
Botet Homogeneous interface for variant, any and optional(R1) P0032R1

Document number: P0032R1
Date: 2015–11-05
Project: ISO/IEC JTC1 SC22 WG21

Programming Language C++,
Audience: Library Evolution Working Group
Reply-to: Vicente J. Botet Escriba <vicente.botet@wanadoo.fr>

Homogeneous interface for variant, any and optional (Revision 1)

This paper is the 1st revision of [P0032R0] taking in account the feedback from Kona meeting.

This paper identifies some differences in the design of variant<Ts...>, any and
optional<T>, diagnoses them as owing to unnecessary asymmetry between those classes, and
proposes wording to eliminate the asymmetry.

Contents
History.. 2

Revision 1.. 2
Introduction.. 3
Motivation and Scope...3
Proposal.. 4
Design rationale..5

in_place constructor...5
Differences between the new in_place_t and the old one..6
emplace forward member function.. 7
About empty()/explicit operator bool() member functions..7
About clear()/reset() member functions...8
About a not-a-value any: none...8
Do we need an explicit make_any factory?... 9
About emplace factories.. 9
Which file for in_place_t and in_place?.. 10
Access interface... 10

Open points...10
Technical Specification...10

General utilities library ... 10
Optional objects... 11
Class any ... 11

Acknowledgements.. 14
References.. 14
Appendix.. 14

1

mailto:vicente.botet@wanadoo.fr

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

History

Revision 1
The 1st revision of [P0032R0] takes in account the feedback from Kona meeting.

Next follow the direction of the committee: globally keep the consensual part and extract the
conflicting and less polished part.

• Do we want to adopt the new in_place definition?

It is clear that we want a different name for the emplace function and the tag, however it is
not clear the committee wants the in_place function reference. Nevertheless, the author don't
know how to have the in_place both for optional, any and variant without using function
references, so this paper preserve this design.

Leave optional different from variant and any 6
Member function is emplace; tag type is in_place 13
Both are emplace 6

Do we want to adopt the new in_place definition?

SF F N A SA
1 3 8 0 0

• Do we want in place constructor for any? Unanimous Yes.

• Do we want the clear and reset changes? Yes

How to empty an any or optional?
.reset() 12
.clear() 7
=none (different paper) 7
={} 5
.drain() 1

• Do we want the operator bool changes? No, instead a .something() member
function (e.g. has_value) is preferred for the 3 classes. This doesn't mean yet that we
replace the existing explicit operator bool in optional.

Do we want emptiness checking to be consistent between any/optional?
Unanimous yes

Provide operator bool for both Y: 6 N: 5
Provide .something() Y: 17 N: 0
Provide =={} Y: 0 N: 5
Provide ==std::none Y: 5 N: 2
something(any/optional) Y: 3 N: 8

• Do we want the not-a-value none? No, too much unit types. The committee wants a
separated paper for a generic none_t/none, none_tc_t<TC>/none<TC>.

Do we want none_t to be a separate paper?
SF F N A SA
11 1 3 0 0

2

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

• Do we want the make_any factory? Yes

SF F N A SA
1 9 7 2 0

• Do we want to have a follow up for a concept based on the functions holds and
storage_address_of? Not in this paper.

• Do we want to have a follow up for select<T>/select<I>? Not in this paper.
Considered as invention

• Do we want to have a follow up for the observers reference_of, value_of and
address_of? Not in this paper.

Added a section in the design rationale describing the differences between the new and current
in_place.

Improved the wording and in particular added some missing overloads using
initializer_list.

Added constexpr for has_value.

Added a comparative table on the appendix also.

Introduction
This paper identifies some differences in the design of variant<Ts...>, any and
optional<T>, diagnoses them as owing to unnecessary asymmetry between those classes, and
proposes wording to eliminate the asymmetry.

The identified issues are related to the last Fundamental TS proposal [N4480] and the variant
proposal [N4542] and concerns mainly:

• coherency of functions that behave the same but that are named differently,
• replace the in_place tag by a function with overloads for type and index,
• replacement of emplace_type<T>/emplace_index<I> by
in_place<T>/in_place<I>

• addition of emplace factories for any and optional classes.

