C++ Executors

Document number: ISO/IEC JTC1 SC22 WG21 P0008
Supersedes: ISO/IEC JTC1 SC22 WG21 N4414
ISO/IEC JTC1 SC22 WG21 N4143
ISO/IEC JTC1 SC22 WG21 N3785
ISO/IEC JTC1 SC22 WG21 N3731
ISO/IEC JTC1 SC22 WG21 N3378=12-0068
ISO/IEC JTC1 SC22 WG21 N3562
Last Update Date: 2015-09-27
Authors: Chris Mysen
Reply-to: Chris Mysen <mysen@google.com>

This paper is a revision to N4414 from the Spring 2015 meeting in Lenexa (so is logically
Revision 6 of Executors and Schedulers). The paper has been renamed as the scheduling
components of executors have long been removed from the proposal, which is now focused
solely on executors.

I. Design Discussion of N4414

1.1 Type Erasure

N4414 proposes the concept of a type erased executor wrapper which can be passed into
classes which prefer not to take a templatized type as a parameter. There was some concern
about the cost incurred by all the type hiding and virtual dispatch when it is actually
unnecessary.

The proposed form of this using a simple template based inheritance would be less complex to
implement and use. Actual details are discussed in the section on polymorphic executors.

.2 Shutdown of system_executor

In N4414 there continued to be a problem with the definition of the shutdown of the system
executor which did not solve the issues with std::async futures due to ownership of the
shutdown/cleanup behavior of threads in the implied executor for async which spawns a new
thread for each task.



In the original definition of system_executor, shutdown time for threads is not defined. The
proposal here would be that system_executor actually have a well defined shutdown point
immediately following the termination of main().

At this point, system_executor executes a draining shutdown at this point proposed as follows:
e |t no longer accepts any new work (thus any new calls to spawn() would be an error
condition at this point and may throw an exception).
e Any started threads are joined.

Note that thread_per_task executor is also subject to the same shutdown semantics as
system_executor due to the singleton nature of it (and that it is effectively the default
std::async(std::launch::async, ...) behavior).

Because of this behavior (which is the only one that really makes sense for the system
executor),

1.3 General Shutdown Semantics of Executors

In general there is a need for there to be well defined semantics for the shutdown of executors
and to allow a program to control how these semantics are applied. It is not currently proposed
as to how to do this for all executors as these are executor specific (there may not be a way for
the program to shut down the threads of an executor, or the resources may be controlled
externally).

That said, there are a couple main considerations for shutdown, the type of shutdown behavior
and the behaviors needed to initiate a shutdown sequence explicitly.

There are a number of degrees of shutdown which vary in terms of how aggressively they stop
work:

1. Wait for the executor to be completely quiet (no unstarted work and no execution agents
are active). This is a very weak shutdown sequence and basically states that the
executor has fully drained. Because adding new work would require some sort of
sequencing behavior to ensure that the executor shuts down eventually, this is not a
very general shutdown behavior. On the other hand if the executor expects that tasks
within the executor may continue to add work before completing their task, this could be
a useful shutdown behavior (it would allow code to use the shutdown to join on
completion of work signalled by drain).

2. Allow all existing work to drain, stop accepting new work. This is basically the same as 1
except that it places a strict requirement that no new work be added to execution. The
benefit of this is that it creates a sort of synchronization point around shutdown in which
only work prior to the shutdown initiation is allowed to complete. In practice you would



need to coordinate shutdown anyway, so this would only serve as a way to signal this to
other code instead of requiring external signaling mechanisms.

3. Allow only started work to drain, delete any unstarted work. This is a harder shutdown
and behaves as if all unstarted work is deleted and all active threads are joined pending
completion of the current task. This mode is useful if it is known that the outcome of
pending unstarted work is not needed.

4. Stop any started work and delete any unstarted work. This is as hard a shutdown as
possible and makes the statement that no pending work in the executor is needed. This
sort of shutdown requires that tasks be cancellable and/or execution agents be
cancelable. Implementation of this is difficult in the current standard as thread
cancellation is not available so in practice this would frequently behave the same as 3
without some mechanism to signal task cancellations. This also would be a best-effort
shutdown.

