
Document number: P0042
Date: 2015–09–27
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)

std::re cover: undoing type erasure
Type erasure is handling an object from a vague type such as a polymorphic base pointer, a
union, or a void *. Such handles provide a subset of the functionality of the original value.
Often the original value must be recovered for its full functionality (or any functionality at all).
Classes like std::function, any, variant, and optional do more, but still provide some
recovery interface. Unfortunately, these interfaces have not converged. The proposed functions
recover and try_recover unify access to such “sum type” classes just as std::get unifies
access to “product type” or std::tuple-like classes. RTTI semantics are applied to likewise
treat pointers and smart pointers to polymorphic types. A common ErasureClass concept helps to
simplify implementation of new client classes, and even to improve the performance of existing
std::function classes.

1. Motivation
Safely recovering a type-erased value is the same regardless of the handle class semantics. The
handle knows the value’s original type, and the call context has an educated guess as to that type.
An accessor function is called to verify the type and permit access to the object, or else signal a
bad cast. Ideally, const-qualification and value category should be preserved. Non-throwing and
non-checking alternatives are nice to have.
Several handle classes are either standardized or in the pipeline. The functionality and naming
are similar, but their semantic details and level of functionality vary remarkably.

• std::function provides a member function template T* target<T>(). const-ness is
propagated but rvalue-ness is cannot be. Failure is signaled by a null pointer; no exception is
available.

• fundamentals_v1::any provides a non-member T any_cast<T>(value), which can
return a reference (lvalue or rvalue), a pointer, or a T prvalue. It essentially models recovery of
the given object type, followed by a static_cast to the exact template argument type. Thus,
it does not propagate const nor value category, but it can implement an lvalue-to-rvalue cast a
la std::move. Failure is indicated by bad_any_cast, or nullptr in the pointer form.

• variant in N4542 overloads std::get, propagating const and value category as does
get<T>(tuple) — but not both (as in const&&). Unlike tuple, it supports pointers and
throws bad_variant_access. A bad pointer cast yields nullptr. Retrieving a reference
type indicates that the erased type is a reference, not static_cast semantics like any.

• fundamentals_v1::optional may be considered as a limited case. It represents the “sum”
of the given type and void. It provides a member function value propagating const and

���1

value category (or even both). Failure is punishable by bad_optional_access. There is an
unsafe, pointer-like accessor interface accessor in the form of operator-> and operator*,
with the latter also propagating const and value category (unlike pointers).

Most of the differences between these interfaces do not reflect differences between the classes.
The library does not need a separate bad_*_access exception type per erasure class.
Translation of a handle back to an object should follow a safe, uniform, easily-memorable
pattern. Erasure types should be generically substitutable: variant is just a fast and restrictive
any, function is merely any with a call operator, and optional is a sugared variant over
one type. Although it’s uncommon to need such generality in function templates, in refactoring
programmers often switch one vocabulary type for another.
Besides inconvenience, the diverging interfaces represent bloat in the library implementation,
since little functionality can be shared between them. They also reflect excessive design effort
and development churn, which slow the standardization process.