Motivation and Scope
Both optional and any are classes that can store possibly some underlying type. In the case of
optional the underlying type is know at compile time, for any the underlying type is any and
know at run-time.

If the variant proposal ends by having nullable variant, the stored type would be any of the Ts or a
not-a-value type, know at run-time. Let me refer to this possible variant of nullable_variant
<Ts...>.

The following inconsistencies have been identified:

• variant<Ts...> and optional provides in place construction with different syntax

3

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

while any requires a specific instance.

• variant<Ts...> and optional provides emplace assignment while any requires a
specific instance to be assigned.

• The in place tags for variant<Ts...> and optional are different. However the name
should be the same. Any doesn't provides in place construction and assignment yet.

• any provides any::clear() to unset the value while optional uses assignment from
a nullopt_t or from {}. This paper doesn't contains any proposal to improve this
situation. A separated paper would include a generic none_t/none proposal.

• optional provides a explicit bool conversion while any provides an
any::empty member function.

• optional<T>, variant<Ts...> and any provides different interfaces to get the
stored value. optional uses a value member function and pointer-like functions,
variant uses a tuple like interface, while any uses a cast like interface. As all these
classes are in someway classes that can possibly store a specific type, the first two limited
and know at compile time, the last unlimited, it seems natural that all provide the same kind
of interface. This paper doesn't contains any proposal to improve this situation. A separated
paper would include a generic none_t/none proposal.

The C++ standard should be coherent for features that behave the same way on different types.
Instead of creating specific issues, we have preferred to write a specific paper so that we can discuss
of the whole view.

Proposal
We propose to:

• Replace in_place_t/in_place by an overloaded function (see [eggs-variant]).

• In class optional<T>

• Add a reset member function.

• Add a has_value member function.

• Add an additional overload for make_optional factory to emplace construct.

• In class any

• make the default constructor constexpr,

• add in_place forward constructors,

• add emplace forward member functions,

• rename the empty function with has_value and make it constexpr,

• rename the clear member function to reset,

• Add a make_any factory to emplace construct.

• In class variant<T>

• Replace the uses of emplace_type_t<T>/emplace_index_t<I> by

4

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

in_place_t<T>/in_place_t<I>)

• Replace the uses of emplace_type<T>/emplace_index<I> by
in_place<T>/in_place<I>.

Design rationale

in_place constructor
optional<T> in place constructor constructs implicitly a T.

template <class... Args>
constexpr explicit optional<T>::optional(in_place_t, Args&&... args);

In place construct for any can not have an implicit type T. We need a way to state explicitly which
T must be constructed in place.

struct in_place_tag {};
 template <class T>

using in_place_type_t = in_place_tag(&)(unspecified<T>);
 template <class T>

in_place_tag in_place(unspecified<T>) { return {} };

The function in_place_tag(&)(unspecified<T>) is used to transport the type T
participating in overload resolution.

template <class T, class ...Args>
any(in_place_type_t<T>), , Args&& ...);

This can be used as

any(in_place<X>, v1, ..., vn);

Adopting this template class to optional would needs to change the definition of
in_place_t/in_place to

using in_place_t = in_place_tag(&)(unspecified);
in_place_tag in_place(unspecified) { return {} };

The same applies to variant. We need an additional overload for in_place

template <int I>
using in_place_index_t = in_place_tag(&)(unspecified<I>);

 template <int I>
in_place_tag in_place(unspecified<I>) { return {} };

Given

struct Foo { Foo(int, double, char); };

Before:

optional<Foo> of(in_place, 0, 1.5, 'c');
variant<int, Foo> vf(emplace_type<Foo>, 0, 1.5, 'c');
variant<int, Foo> vf(emplace_index<1>, 0, 1.5, 'c');
any af(Foo(0, 1.5, 'c')); // (*)

5

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

After:

optional<Foo> of(in_place, 0, 1.5, 'c');
variant<int, Foo> vf(in_place<Foo>, 0, 1.5, 'c');
variant<int, Foo> vf(in_place<1>, 0, 1.5, 'c');
any af(in_place<Foo>, 0, 1.5, 'c');

Note that before any didn't support non-copyable-non-moveable objects like std::mutex. With
in_place we are able to store a mutex in.