For executors with a defined shutdown behavior (for example thread_pool_executor), option 2 is
likely the least offensive default shutdown behavior. Though some executors may want to allow

shutdown to be “upgraded” to a more aggressive mode when it's known that some of the work is
not required. This is not trivial to implement and it not recommended for system_executor which
must handle all types of work, but specialized executors could implement such rules safely.

A potential approach to generalize shutdown for executors which support it would be to have a
suite of functions related to shutdown:

e shutdown(type) - where type is an enum representing a sequence of shutdown types (as
defined above). A default version of shutdown could pick a reasonable default (like
option 2), though weaker or stronger variants could be used and a mechanism for
increasing the aggressiveness of shutdown could be implemented as well.

e on_shutdown(callback) - callback registration to receive notifications upon shutdown
initiation. This is useful if a shutdown blocks further input and a mechanism to
communicate the transition to this state is desired. this is mainly useful in avoiding
exceptions when attempting to add tasks to the executor.

e on_terminate(callback) - callback registration to receive notifications upon completion of
the shutdown process. Primarily useful in communicating that the executor is unusable
and potentially has been deleted. Can be useful as a way of tracking that an executor
has become unusable and has fully drained before the point that the executor has
actually been deleted. This could also take the form of a boolean shutdown future where
.then could be registered or the future state read indicating that the executor has
completed shutdown.

A generalized approach to shutdown is not proposed here, but the simple mechanism of
allowing shutdown callbacks to be run would enable a number of simple mechanisms for
tracking the current state of the executor (for example, a wrapper could register an
on_shutdown callback and update internal state to ensure callers do something reasonable
when attempting to spawn on a dead executor).



.4  Ownership of Executor Objects

The proposed mechanism for executor ownership was very explicit in N4414 in that it required
that executors all be internally reference counted in an attempt to deal with clear ownership
semantics for shareable executors. This places additional ownership semantics directly into
executors and in many cases actually cannot be satisfied. For example, a system_executor
cannot be reference counted as it is not created by the program directly and thus it would not
actually be able to live as long as callers required if they were to call it past its actual lifetime.

Microsoft handled this in PPL through the creation of a concept of a scheduler_ptr which
abstracts the notion of a pointer to an executor and allows pointers to either a shareable or
non-shareable executor. These behave in many ways like shared_ptr and weak_ptr except
where weak_ptr has the shared_ptr interface with no lock() to initiate sharing.

This idea is very convenient but introduces a particular problem with shared ownership of
executors: that it creates shutdown semantics which can be difficult to reason about. In
particular, the last piece of code to use the executor may unexpectedly become the one to block
on shutdown of the executor. This can create very unexpected behavior for code. Moreover, the
semantics of a weak_ptr like object would be challenging to implement correctly without locks
which could add significant overhead to code which passes executors in such a way.

Given this the proposal is to simply remove the concept of shared ownership from the executors
altogether and require that code properly coordinate executor lifetime. This does not prevent
code from creating shared_ptr<Exec> objects, but simply means that there is not built in support
into the executor library to do so.

The disadvantage of this approach is that code needs to carefully coordinate when executors
are passed around to other libraries since you would frequently be passing Executor& around to
other code.

.5 Wrapped Executors

There was some discussion in Lenexa about the notion of a wrapped executor causing potential
for deadlock. This potential comes from the fact that the wrapper first has to execute in the
executor which it is spawned in, which then causes the actual spawn in the target executor.

Because of this behavior operator() has some interesting behaviors in a wrapped function. First,
it is non-blocking on the actual execution due to it simply calling spawn on the target executor.
Second, it requires the function to execute twice, first to actually spawn the work and the second
to actually execute the behavior. Solving the second behavior is relatively easy by having



executors aware of wrapped functions (by effectively bypassing executing tasks locally first and
directly calling spawn on the target executor). The first issue is more difficult and can only be
changed by making the wrapped function block on completion of execution of the wrapped
function. This “fix” can actually create deadlocks because of priority inversion (if the original
spawn blocks the execution of the actual function for example).