2. Semantics
The underlying model is of a memory blob that may or may not hold a value of a given type. An
unsafe handle to such a blob is a void *. Safety is regained by stating an expected type and
determining whether it matches the type of the value last placed into the blob. Then, the type and
the void * value may be combined with qualifiers (const, volatile, &, &&) to yield a
contextually-appropriate value of object type. Overall, the function re cover behaves as an
accessor.
For value-semantic classes like any, the expected type is usually an object type. In such cases,
re cover yields a reference to the complete object directly and uniquely owned by the handle.
Recovering an lvalue reference (recover<T &>) yields a value not owned by the handle, which
may be a subobject. A reference-erasing type may offer a special guarantee, for example, that it
recovers a most-derived object (e.g. polymorphic raw pointers or observer_ptr<T>), or it may
simply fetch the glvalue assigned to it (e.g. variant<T &>). In any case, the const qualification
of a recovered reference is unrelated to that of the non-owning handle. Recovering an rvalue
reference expresses indirect ownership: it propagates value category as object types do, but not
const qualification.
If the actual type is not as expected, a bad_recovery_access exception is thrown or a null
reference is returned. The latter allows efficiently testing a sequence of cases in a type-switch.
Each class specifies what types it can erase. For example, function allows certain object types,
but never references, which are preempted by reference_wrapper. An observer such as
observer_ptr may allow certain reference types, but never objects, because it cannot model
ownership. Any assortment of types can be distinguished by variant.
Bare void * by itself falls short because it completely forgets the actual type of its referent. The
model does allow a class to match several alternative expected types to one blob, but only as
long as the expected types all certainly have objects at the same address. This is seldom
satisfiable from the perspective of a generic wrapper. However, a user with knowledge of the
erased type may fare better (see next). A class capable of reaching other (sub)objects of statically
unknown, erased type, related to the object at the blob address, without first recovering that

���2

complete object, may expose the “children” as separate erasure handles. Such technique is
beyond the scope of this paper, but see Further work (§7) for some elaboration.
Users occasionally want to provide for their own safety, when it can be independently assured
and recover adds excessive cost or requires the wrong type. In addition to re cover, separate
access to the class’ built-in void * value and type checker function enable this flexibility.
Other forms of type erasure are handled by cast operators such as dynamic_cast or specific
functions like use_facet, and may be wrapped in adaptors like dynamic_pointer_cast.
These vary in meaning, definedness, and existence depending on the semantics of the arguments.
This proposal does not attempt to unify various preexisting facilities, but only the sizable and
growing cluster of classes matching the model.

3. Proposal
This proposal comprises a common interface provided by type-erasure classes, and a common
library facility for accessing type-safe erasures.

3.1. ErasureClass concept
An ErasureClass is a type conforming to the requirements in the following table. Given an
ErasureClass type E (which may be a cv-qualified type) with objects e and v, where v represents
a type-erased value of type T; and given U, a type not presently erased by v:

None of these expressions may throw an exception.
complete_object_address() shall point to an object owned by the ErasureClass handle
object *this, which is not a subobject of, or owned by, any other object exposed by the handle
class interface. In practical terms, it is the object uniquely managed by the handle.
referent_address() shall not point to an object that is const if the handle is a const
object and the erased type is a reference to non-const-qualified type. It shall point to an object
that is owned by the handle if the erased type is an rvalue reference type.
If one of the *_address functions is disallowed for all values of a class, it need not be declared.

Expression Type Semantics

v.complete_object_address() cv void * Requires: T is an object type. Points to
the type-erased object.

v.referent_address() cv void * Requires: T is a reference type. Points to
the type-erased referent.

e.verify_type<void>() bool Equal to true if e does not have any
type-erased value, else false.

v.verify_type<T>() bool Equal to true.

v.verify_type<U>() bool Requires: E is capable of erasing type U.
Equal to false.

���3

The cv-qualification of a handle may affect the value of verify_type<T>(). This allows
reference erasures a degree of const propagation, requiring the user to specify correct qualifiers.
For a class type volatile E to conform to ErasureClass, E must provide volatile-qualified
overloads. Cv-qualification shall not affect the value of *_address().
Users should seldom want to use the ErasureClass interface directly. It is mainly for the benefit
of re cover. Directly calling referent_address or complete_object_address is akin to
converting a handle to type void const *. They need not implement const propagation.

3.2. Training wheels
Some simple classes that allocate padding before the erased object cannot implement an
*_address accessor per ErasureClass, but are able when given the erased type. (This is a
fixable problem in general. See Compatibility, §4.1.) If an *_address() call is unimplemented
for a class, then recover<T> will try the same call with an explicit template argument,
*_address<T>(). Taking this T is considered as lower quality of implementation.