Differences between the new in_place_t and the old one

Cost of function reference versus tags

The prosed function reference for in_place_t(&)(unspecified) takes the size of an
address while the previous in_place_t struct tag was empty and so its size is 1. We don't think
this would reduce significantly the performances an believe that it can even perform better, however
some measure would be done if there is an interest.

Possible malicious attacks

Unfortunately using function references would work for any unary function taken the unspecified
type and returning in_place_tag in addition to in_place. Of course defining such a function
would imply to hack the unspecified type. This can be seen as a hole on this proposal, but the author
think that it is better to have a uniform interface than protecting from malicious attacks from a
hacker.

No default constructible

While adapting optional<T> to the new in_place_t type we found that we can not anymore
use in_place_t{}. The authors don't consider this a big limitation as the user can use
in_place instead.

It needs to be noted that this is in line with the behavior of nullopt_t as nullopt_t{} fails
as no default constructible. However nullptr_t{} seems to be well formed.

Not assignable from {}

After a deeper analysis we found also that the old in_place_t supported

in_place_t t = {};

The authors don't consider this a big limitation as we don't expect that a lot of users could use this
and the user can use in_place instead.

in_place_t t = in_place;

It needs to be noted that this is in line with the behavior of nullopt_t as the following compile
fails.

6

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

nullopt_t t = {}; // compile fails

However nullptr_t seems to be support it.

nullptr_t t = {}; // compile pass

emplace forward member function
optional<T> emplace member function emplaces implicitly a T.

template <class ...Args>
optional<T>::emplace(Args&& ...);

emplace for any can not have an implicit type T. We need a way to state explicitly which T must
be emplaced.

template <class T, class ...Args>
any::emplace(Args&& ...);

and used as follows

any af;
optional<Foo> of;
variant<int, Foo> vf;
af.emplace<Foo>(v1, ..., vn);
of.emplace<Foo>(v1, ..., vn);
vf.emplace<Foo>(v1, ..., vn);

About empty()/explicit operator bool() member
functions
empty is more associated with containers. We don't see neither any nor optional as container
classes. For probably valued types (as are the smart pointers and optional) the standard uses
explicit operator bool conversion instead.
We consider any as a probably valued type.

Given

struct Foo { Foo(int, double, char); };
unique_ptr<Foo> pf=...
optional<Foo> of=...;
any af=...;

Before:

if (pf) ...
if (of) ...
if (! af.empty()) ...

After:

if (pf) ...
if (of) ...
if (af) ...

7

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

A lot of people consider that the explicit operator bool conversion is not explicit enough.
An alternative to explicit operator bool() is to use a member function has_value (or
holds).

After:

if (pf.has_value()) …
if (of.has_value()) ...
if (af.has_value()) …

The has_value member function is retained as more explicit and easy to read.

As this proposal is not about any change in pointe-like classes we lost uniform syntax respect to
pointe-like classes. For optional we propose to have both.

After:

if (pf) ...
if (of) ...
if (of.has_value()) ...
if (af.has_value()) ...

Having a uniform interface for pointe-like, type-erased and sum type classes should be the subject
of another proposal. This is because there are other function for which the interfaces are not
uniform.

About clear()/reset() member functions
clear() is more associated to containers. We don't see neither any nor optional as container
classes. For probably valued types (as are the smart pointers) the standard uses reset instead.

Given

struct Foo { Foo(int, double, char); };
unique_ptr<Foo> pf=...;
optional<Foo> of=...;
any af=...;

Before:

pf.reset();
of = nullopt;
af.clear();

After:

pf.reset();
of.reset();
af.reset();

About a not-a-value any: none
The original proposal contained a none_t/none for any. It has been considered that we have too
much unit types and that another paper should take care of a more generic none separately.

