
Document number: P0044
Date: 2015–09–17
To: SC22/WG21 EWG
Reply to: David Krauss

(david_work at me dot com)

unwinding_state: safe exception relativity
std::uncaught_exception is now deprecated in favor of std::uncaught_exceptions,
which appears to be a drop-in replacement. Unfortunately, using it as such defeats its purpose. A
class std::unwinding_state is proposed to encapsulate the correct usage. Since there is no
other use for the current count of unwinding exceptions, it is proposed that the class replace
uncaught_exceptions, to restore latitude and freedom of extension to implementations.

1. Background
Sometimes it is expedient to have the destructor of an automatic object behave differently
depending on whether its enclosing scope completed normally or exited by an exception. C++98
included a facility to detect this condition, std::uncaught_exception. Its problem is that,
during unwinding, scopes can still start and complete normally, and exceptions can still be
caught and thrown. It unintentionally turns all unwinding into a different operating environment.
The solution is to somehow associate the object’s scope with the environment of the destructor.
Fortunately, the Itanium common ABI specifies a global variable counting currently 1

propagating exceptions, and this count can tell an object’s destructor whether an exception was
thrown (and not yet caught) since its constructor executed. The constructor saves the count, and
the destructor again observes the count and compares the two values. If they are equal, then the
object’s scope was not interrupted.
The problem was identified perhaps even before the standard was ratified. It has been widely
known since late 1998, when Sutter published GotW 47, Uncaught Exceptions. The solution
came only fairly recently. It has appeared in libraries such as Facebook Folly, and others that
emulate the scope(success) blocks of the D programming language. Such libraries interface
directly with the platform runtime library to obtain the uncaught_exceptions value.

2. Problems
While it is true that std::uncaught_exceptions reflects the current practice, there are few
advantages and many disadvantages to standardizing it directly.

• Incorrect usage is easier than correct usage: search-and-replacing the new function for the old
one appears to work but is a pointless exercise.

 §EH:2.2.2. Note that its mention of uncaught_exceptions is a typo; the text dates to before the 1

function of that name was proposed.

���1

http://mentorembedded.github.io/cxx-abi/abi-eh.html#cxx-data

• It may not be the most efficient solution. The question of scope failure or success can be
answered without storing an integer, when the sentry object is stored on the stack.

• Correct usage requires the user to declare a nonstatic member variable of integer type. This
violates the principle of separation of concerns.

• Incorrect usage cannot be diagnosed, which might otherwise be diagnosable. The strategy only
works on strictly scoped objects, and provides incorrect results if an object with dynamic or
static lifetime is constructed during unwinding.

• Potentially useful information is thrown away. Identifying a particular exception object could
be useful to a debugger or even to the user, but an accounting total cannot do this.

All of these problems are symptomatic of failure to encapsulate. The uncaught_exceptions
interface does too little, yet it is over-specified.
Some of the above points deserve a closer look.

2.1. Temptation
In the current working paper N4527, uncaught_exceptions appears exactly twice outside the
specifications of itself and its predecessor. In [ostream::sentry] §27.7.3.4/4:

“ If (os.flags() & ios_base::unitbuf) && !uncaught_exceptions() &&
os.good() is true…

In [except.throw] §15.1/7:
struct C {
 C() { }

C(const C&) {  
if (std::uncaught_exceptions()) {  

throw 0; // throw during copy to handler’s exception-declaration object (15.3)
}

}
};

Currently there are two examples of incorrect usage, none of correct usage, and no description of
correct usage in [uncaught.exceptions] §18.8.4. (As it happens, §18.8.4/2 also mentions
comparing the result to zero.) So far, the boilerplate for an int original_exception_count
member is enough that it’s easier to leave them out of the standard. Will users not do the same?