3.3. re cover

re cover verifies that a given type is one currently being stored in its argument. It retrieves the
object address and returns a reference to the result with the given type, propagating const
qualification and value category from the function argument to the template argument. If the
verification fails, it throws a bad_recovery_access exception.
If the function argument is an ErasureClass or it conforms to the “training wheels” interface, its
members are used to verify the type and obtain the address. If the argument is a pointer to
polymorphic class type, the typeid operator and dynamic_cast<void*> are used to get a
handle on the most-derived object.
The return value category is determined by reference collapsing, like accessing a reference
element of a std::tuple. The result is an xvalue if both the explicit template type parameter
and the function parameter are not lvalue references. Const qualification does not propagate
given a reference type parameter; the cv-qualification within the reference type is used verbatim.
Note that cv-qualifications are part of the erased type, so re cover<foo const>(e) may fail if
the erased type of e is foo, even if e is a genuinely constant object and the foo is allocated
within its read-only bytes. The cast follows semantics defined by the class, and const propagation
ensures safety in all cases. Conversely a non-const ErasureClass may recover a const-qualified
type, provided it grants permission to do so.
try_re cover avoids the potential exception by returning a nullable reference. Unfortunately,
the complete specification of its return type is beyond this proposal. It behaves like a pointer in
implementing an operator* which yields the referent, and a conversion to bool which reveals
whether dereferencing is well-defined. The difference from a simple pointer is that the
dereference operator propagates value category. For example:
if (auto r = std::try_recover< std::string >

(std::forward< E >(e))) { // If e contains a string…
 my_list.push_back(* std::move(r)); //… forward it to the end of the list.
}

���4

Support for *std::move(r) instead of only std::move(*r) enables forwarding through the
recovered nullable reference.

template< typename T, typename ErasureClass >
unspecified try_re cover(ErasureClass cv ref e) noexcept; // ref is & or &&.

The proposed function template signatures are informative: the second template type parameter
may include cv- and reference qualifiers, such that e.g. static_cast<int const& (*)
(any const&)>(&std::try_recover< int, any >) may not be a valid expression.
Requires: ErasureClass is capable of erasing T. (Thus, T shall not be void. A class may not

assign semantics to “erased values of type void,” and the try_recover implementation
should diagnose an attempt to use re cover< void >(& e) as an accessor.)

Returns: A value of unspecified type defining a contextual conversion to bool and a dereference
operator. If e->verify_type< T >() is false, the Boolean conversion yields false.
Otherwise, the Boolean conversion yields true and the dereference operator yields
static_cast< T cv ref >(* p), where p is obtained as follows: 
• If T is an object type, let p be (T cv *) e->complete_object_address(). 
• Else, let p be (remove_reference_t< T > *) e->referent_address(). 
Note that these pointer cast expressions may implement const_cast, and cv is ignored
in T cv ref if T is a reference type.

template< typename T, typename Poly >
unspecified try_re cover(Poly cv * e) noexcept;

Requires: T is of the form U cv & where U is an object type and cv is the same as in the
signature. Poly is a polymorphic class type. is_base_of<Poly, U>::value is true.
(Note that this function disregards base class access qualification and tolerates base class
ambiguity.)

Returns: A value of unspecified type defining a contextual conversion to bool and a dereference
operator. Unlike the foregoing overload, this type may be simply T cv *. If typeid(U)
!= typeid(*e), the Boolean conversion yields false. Otherwise, the Boolean
conversion yields true and the dereference operator yields * static_cast<T cv *>
(dynamic_cast<void cv *>(e)).

template< typename T, typename E >
auto && re cover(E && e);

Requires: try_re cover< T >(forward< E >(e)) is well formed.
Effects: Let p be try_re cover< T >(forward< E >(e)). If !p, throw an object of

class bad_recovery_access. Otherwise, return *p (which may be an xvalue).

class bad_recovery_access : public exception {
public:

virtual const char* what() const noexcept;
};

���5

The class bad_recovery_access represents an exception, in the usual fashion. It is suitable
for use by classes such as optional, variant, function, etc., directly or as a base class of
exceptions defined for failures of their specific functionalities.