8

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

Do we need an explicit make_any factory?
any is not a generic type but a type erased type. any play the same role than a possible
make_any.

This paper however propose a make_any factory for the emplace case, see below.

Note also that if [N4471] is adopted we wouldn't need any more make_optional, as e.g.
optional(1) would be deduced as optional<int>.

About emplace factories
However, we could consider a make_xxx factory that in place constructs a T.

optional<T> and any could be in place constructed as follows:

optional<T> opt(in_place, v1, vn);
f(optional<T>(in_place, v1, vn));

any a(in_place<T>, v1, vn);
f(any(in_place<T>, v1, vn));

When we use auto things change a little bit

auto opt = optional<T>(in_place, v1, vn);
auto a = any(in_place<T>, v1, vn);

This is almost uniform. However having an make_xxx factory function would make the code even
more uniform

auto opt = make_optional<T>(v1, vn);
f(make_optional<T>(v1, vn));

auto a = make_any<T>(v1, vn);
f(make_any<T>(v1, vn));

The implementation of these emplace factories could be:

template <class T, class ...Args>
optional<T> make_optional(Args&& ...args) {

 return optional(in_place, std::forward<Args>(args)...);
}

template <class T, class ...Args>
any make_any(Args&& ...args) {

 return any(in_place<T>, std::forward<Args>(args)...);
}

Given

struct Foo { Foo(int, double, char); };

Before:

auto up = make_unique<Foo>(v1, ..., vn)
auto sp = make_shared<Foo>(v1, ..., vn)
auto o = optional<Foo>(in_place, v1, ..., vn)

9

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

auto a = any(Foo{v1, ..., vn})

After:

auto up = make_unique<Foo>(v1, ..., vn)
auto sp = make_shared<Foo>(v1, ..., vn)
auto o = make_optional<Foo>(v1, ..., vn)
auto a = make_any<Foo>(v1, ..., vn)

Which file for in_place_t and in_place?
As in_place_t and in_place are used by optional and any we need to move its definition
to another file. The preference of the authors will be to place them in
<experimental/utility>.

Note that in_place could also be used by experimental::variant and that in this case it
could also take an index as template parameter.

Access interface
The original paper suggested a possible interface for sum types access. As the subject is quite
contentious, another paper could take care of it separately.

Open points
The authors would like to have an answer to the following points if there is yet at all an interest in
this proposal:

• Are the differences in behavior of the new in_place_t acceptable?

• Where to place in_place_t/in_place? <experimental/utility>?

• Do we prefer has_value/holds?

Technical Specification
The wording is relative to [N4480].

General utilities library
Add in [utility/synop]

 struct in_place_tag {};
 using in_place_t = in_place_tag(&)(unspecified);
 template <class T>
 using in_place_type_t = in_place_tag(&)(unspecified<T>);
 template <int N>
 using in_place_index_t = in_place_tag(&)(unspecified<N>);

 constexpr in_place_t in_place(unspecified);
 template <class ...T>;

10

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

 constexpr in_place_t in_place(unspecified<T...>);
 template <size N>;
 constexpr in_place_t in_place(unspecified<N>);

Optional objects
Remove in_place_t/in_place from [optional/synop] and [optional/inplace]

Update [optional.synopsis] adding after make_optional

 template <class T, class ...Args>
 optional<T> make_optional(Args&& ...args);

 template <class T, class U, class ...Args>
 optional<T> make_optional(initializer_list<U> il, Args&& ...args);

Add in [optional.object]

 void reset() noexcept;

Effects: If *this contains a value, calls val->T::~T() to destroy the contained value;
otherwise no effect.

Returns: *this.
Postconditions: *this does not contain a value.

 constexpr bool has_value() const noexcept;

Returns: true if and only if *this contains a value.

Remarks: This function shall be a constexpr function.