A simple example of this is where there is a single threaded executor with a queue of tasks to
execute:

loop executor ste;
ste.spawn (wrap (ste, [] () { /* some work */ }));
ste.loop ()

In this case, wrap would create a function which behaves roughly as follows:
[] (auto& exec, auto&& work) {

auto fut = std::spawn(exec, work);

fut.wait () ;

The net result is that the fut.wait() will block indefinitely because the spawned work will never
execute. It’s trivial for someone to write code to do this themselves unintentionally. There are
other variations where there are other reasons for problems (for example a prioritized thread
pool where the first spawn has higher priority than the second and similar effects would occur).

Issues like this can be fixed to some degree by making all executors able to detect when the
spawn is on the same executor (effectively removing the need to block in that case), though it’s
not clear that this idiom is so difficult to implement that the complexity should be added to the
executor interface.

So the proposal here is to drop the wrap functionality as proposed. A lighter weight wrap which
simply a struct containing an executor and an arbitrary object still makes sense, but can trivially
be added later as well.

1.6 Empty thread_pool_executor

Some discussion arose about a thread_pool_executor with an empty constructor. The idea
would be that this executor would provide a “reasonable” default executor which would work for
common use cases. There is some difficulty in specifying what a reasonable executor should
do. After some discussion, this came to be better defined as an executor which could be used to
maximize resource use within the application.

As such there could be a few possible proposals of how to do this:



e An empty thread pool which has some multiple of thread::hardware_concurrency. This
would not make a strong guarantee of maintaining optimal throughput but does
something reasonable if what you want to do is maximize CPU utilization

e A system_executor like object with thread_pool_executor semantics (which is effectively
a singleton thread pool), which allows you to maximize utilization without the requirement
that the executor guarantee forward progress (thus allowing you to keep the pool
bounded in size).

e Something like the above (a singleton executor) but with a mechanism for better
understanding the utilization of the system and dynamically adjusting threads to deal
with how to maximize system performance. A weaker form of this would be a dynamic
pool with a means of configuring when it spawns new threads, this would allow custom
logic for maximizing network bandwidth, maximizing forward progress, utilization,
memory, or other things.

That said, this concept is being left out of scope for the current proposal and can be discussed
in more detail about the advantages/disadvantages of different proposals.

.7  Parallelism Layer

There is a proposed paper which attempts to make a case for the use of the executor as the
underlying concept for parallelism concepts (see N4406). There is a discussion on the mailing
list about this particular concept and will be left out of this discussion, though it does open up
some quite interesting concepts, namely:
e Use of executor_traits to formalize different executor behaviors and capabilities
e Use of executor_traits as a way to contain the free functions proposed in N4414 in an
executor-extending object.
Extension of executors to either be asynchronous or synchronous executions
Extension of executors to allow for sequence based parallel executions (e.g. multiple
executions of a function with different positions in a shape).

The notion that an executor can be synchronous or asynchronous is interesting, it allows for a
clearer distinction between blocking and non-blocking behaviors (where the current executor
definition is purely non-blocking for spawn).

By and large, the said proposal fits nicely into N4414 without significant modification (aside
potentially from the naming), with some extension to allow there to be a synchronous execute
function (which in most of the N4414 executors could be implemented as a spawn with a simple
wait on a condition variable).

A very interesting discussion which follows from N4406 is about how to handle variations in the
interface across implementations (free functions vs. core interface vs. a traits class). As defined


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4406.pdf

here, free functions remain free functions as they are wrappers around existing functionality
without being executor-specific and essentially provide augmented interfaces to the executors.

Separately, the behaviors defined in N4406 allows for some functionality to be left out of the
executor and for the traits class to fill in the gap (for example if an executor does not support
batch execution, the traits can implement this interface on behalf of the executor). Effectively the
trait class takes over as the primary interface into the executor classes and the executor is left to
implement the subset which is appropriate for it. This is more than simply providing an interface
to existing functionality but also allows there to be holes in the interface. On the other hand you
could also provide the complete interface as part of the core executor concept as you effectively
have to implement the traits object along with the executor unless a default traits object
approximately does what you want.