3.4. Applicability
std::function, and also any and optional from the Fundamentals TS v.2 will conform to
the ErasureClass interface. Before its adoption, variant should also be adjusted. Third-party
libraries like Boost.TypeErasure are encouraged to adopt the interface. The concept is designed
to be easy to retrofit to user libraries, but more than this, to serve as a basis for new classes.
Classes such as function and any that identify erased types by typeid shall not allow it to
strip reference-and cv-qualification from the explicit template argument to verify_type. Since
they cannot manage const objects or references, their implementations of verify_type should
diagnose such type arguments by static_assert.
Pointers observing polymorphic objects such as shared_ptr<cv T> and observer_ptr<cv
T> support ErasureClass by implementing verify_type<cv U &> as typeid(ref) ==
typeid(U), and referent_address by dynamic_cast<void *>(&ref). verify_type
should statically assert is_base_of<T, U>. Neither function is implemented by their
specializations over non-polymorphic classes.
On the other hand, unique_ptr<T> type-erases both U and U&&, since it typically knows its
own complete object, and since it is a non-const-propagating handle, respectively. For
polymorphic T, its ErasureClass interface works as for observer_ptr, but with rvalue
references instead of lvalue. For non-polymorphic T, unique_ptr<T>::verify_type<U>
determines an exact match as by using std::is_same.

4. Rationale
A new interface is proposed because none of the existing class interfaces can be suitably
extended. The maximum extent of common functionality is brought into the generic recover.
ErasureClass is designed to provide useful primitives at trivial implementation cost.
ErasureClass accessors
“Internal” void * values are exposed because they are a primitive, common to erasure classes
based on memory blobs, and in some cases they are useful to programmers. Not only do
complete_object_address and referent_address provide the fastest way to recover the
contents of an erasure when the type is certainly known beforehand, they allow a degree of
auxiliary polymorphism when the erased object or referent of unknown type is known to share its
address with an object of known type, for example the initial member of a standard-layout class,
or a singly-inherited base class subobject under common ABI guarantees.
For example, several functor classes might contain a bound argument value of a given type. If
they use a common layout, the argument may be found given only a std::function wrapper.
Separate “object” and “referent” functions are provided to reflect whether or not a handle owns
its blob, which is significant to deciding the safety of object representation access in the absence

���6

of confirmed ownership and const-qualification. Classes which erase arbitrary reference and
object values may need to implement them differently — see Examples, §5.
Const propagation is not specified for members, to simplify the implementation of conforming
classes, and because it is not helpful to the implementation of re cover. Note that a non-const
reference value may be retrieved from a const erasure object.
Type verification
No type_info accessor is provided because it would be both expensive and restrictive. It
would require variant to build a lookup table. It would muddle the semantics of references and
cv-qualification, which are stripped by typeid. It would preclude multiple simultaneous values,
for example a class capable of erasing a standard-layout derived object and recovering a base
subobject . On the other hand, variant::verify_type may be implemented without RTTI. 1