2.2. Efficiency
Opportunistic optimizations are possible. Suppose the call stack grows downward, so more
deeply nested functions have stack frames at lower addresses. Unwinding tends to move the
stack pointer upward, but called destructors move it back downward. An automatic object,
allocated on the stack, was created during the current unwinding if and only if its address is
lower than the base stack pointer of the last destructor called directly by unwinding. Thus, the
address of an empty object can be used to determine its dynamic place in unwinding.

���2

Generally, classes are agnostic to object allocation — make_unique is a valid means to a
scoped object. However, most sentry objects are invariably allocated on the stack, and it could be
worthwhile, for example on an embedded system, to leverage this as a real optimization. A sentry
on the stack could be granted smaller layout according to an attribute or only plain alias analysis.

2.3. Alternative implementations
An implementation could just as well maintain a linked list of propagating exceptions, with no
particular need to count them. The ARM EHABI already defines an interface for this, rendering
the internal uncaughtExceptions counter redundant. A lightweight exception handling
mechanism for embedded systems (which has been discussed, but not yet designed) may not
want the extra global.
A debugger or sanitizer could observe the currently-propagating exception pointer and alert the
programmer to particular throw statements resulting in allocations or I/O operations during
unwinding. This could be taken even further, for example, to track persistent resources relating to
aborted operations in a server application.
Estimating all possible interactions with future extensions and ABI implementation strategies is
impossible. Good library interface design avoids this by minimizing specificity, answering the
necessary question as narrowly and directly as possible.

3. Proposal
Remove std::uncaught_exceptions and add a class std::unwinding_state. The
infrastructure of the former is sufficient, but not necessary, for the latter.

class unwinding_state {
public:
 unwinding_state() noexcept;
 unwinding_state(unwinding_state const &) = default;
 unwinding_state & operator= (unwinding_state const &) = default;

~ unwinding_state() = default;

 explicit operator bool () const & noexcept;
};

Define the current unwinding state as follows:

• For each thread, there is a set of valid unwinding state values. When a thread starts, there is
just one such value.

• When an exception is thrown, the current unwinding state takes a new value, distinct from
preexisting valid values for the thread.

• When an exception is caught, the former value of the current unwinding state is invalidated.
The current state reverts to the value it had before the exception was thrown.

Using an invalid value (or a value which is valid on another thread) results in undefined
behavior.

���3

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf

The class is trivially copyable.

unwinding_state() noexcept

Effects: Initializes the current object with the value of the current unwinding state.

unwinding_state(unwinding_state const & in) noexcept

Effects: Initializes the current object with the value of in.

unwinding_state & operator = (unwinding_state const & in) noexcept

Effects: Replaces the value the current object with the value of in.

explicit operator bool() const & noexcept

Returns: true if the value of the object is the value of the current unwinding state.

4. Usage, rationale, and implementation
unwinding_state is typically used as a nonstatic member in a transaction or guard object. It
may be queried in a destructor by using it in a Boolean context.
The accessor function is lvalue-qualified to disallow usage as if(unwinding_state()). The
class behaves with unsurprising value semantics so that transaction objects may be copyable or
movable. A transaction may change its associated scope and expected lifetime by assigning to its
unwinding_state member.
If a transaction outlives its scope, such as if its processing continues on a different thread, it
should be adopted as in trans->m_uw_state = unwinding_state() before any operations
that could lead to its destruction. Implementations are encouraged to minimize false positives
and maximize diagnosis of stale values. Perhaps the facility really belongs inside namespace
this_thread, but such usage is fairly obscure.
In general, users should be reminded that manually flushing or committing an object at the end of
its lifetime may be simpler and safer than doing so automatically in the destructor. Before adding
intelligence to a destructor, always weigh the alternatives.

5. Conclusion and kudos
We need a specific facility for telling whether two points in program execution are separated by
an uncaught throw. Given this, uncaught_exceptions becomes a liability with no remaining
use-cases.
Thanks to Ville Voutilainen for painstakingly clarifying that such mechanisms have applications
besides scope(success) emulation and throwing destructors, and continuing helpful reviews.
Thanks to Andrey Semashev for review and helpful feedback.

���4