In addition, a function rename is proposed in N4406 which can be discussed. The paper
suggests execute() and async_execute() for the two proposed variations in behavior. The
current proposal is effectively only proposing a single function and as such does not map
perfectly, but an option would be to rename spawn() as async_execute(). Spawn has
approximately the same implication of adding work to be executed at a later time. A name
change is not proposed here, but is more meaningful in the light of N4406.

There is a separate discussion on the reflector which covers some of these issues and so
further details can be found there.

Il. Design

II.1. Reference Implementations

A reference implementation for this design is WIP in the following location:
e https://github.com/ccmysen/executors_r6

II.2. Core Design Philosophy

There has been significant discussion around the role of an executor and the basic
requirements around it. This proposal revolves around the principle that the primary role of an
executor is to provide a context in which to execute tasks. This context should trivially be able to
be passed between functions and objects. And this context is responsible for maintaining and
cleaning up the resources associated with task execution (including the tasks themselves). The
actual policies of execution are defined by the concrete executor implementations.


https://github.com/ccmysen/executors_r6

As such, the core executor interface only provides a mechanism for adding tasks to an executor
for subsequent execution. Despite the simplicity of this interface, the abstraction is still quite
powerful and several complex behaviors can be implemented on top of this interface.

Additional behaviors of the concrete executors (such as querying executor state or variations of
functions to add tasks) are considered to be extensions of this core behavior and are thus out of
scope of the core executor interface.

Moreover, the design approach outlined in this paper is such that an executor includes the
context in which tasks are executing and is not strictly a lightweight object. This is opposed to
what is proposed in N4156 in which the context is decoupled from the execution interface. The
statement there is that the context has-a executor, whereas the statement here is that the
context is-a executor.

II.3. Motivating Examples

There are number of simple and moderately difficult use cases which are intended to be made
simple with the executor programming model. It is primarily intended to be a task concurrency
model but can also be used for a number of parallelism use cases given more specialized
executor models. It is important to think of executors as an important part in answering a set of
questions:

What to execute

When to execute it

Where to execute it (the context to execute it in)

How to execute it (the policies/parameters to apply to execution)

LnN -~

The most trivial use case is the equivalent of std::async with slightly less painful blocking
behavior (what and where):

auto fut = std::spawn(std::system executor::get executor(),
std: :make package ([&] { /* do some work */ return x; });

/* do a bunch of stuff */
async_result = fut.get();

So this is pretty trivial, but handles the common use case.

But of course use cases are more complex than that, and many of the modifications on this core
behavior either are looking for more complex sequences of events, for more efficiency, or for
stronger guarantees of execution.



Let’s say that you had a sequence of operations you wanted to run in a way to constrain
resource usage (for example to maximize parallel usage of a database) and then wait for them
all to complete. You can use thread_pools plus latches to do your thing by attaching
continuations to the executor.

void finish transaction() {}

std::thread pool executor<> db executor (MAX ACCESSES) ;

latch done(NUM_QUERY_TASKS);

for (int i = 0; i < NUM QUERY TASKS; ++i) {
std::spawn (db executor, tasks[i], [&done] { done.arrive(); }

}

done.wait () ;

finish transaction();

Another variation on this is to do a number of parallel tasks to prepare an image for rendering
on screen. In this sequence, there are 3 stage, 2 processing stages and 1 rendering stage, all
running on independent executors to control various behaviors (first one is on the
system_executor, the second on a bounded executor to limit parallelism for performance
reasons, and the last on the gui_executor which has a specific requirement for which thread
executes).

Note that this example uses a proposed in N4224 (Supplements to C++ Latches) called a
flex_latch which has a notification callback which runs in the context of the last arriving thread.

template <typename Exec, typename Completion>
void start processing(Exec& exec, inputslé& input, outputslé& output,
Completion&& comp) {
flex latch* 1 = flex latch::create self deleting(
forward<Completion> (comp), input.size());
for (auto inp : input) {
std: :spawn (exec,
[&inp] { /* process input */, [1] { l->arrive(); }

) ;

template <typename Exec, typename Completion>
void stage? (Execé& exec, inputs2& input, imageé& output,
Completioné&& comp) {
flex latch* 1 = flex latch::create self deleting(
forward<Completion> (comp), input.size());
for (auto inp : input) {
std: :spawn (exec,