Reliably determining the success of an access is what verify_type does, no more, no less.
Compile-time diagnosis of impossible type checks is encouraged to avoid unexpected negative
results at runtime. It is an error to ask an object-type eraser like any to recover a reference.
Disengagement is checked by verify_type<void>(), as all the surveyed classes have varying
degrees of such a service. Absent other type-erased functionality, knowing that an erasure is not
empty is unhelpful without knowing the erased type. This is why no more specialized interface is
required (such as operator bool). Nevertheless, the caller may well have narrowed the
possibilities down to one particular type or the empty state. The intent is that
verify_type<void>() should be faster than the general verify_type<T>(), such as by
avoiding type_info comparison in function or any. On the other hand, it is also valid to
implement it uniformly using RTTI, and those classes do already use the value typeid(void).
Member interface vs. non-members
The class interface comprises only member functions, to simplify implementation and to reduce
namespace pollution. If ADL were used, the interface names would effectively be reserved in
user namespaces containing ErasureClasses. Also, ADL can be fragile if a user defines an
indiscriminate template, expecting it to be found only when the immediate argument is their own
class, and then an unexpected association occurs e.g. via class template arguments. A class
member named recover would hide the unqualified name. It is better to avoid ADL.
Accessors in namespace std for the ErasureClass interface are not proposed because they
would add bloat but little value. However, they may be useful for raw pointer types, so the door
is open for a follow-on proposal.
The primary function, re cover
ADL is also not used for std::re cover, so it may (and should) be used as a qualified name.
The complicated process of defining it separately for individual classes is the problem that
inspired this proposal. If necessary in the future, platforms (or the standard library) may define
compatibility with additional classes or generic interfaces. For example, variant in N4542
supports retrieval by numeric index to std::get, an interface that could map directly to
recover.

 Reliance on common ABI guarantees on single inheritance may yield more practical examples.1

���7

re cover approximates member access semantics in the same way as std::get. Typecasts
should be orthogonal to each other, so it is inappropriate to combine erasure recovery with user-
specified adjustment to cv-qualification and value category, as does any_cast. The name
recover_cast was considered and rejected.
The return type of try_recover
A nullable reference with rvalue propagation support is not very exotic, but no such thing is yet
standardized. N4542’s variant is capable of implementing this, but an optional<T&&> class
would be more appropriate. However, no optional for reference types has yet been accepted.
For the sake of efficiency and ABI forward-compatibility, implementations are encouraged to use
a type with the same layout as a single T* pointer.
Although the raw polymorphic pointer overload may return T cv * in this proposal, uniformity
with the other overload (which handles observer_ptr using equivalent constraints and
semantics) may be preferable.

4.1. Compatibility
ErasureClass is the fundamental basis for recover. It accommodates a wide variety of classes,
although its constraints are narrow. Generally speaking, an owning handle class should be able to
find the storage of its object, without being given its type, because it should be able to destroy
that object. In most cases, the storage address is fixed by a union or a void *, or a virtual (or
similarly indirect) function already exists to find it.
The only less-capable classes known to this author are ones that place the type-erased object in a
struct but not at its beginning: for example, after a discriminating value for an enclosing
union. Or, in a polymorphic erasure object with no accessor function, and no small-object-
optimization space in the wrapper for a shortcut pointer. These can be worked around, at the
expense of changing the ABI but not losing any efficiency (in effect, only padding is shuffled):
In the first case, move the discriminating value out of the union.
In the second case (which happens to describe Boost.Any), move the erased object out of the
polymorphic control class. Call operator new and use placement new so the target object
immediately follows the emptied control object, which invariably has the size of one vtable
pointer. Point the wrapper at the erased object, and when the control object is desired, find it by a
negative array index. On destruction, call operator delete on the address of a more-negative
array index, to account for the padding at the start of the allocation block.

Note that experimental::any in libstdc++ and libc++ have no such issue. Their architecture
is completely different.

���8

Boost.Any

Boost.Any 
 + ErasureClass

Bytes offset from wrapper pointer
-8 -4 0 +4 +8 +12 +16

vtable pointer padding object

Considering that ordinary users may encounter such problems, the “training wheels” accessor
function templates are specified. However, they are not part of the ErasureClass concept.
Standard library classes are still required to provide the object or referent address without being
given its type.