Add in [optional.specalg]

 template <class T, class ...Args>
 optional<T> make_optional(Args&& ...args);

Returns: optional<T>(in_place, std::forward(args)...).

 template <class T, class U, class ...Args>
 optional<T> make_optional(initializer_list<U> il, Args&& ...args);

Returns: optional<T>(in_place, il, std::forward(args)...).

Class any
Update [any.synopsis] adding

11

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

 template <class T, class ...Args>
 any make_any(Args&& ...args);
 template <class U, class T, class ...Args>
 any make_any(initializer_list<U>, Args&& ...args);

Add constexpr on any default constructor

 constexpr any() noexcept;

Add inside class any

// Constructors

 template <class T, class ...Args>
 any(in_place_type_t<T>, Args&& ...);
 template <class T, class U, class... Args>
 explicit any(in_place_type<T>, initializer_list<U>, Args&&...);

 template <class T, class ...Args>
 void emplace(Args&& ...);
 template <class T, class U, class... Args>
 void emplace(initializer_list<U>, Args&&...);

Replace inside class any

 void clear() noexcept;
 bool empty() const noexcept;

by

 void reset() noexcept;
 constexpr bool has_value() const noexcept;

and replace any use of empty() by ! has_value()

Add in [any/cons]

 constexpr any() noexcept;

 template <class T, class ...Args>
 any(in_place_type_t<T>), Args&& ...);

Requires: is_constructible_v<T, Args&&...> is true.

Effects: Initializes the contained value as if direct-non-list-initializing an object of type T with the
arguments std::forward<Args>(args)....

Postconditions: this contains a value of type T.

Throws: Any exception thrown by the selected constructor of T.

 template <class T, class U, class ...Args>
 any(in_place_type_t<T>, initializer_list<U> il, Args&& ...args);

Requires: is_constructible_v<T, initializer_list<U>&, Args&&...> is true.

12

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

Effects: Initializes the contained value as if direct-non-list-initializing an object of type T with the
arguments il, std::forward<Args>(args)....

Postconditions: *this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: The function shall not participate in overload resolution unless
is_constructible_v<T, initializer_list<U>&, Args&&...> is true.

Add in [any/modifiers]

 template <class T, class ...Args>
 void emplace(Args&& ...);

Requires: is_constructible_v<T, Args&&> is true.

Effects: Calls this.reset(). Then initializes the contained value as if direct-non-list-initializing
an object of type T with the arguments std::forward<Args>(args)....

Postconditions: this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: If an exception is thrown during the call to T's constructor, *this does not contain a
value, and the previous (if any) has been destroyed.

Add in [any.assign]

 template <class T, class U, class ...Args>
 void emplace(initializer_list<U> il, Args&& ...args);

Requires: is_constructible<T, initializer_list<U>&, Args&&...>

Effects: Calls this->reset(). Then initializes the contained value as if direct-non-list-
initializing an object of type T with the argument sil, std::forward(args)....

Postconditions: this contains a value.

Throws: Any exception thrown by the selected constructor of T.

Remarks: If an exception is thrown during the call to T's constructor, *this does not contain a
value, and the previous (if any) has been destroyed.

The function shall not participate in overload resolution unless is_constructible_v<T,
initializer_list<U>&, Args&&...> is true.

Replace in [any/modifier], clear by reset.

Replace in [any/observers], empty by has_value (reversing the meaning).

 constexpr bool has_value() const noexcept;

13

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

Returns:
true if *this contains an object, otherwise false.

Add in [any.nonmembers]

 template <class T, class ...Args>
 any make_any(Args&& ...args);

Returns: any(in_place<T>, std::forward<Args>(args)...).

 template <class T, class U, class ...Args>
 any make_any(initializer_list<U> il, Args&& ...args);

Returns: any(in_place<T>, il, std::forward<Args>(args)...).

Acknowledgements
Thanks to Jeffrey Yasskin to encourage me to report these as possible issues of the TS,

Many thanks to Agustin Bergé K-Balo for the function reference idea to represent in_place tags
overloads.