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4224.html

[&inp] { /* process input */, [1] { l->arrive(); }
) ;

1
void render gui (image& img) {
/* do rendering */

// Hook everything up
std::thread pool executor<> tpe (STAGE2 PARALLEISM) ;
auto render task = std::wrap(GUI::get executor(),
std::bind(&render gui, out image));
start processing(
std::system executor::get executor(),
inl, outl,
std::bind(&stage2, tpe, in2, out image, render task));

The above example is getting somewhat complex and for very complex chains of processing
you would likely use a higher level construct to coordinate tasks, but you can see that even

reasonably complex actions can be expressed in fairly simple sequences.

More motivating examples are shown inline below to explain the various concepts proposed
here.

11.3. Core executor

The core executor API as proposed is composed of a single function (plus a copy and move
constructor):

void spawn (Funcé&é&) ;

Any class which implements this core interface could be considered an executor. This is actually
simpler even than std::async which takes arguments and a launch policy. In effect it makes the
statement: “launch this function in this context and according to the policy of the executor”.
Depending on the executor implementation, the context and policies vary, but the visible
behavior is effectively the same, which is to release the function to the executor and let the
caller continue without knowledge of what happened.

This simple interface may seem trivial, but many of the interesting behaviors required of an
executor can be layered on top of this and the core interface doesn’t prevent implementations
from having a richer interface, but rather makes a statement that any class implementing the
executor interface is capable of executing work within the context and policies defined by that



class. This allows an executor which is a layer on top of a separate construct (you can, for
example layer an executor on top of some form of prioritized thread pool where the executor
defines which priority to run tasks at, or an executor can represent a serialization of tasks run in
a GUI thread).

II.3.a. Copyability

Copyability of executors in the current proposal is not defined. Though many executors are not
copyable and therefore the expectations of most code should be that an executor is not
copyable unless a particular type of executor is expected.

11.3.b Ownership

A lack of copyability does not prevent ownership questions, though. As executors can and will
be passed around different code, knowing the state of the executor you have can be important.
This proposal assumes the C++ default answer, that it is the application’s responsibility to get
ownership correct.

There is an exception provided in this proposal for the system_executor, which has ownership
which lasts past the end of the program lifetime (which thus requires a stage in shutdown in
which the system executor is put into a shutdown state and drained). A generalization on this
mechanism would allow any executor to be registered for shutdown past the end of the program
so that libraries could safely take an executor and not be concerned about the lifetime of the
underlying executor. Such a mechanism is not proposed here.

I1.3.c. Parallelism

It should be noted that this interface does not make guarantees about the parallelism provided
by the executor (and in fact the executor is allowed to run in the caller’s thread if the executor
policy allows it). This interface also does not make guarantees about the ordering of function
execution when multiple calls are made to spawn. Parallelism and ordering are traits of the
underlying context.

I1.3.d. is-a vs. has-a

There is a discussion in N4242 about whether a thread_pool has-a executor or is-a executor.
The discussion focuses on the Java interface where ExecutorService is-a Executor, but that in
C++ it should really be modeled in a has-a relationship due to the non-reference semantics of
C++.



The argument which is given here is that an executor is a context within which tasks are
executed. As such, things like thread pool contexts or a thread-per-task contexts are executors,
they don’t have executors. This becomes more apparent when you have adapter classes which
modify the behavior of underlying contexts. serial executor, which enforces serial
execution ordering, is a context with specific policies of execution, though it wraps another
executor to do this.

The key is that these contexts also have implementation specific interfaces which do not control
execution which need to be part of the context but don’t necessarily need to be part of the
executor interface. For example, shutdown options could be provided by many executor
implementations (thread pools often have different shutdown options depending). And how to
expose these in general ways without polluting the core executor interface is important.

Java does this in an unclean way using the ExecutorService interface, which in practice has
multiple behaviors placed in the single interface (it has lifetime management, submit with
futures, and invoking multiple callables). But in the case that shutdown semantics were desired,
it would be trivial to extend the interface specifically for heavyweight executors to either create a
handle for shutdown or to expose shutdown semantics (as is done in the thread_pool_executor
here). Note though that many executors may not have a shutdown process (system_executor,
loop_executor, serial_executor).