5. Examples

5.1. Usage
Here is a basic optional-like class, offering less proxy-like behavior than experimental::
optional — the wrapper values are consistently held distinct from the wrapped. Assignment is
implemented as disengagement and reengagement; in this way references are supported. Its
reference support is sufficient for use as a try_recover return type (assuming that recover is
not implemented in terms of try_recover).
template< typename ref >
class refwrap {

void const * pointer;
protected:

typedef refwrap wrapper;

refwrap() : pointer(nullptr) {}
explicit refwrap(ref r) : pointer(& r) {}
refwrap(refwrap &&) = delete;

public:
void const * referent_address() const { return pointer; }
explicit operator bool () const { return pointer; }

};

template< typename obj >
struct objwrap {

std::aligned_storage_t< sizeof (obj), alignof (obj) > storage;
bool engaged;

protected:
typedef objwrap wrapper;

objwrap() : engaged(false) {}
explicit objwrap(obj o) : engaged(true)

{ new (& storage) obj(std::move(o)); }
objwrap(objwrap &&) = delete;
~ objwrap()

{ if (engaged) ((obj &) storage).obj:: ~ obj(); }
public:

void const * complete_object_address() const { return & storage; }
explicit operator bool () const { return engaged; }

};

template< typename value_t >

���9

class opt
: public std::conditional_t< std::is_reference< value_t >::value,

refwrap< value_t >, objwrap< value_t > >
{

using typename opt::wrapper::wrapper;
void init(value_t v) {

new ((wrapper *) this) wrapper(std::forward<value_t>(v));
}

public:
typedef value_t value_type; // May be a reference!

template< typename want >
bool verify_type() const {

static_assert (std::is_void< want >::value
|| std::is_same< want, value_t >::value, "Invalid type query.");

return bool{ *this } == std::is_same< want, value_t >::value;
}

using wrapper::wrapper; // Inherit conversion from value_t.
opt() = default;
opt(opt const & o)

{ if (o) init(std::recover< value_t >(o)); }
opt(opt && o) {

if (o) init(std::recover< value_t >(std::move(o)));
o = {};

}
opt & operator = (opt o) {

this-> ~ wrapper();
new ((wrapper *) this) wrapper;
if (o) init(std::recover< value_t >(std::move(o)));
return * this;

}
};

template< typename opt_r > // Non-member dereference. This is missing SFINAE.
auto && operator * (opt_r && r) {

return std::recover< typename std::decay_t< opt_r >::value_type >
(std::forward< opt_r >(r));

}

5.2. Implementation
Here is the core of an implementation of re cover, including reference and const propagation.
“Training wheels” interface support, try_recover, volatile propagation, and class
bad_recovery_access are not shown.
template< typename ErasureClass >
void const * recover_address(ErasureClass & e, std::false_type)
 { return e.complete_object_address(); }

���10

template< typename ErasureClass >
void const * recover_address(ErasureClass & e, std::true_type)
 { return e.referent_address(); }

template< typename T, typename ErasureClass >
constexpr auto && recover(ErasureClass && e) {
 using prop_const = std::conditional_t<

std::is_const< std::remove_reference_t<ErasureClass> >::value,
T const, T >;

 using prop_cref = std::conditional_t<
std::is_lvalue_reference< ErasureClass >::value,

prop_const &, prop_const >;
 using object = std::remove_reference_t< prop_const >;

 if (! e.template verify_type< T >())
throw bad_recovery_access{};

 return std::forward< prop_cref >
(* (object *) recover_address(e, std::is_reference<T>{}));

}

template< typename T, typename Polymorphic >
constexpr auto & recover(Polymorphic * e) noexcept {

using object = std::remove_reference_t< T >;
static_assert (std::is_polymorphic< Polymorphic >::value,

"This function does not support non-polymorphic pointers.");
static_assert (std::is_lvalue_reference< T >::value &&

std::is_const< object >::value
== std::is_const< Polymorphic >::value,
"Only an lvalue reference may be recovered from a pointer, and its const must match.");

 static_assert (std::is_base_of< Polymorphic, object >::value,
"The requested type is not derived from the given pointer.");

if (! e || typeid (*e) != typeid (T))
throw bad_recovery_access{};

 return * (object *) dynamic_cast< void const * >(e);
}

6. Adoption
Redundancy between re cover and class-specific interfaces should be minimized. At present,
the only standard erasure class is std::function; its accessor function::target<T>() is
entirely redundant. function::target_type() adds some value, but it does not come for
free: Unlike it, verify_type<T>() can be implemented without type_info objects, which
potentially have non-negligible equality comparison complexity and executable file overhead.
This optimization (and re cover itself) have been prototyped in the cxx_function library.
std::experimental::any is architecturally similar to function. Its accessor any_cast is
in widespread use deriving from Boost.Any. Unfortunately, any_cast is unsafe with respect to
value category. It happily retrieves an lvalue from an rvalue, making its deprecation is somewhat

