::string to int in call operator.         

std::function< void( long ), void( std::string const & ) > flsr;
flsr = fis; // OK, but double wrapped.                                        
std::function< void( int ) > fi = fis; // OK, but maybe double wrapped.         

The overload set must be valid if it was expressed as a sequence of member function 
declarations. As usual for its preconditions, the library is not required to diagnose this rule. For 
the prototype library under Clang and GCC:
function<void(), void() const &> x; // Undiagnosed error: invalid overloading.      
function<void() const &, void()> y; // Similarly undiagnosed.                 
y = x; // Diagnosis here, revealing that the invalid second signatures were ignored.            

Both compilers are apparently not conforming to [namespace.udecl] §7.3.3/15-16; otherwise the 
problem would have been diagnosed at the declarations of x and y.
The members result_type, first_argument_type, second_argument_type and 
argument_type are each defined if none of the signatures would give them conflicting 
definitions. So, std::function<void(int), int(long, long), int(short, long)> 
does not define result_type or first_argument_type, but has argument_type as int 
and second_argument_type as long. (Note, this functionality has not been implemented in 
the prototype.)
The class std::function<> is well-defined, though not particularly useful. Aside from minor 
differences, it is like fundamentals_v1::any. There is no particular reason to forbid it, and 
doing so could interfere with templates that mention it without actually creating an object.
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3.1. Uniqueness
The behavior of a function specialization is determined by the set of given signatures, but its 
type identity is determined by the sequence of signatures. Ideally, permutations of the same 
overload set should be normalized to a canonical order. This may be considered separately for 
function itself and for the hidden internal classes which manage each target type.
Double-wrapping alleviation depends on detecting that two wrappers share compatible wrapped 
target object types. Like wrappers sharing similar signatures (§2.3 Conversions), ones with the 
same canonicalization should not double-wrap each other, and it would help the library to specify 
that double-wrapping is not guaranteed.
The language currently lacks a facility for sorting type-lists, but alias templates do provide the 
means to map multiple template-ids to the same type. In the long run, it may help if 
std::function<T...> is specified to be an alias to std::canonical_function<U...> 
(with sizeof...(T) == sizeof...(U), since duplicates are not allowed), to an 
unspecified type, or even to some std::type_erasure modeled after Boost.TypeErasure. The 
most visible difference would be in extracting the signature type from a function 
specialization: introspection would need to be performed on canonical_function instead. 
However, most such cases are covered by first_argument_type etc. anyway, and minding 
the alias template would be only a minor consideration in the broad problem of general N-ary 
function signature introspection. Another minor difference is that a friend class declaration 
cannot name an alias template; a friend typename declaration is needed instead. Users should 
not do either. The impact of canonical_function should be fairly low.

3.2. const compatibility redux
Each unqualified signature is shadowed by a deprecated, const-qualified overload, per §2, but 
these overloads have lower priority and are hidden by ones generated by explicitly-specified 
signatures (regardless of the order of the template parameter list).
It is possible, but unlikely for an auxiliary overload to affect overload resolution. For example, 
given function<void(int), void(long) const> const &r, the call r('x') selects 
the void(int) signature. Actually seeing this would indicate an underlying problem. Anyway, 
the risk is mitigated as long as the deprecation warning accompanies any implicit const_cast.

4. Implementation
Overloading is difficult to implement within the architectures currently used by GCC libstdc++ 
and Clang libc++. The former stores a function pointer directly within the wrapper type. 
Extending this methodology would yield function specializations with sizeof proportional to 
the number of signatures. The latter stores the function pointer in a vtable by implementing a 
virtual dispatch function. Parameter packs play badly with polymorphic classes; the hidden 
manager for each target type would each generate an intermediate class per signature, with the 
vtables requiring O(N2) space in the number of signatures.
The prototype library achieves compile-time and runtime efficiency by using a global tuple to 
hold a descriptor table for each target type. Ordinary function pointers are smaller than the 
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PTMFs which populate Common ABI vtables; they (not coincidentally) dispatch faster because 
there is no base pointer adjustment; and they can be set to nullptr for various optimizations. 
Also, unlike a vtable, tuple supports data members so target_type may be implemented 
without an indirect call.
A tuple also provides a viable means of ABI versioning. For example, if a library wanted to add 
support for calling swap on target objects, that would require an additional internal function, 
which would ordinarily be an ABI bump. Given a dynamic ABI version field, new versions of the 
library headers could check whether a given target object was generated by the older headers 
lacking erased swap, and fall back on the old code. This legacy support may be dropped with the 
next “real” ABI version.
The prototype library ABI has other advantages over the open-source status quo. Wrapper 
overhead is reduced to one pointer, compared to two in libc++ and libstdc++, and padding is 
eliminated. It supports local storage of nontrivially-copyable and highly-aligned types. No 
special case is used to support the nullptr state. During its development, the author found bugs 
in both libstdc++ and libc++ relating to special cases for targets of pointer type. Having mature 
standard libraries as an initial foundation, the prototype avoided introducing special cases and 
workarounds.
Qualification presents another challenge. Because there is no template facility to inspect only the 
ref-qualifier or one cv-qualifier of a signature, liberally-applied macros generate the templates 
needed to dissect qualified member signatures, so they may be reassembled as non-members. 
Some compile time may be regained in the prototype by more consistently using non-member 
signatures, avoiding the macro technique.
The library simultaneously implements N4543 A polymorphic wrapper for all Callable objects, 
P0043 Function wrappers with allocators and noexcept, and (not complete as of this date) 
P0042 std::re cover: undoing type erasure. It is compatible with the C++11 dialects of GCC 
and Clang, and it is distributed under a generous license with the intention of being used by such 
implementations as a baseline.

5. Conclusion
Overloading within function is eminently useful. Qualified signatures are overdue for uniform 
support of C++11 fundamentals. This is sure to be a popular addition to the library. Not only that, 
it will boost the popularity of ordinary single-signature function, by allowing organizations to 
move away from their own in-house multi-signature solutions.

5.1. Future directions
Besides highly-appropriate uses like enabling move semantics with const& and && overloads, 
the overloading capability allows unrelated functionalities and accessors to be jumbled together, 
ideally (but usually not) sanitized by dispatch tags. A facility like Boost.TypeErasure would be 
more scalable and efficient. Ideally, target object interoperability will be guaranteed between 
wrappers of similar functionality.
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It may be helpful to require that the lvalue- and rvalue-qualified forms represented by a signature 
with no ref-qualifier will both dispatch to the same function. The language provides no such 
facility, to the author’s knowledge. The desired distinction between & and no ref-qualifier 
remains an open question at this time.
Some optimizations and features remain to be implemented in the prototype library. See its issue 
tracker.

5.2. Kudos
Kudos to Geoff Romer for pursuing and advocating the overall direction.
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