Il.3.e. Executor Types

The proposed executors are as follows:

[l.3.e.1. thread per task executor

Behaves like the default behavior of std::async in which a new thread is created for each
spawned task. Upon completion of the task the thread is destroyed.

ll.3.e.2. thread pool executor

A simple thread pool class which constructs a pool of threads which run all tasks. Tasks are
enqueued to avoid blocking on this pool of threads. Upon destruction of the executor, queued
tasks are drained and the threads joined.

[I.3.e.3. 1oop_executor

An executor for which queued tasks are accumulated until the execution functions are called
(loop (), run queued closures(), try run one closure ()), at which point



execution takes over the calling thread and run some or all of the queued closures (closures
added after loop has started will wait until the next call to the execution functions).

[[.3.e.4. serial executor

An executor wrapper object which ensures that all queued functions are run sequentially where
a given function cannot start until the previously queued one completes. This guarantees serial
ordering of tasks but it does not guarantee that the tasks will all run on the same thread.

[[.3.e.5. system executor

A special executor which behaves like a pool of threads but with singleton semantics. This is
intended to be the default executor for most use cases and allows for delegation to a library
defined singleton executor. Provides a reasonable alternative to std::async in the general case.
It is expected that the system_executor would comply with the “concurrent” execution agent
concept, which means that there should be an eventual guarantee of forward progress.

It should be noted that the requirement of forward progress is intended to ensure that code will
not deadlock due to insufficient resources (which can occur if you have dependencies in tasks).

It is understood that requiring a forward progress guarantee can significantly complicate the
implementation of the system executor due to the need to be able to detect a lack of progress.
In practice, several heavyweight thread pool implementations (including the microsoft thread
pools, as well as google internal ones) have this guarantee. It is acknowledged that on certain
platforms it may be challenging to provide a system executor with a true guarantee of progress
(embedded environments). It is also acknowledged that “eventual guarantee of forward
progress” does not guarantee it be performant under all situations (for example, detection of
lack of forward progress can take significant amount of time.

In terms of termination, the system executor is expected to shut down at some point after
completion of the program, but at which point is undefined. The result is that static destructors
should not rely on the continued existence of the system_executor. The system executor is not
guaranteed to complete all pending tasks before shutdown nor it it required to wait for running
tasks to complete.

The system_executor is not constructible and thus exports the singleton interface

system executor::get executor ().

It should be noted that the inline_executor has been removed due to the fact that it changes the
semantics of the spawn() function in which it effectively blocks the caller until the actual function
is run, which is significantly different from the core semantic of the spawn() function.



11.3.f. Polymorphic Executor Wrapper

N4414 proposed the concept of a type erased executor wrapper which can be passed into
classes which prefer not to take a templatized type as a parameter. There was some concern
about the cost incurred by all the type hiding and virtual dispatch when it is actually
unnecessary.

The current proposed form of this using a simple template based inheritance would be less
complex to implement. Such a concept would look like the following and could be provided as a
default implementation for anyone who needs a polymorphic executor rather than a template
based one.

class executor {
public:
virtual void spawn (executors::worké&& fn) = 0;

b

template <typename Exec>
class executor wrapper : public executor ({
public:

executor wrapper (Exec* exec);

executor wrapper (executor impl<Exec>&& other);

virtual void spawn (executors::worké&& fn) {
exec—->spawn (std::forward<executors::work>(fn));

}
}s

Then calling a library which takes an executor* would be as simple as:

thread pool executor tpe;
library 1l (new executor wrapper<thread pool executor> (&tpe));

I.3.9. executor: :work

Because of the queueing behaviors of most executor implementations, a type erased function
wrapper must be provided to any polymorphic interface to executors. In the original paper, this
was done with std: : function, but this prevented move-only types from being usable with
executors due to std: : function being copyable but not moveable. This prevents, for
example, a std: :packaged task from being used with executors.