���11

https://github.com/potswa/cxx_function/commit/e20b8fe0cdfefb759cce127782b23b236f5e2102

urgent. Although re cover is not a drop-in replacement, static_cast<T>(std::re cover<
std::remove_reference_t<T>>(value)) covers all the safe cases, and such a function
could be kept permanently under the name experimental::any_cast.
recover should be a drop-in replacement for N4542’s get<T>(variant).
bad_recovery_access should be used as a replacement or a common base class of
bad_any_cast, bad_optional_access, bad_variant_access, bad_function_call,
etc. Note that [res.on.exception.handling] §17.6.5.12/2 allows recover to throw subclasses of
bad_recovery_access when operating on standard types.
Since re cover does not use ADL, it may be implemented in namespace experimental.

7. Further work

7.1. Conceptification
The same approach of building on a minimal concept could possibly be applied to smart pointers,
so dynamic_pointer_cast etc. may work with types other than shared_ptr. This may
anticipate formalized Concepts; the library does not need to wait for the language to catch up.

7.2. Constant expressions
Whereas optional and variant work as literal classes, recover cannot be constexpr as it
relies on casting from void* to object type. Compatibility may be enabled by further relaxation
of constant expression restrictions, specifically the case of casting from an object pointer type T*
to void* and then back to T*.

7.3. Shared control blocks
In addition to supporting std::shared_ptr as an observer, it may be useful to expose its
internal owning pointer. re cover could expose the argument to the deleter in the same way that
get_deleter exposes the deleter itself. It would recover the complete shared object more
reliably than dynamic_pointer_cast<void>(p) or re cover<T>(p), which only work on
polymorphic base subobjects. This deserves a separate proposal. First, granting write access to
the shared internal pointer seems risky. Second, it may require additional overhead, as current
libraries do not expose the type of the pointer. Third, the get_deleter erasure interface would
lag behind this new update. It may be preferable to address the pointer and the deleter together,
with a thorough proposal and perhaps a new accessor.
Example (not currently proposed):
struct s { int i; };
std::shared_ptr< int > si;
{

std::shared_ptr< s > ss(new s{ 5 }, make_my_deleter());
si = std::shared_ptr< int >(& ss->i, ss);

} // Access to the complete s object is now irrecoverably lost (without an extension).

���12

auto origin = si.get_owner(); // Further work: shared control block representation.
s & recovered = std::re cover< s >(origin->object); // Got it back!
my_deleter && d // Handle deleter uniformly as well.

= std::recover< my_deleter >(std::move(origin->deleter));

7.4. Calling without explicit template argument
Defaulting the initial template parameter T to ErasureClass::reference_type or
ErasureClass::value_type could be useful to optional or Ranges, enabling syntax like
recover(rng) instead of *rng. (Default parameters are ignored unless they are needed.) This
would need some investigation, especially regarding rvalue range objects.

8. Conclusion and kudos
Type erasure is a common technique deserving a common interface. The divergence of standard-
track facilities, and their many remaining bugs in value category handling, prove that this wheel
is not one to be reinvented. Standardized re cover is a win for usability, extensibility,
implementability, and performance.

Kudos to Ville Voutilainen for helpful review and suggesting the connections to smart- and
polymorphic pointers, and to Vicente Botet for helping to refactor and separate try_recover
from recover.
Thanks to Andrey Semashev for patient discussion, and raising important concerns.

���13