Thanks to Tony Van Eerd for championing this proposal during the C++ standard committee
meetings and helping me to improve globally the paper. The comparative table in the appendix
comes from him.

References
[N4480] N4480 - Working Draft, C++ Extensions for Library Fundamentals

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

[N4542] N4542 - Variant: a type-safe union (v4)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4542.pdf

[eggs-variant] eggs::variant

https://github.com/eggs-cpp/variant

[N4471] N4471 -Template parameter deduction for constructors (Rev 2)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4471.html

[P0032R0] Homogeneous interface for variant, any and optional

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf

Appendix

14

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0032r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4471.html
https://github.com/eggs-cpp/variant
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4542.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4480.html

Botet Homogeneous interface for variant, any and optional(R1) P0032R1

WITHOUT proposal WITH proposal

in_place, emplace_type, emplace_index

struct Foo { Foo(int, double, char); };

optional<Foo> of(in_place, 0, 1.5);
variant<int, Foo> vf(emplace_type<Foo>, 0, 1.5);
variant<int, Foo> vf(emplace_index<1>, 0, 1.5);
any af(Foo{0, 1.5, 'c'});

NOTE: thus any currently does not support non move/copy-able

struct Foo { Foo(int, double, char); };

optional<Foo> of(in_place, 0, 1.5);
variant<int, Foo> vf(in_place<Foo>, 0, 1.5);
variant<int, Foo> vf(in_place<1>, 0, 1.5);
any af(in_place<Foo>, 0, 1.5);

Also, now any supports non move/copy-able

any.emplace()

of.emplace(0, 1.5, 'c');
vf.emplace<Foo>(0, 1.5, 'c');
vf.emplace<1>(0, 1.5, 'c');
af = Foo{0, 1.5, 'c'};

any does not currently emplace

of.emplace(0, 1.5, 'c');
vf.emplace<Foo>(0, 1.5, 'c');
vf.emplace<1>(0, 1.5, 'c');
af.emplace<Foo>(0, 1.5, 'c');

Now any supports non move/copy-able

reset()

unique_ptr<Foo> uf = new Foo(0, 1.5, ‘c’);

uf.reset();
of = nullopt;
af.clear();

unique_ptr<Foo> uf = new Foo(0, 1.5, ‘c’);

uf.reset();
of.reset();
af.reset();

variant? No. Does not go empty. Could default-construct, but
also doesn’t have has_value(). Don’t force false consistency.

has_value()

if (uf) ...
if (of) ...
if (! af.empty()) ...

if (uf.has_value()) ...
if (of has_value()) ...
if (af.has_value()) ...
NOTE: smart-ptrs as well
variant? – No. intentionally “corrupted_by_exception”

make_...() factories

auto uf = make_unique<Foo>(0, 1.5, ‘c’);
auto sf = make_shared<Foo>(0, 1.5, ‘c’);
auto of = make_optional<Foo>(Foo{0, 1.5, ‘c’});
auto af = any(Foo{0, 1.5, ‘c’});

auto uf = make_unique<Foo>(0, 1.5, ‘c’);
auto sf = make_shared<Foo>(0, 1.5, ‘c’);
auto of = make_optional<Foo>(0, 1.5, ‘c’);
auto af = make_any<Foo>(0, 1.5, ‘c’);

NOTE: EWG has mandated RVO so non move/copy-able also
work

constexpr any ctor
any a; constexpr any a;

15

	History
	Revision 1

	Introduction
	Motivation and Scope
	Proposal
	Design rationale
	in_place constructor
	Differences between the new in_place_t and the old one
	Cost of function reference versus tags
	Possible malicious attacks
	No default constructible
	Not assignable from {}

	emplace forward member function
	About empty()/explicit operator bool() member functions
	About clear()/reset() member functions
	About a not-a-value any: none
	Do we need an explicit make_any factory?
	About emplace factories
	Which file for in_place_t and in_place?
	Access interface

	Open points
	Technical Specification
	General utilities library
	Optional objects
	Class any

	Acknowledgements
	References
	Appendix