Because of the proposal to include the polymorphic interface to executors, this library proposes
a special wrapper object which can accept copyable or move-only functions and creates a



single type erased function-object from it. This is implied in the templated executors, but is the
type used in the polymorphic interface to executors in lieu of requiring both std::function and
std::packaged_task spawn functions. That said it is somewhat duplicative and the only reason to
expose it is because of the polymorphic wrapper interface.

One alternative here are to only support function<void()> in the type erased interface, though
this means that the erased type is not compatible with the template version, which would create
some divergence in behaviors depending on which interface you chose to use.

II.4. Helpers And Adapters

11.4.a. Spawn Helper Free Functions

Much like std::async, a small number of free functions is provided to extend the behavior of the
default executor spawn function (which normally detaches from the caller completely). The
helper functions allow for spawning with a future and the other for attaching a continuation.

Note that std::async went in a design path where the destructor of the async future blocks
waiting for the async thread to complete. There are several documents (N3679, N3451, and
others) which cover the problems with this from a programming model perspective. The
approach taken here is to treat futures like any client-side use of future (which is that it will not
block in the destructor waiting for tasks to complete). As such, it is the job of the executor to
manage thread lifetime and the job of the packaged_task/future to manage their own shared
state.

Some code which wants to asynchronously do some work and get the value later:
auto fut = std::spawn(pool,

std::make package([] { return /* do stuff */ }));
fut.get ()

And some code which uses a continuation to wait for multiple tasks to complete:
latch 1(2);
std: :spawn (pool,
[] { /* do some work */,
[&1] { l.arrive(); 1}):;
l.wait();

And there is a proposal in progress which would further allow a notification on a latch (called a
flex_latch), which would behave roughly as follows:
void finalize () {

// finish up work


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3679.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3451.pdf

}
flex latch 1(2, &finalize);

std: :spawn (pool,
[l { /* do some work */,

[&1] { l.arrive(); });

Note that std::spawn(exec, func, continuation) also takes ownership of the
lifetime of the passed objects, so if the passed functions are move-only, this will encapsulate
them and take ownership for as long as the task needs to be alive (as is the case with the native
executor spawn). As such, this is not equivalent to:

pool.spawn( [&] { func(); continuation(); 1});

lll. Design Considerations

lll.1. Changes since N4414

The general outline of changes is mentioned in the first section, but the summary of changes to
the previous proposal are as follows:

e Wrapping executors into a callable object has been removed from the proposal

e executor_wrapper as previously defined has been has been re-used for the polymorphic
executor template (which can be easily passed into code which does not desire a
template based executor type definition). the previous type erasing wrapper has been
dropped in favor of this one.

e Copyability has been removed as a concept for the core executor concept since it was
considered more complex to implement and design than it was helpful to ownership
semantics.

e Mentions of reference counting and ownership have largely been removed and now
references to executors are generally taken in calls which require executors.

e Shutdown semantics of system_executor has been stated to be that the
system_executor will initiate shutdown and fully drain immediately following the
completion of main.

lll.2. Exception Handling

Exception handling has been left out explicitly as there really is not a generic way to handle
exception forwarding unless there is an explicit receiver. As such, the proposed approach for
users to handle exceptions is to either handle the exception in the task directly, or to use a
wrapper which forwards exceptions to future (packaged_task or the future-returning free
function which allows exceptions to be attached to the future object).



In essence, the raw interface to the executor is entirely fire-and-forget, in order to get a handle
to the task you must use a wrapper which creates a handle onto the task which can be used as
a communication channel.

Other proposals suggest that in some specific cases, exceptions may be allowed to escape the
executor (a loop executor for example could push exceptions to the caller as there is a well
defined handler). As such, it is up to the specific executor to define exception handling
semantics, but a reasonable behavior for a concrete executor implementation is that an
unhandled exception would result in program termination.

Future work may decide that a there should be an explicit handle to tasks provided by the
executor to allow for other communications beyond the basic data and exception handling of
future in which case that would provide a place to place exception handlers.

IV.Outstanding questions.

IV.1. Extensions of Executors
There are a few core extensions of the core concept as proposed which are feasible ways to
provide more functionality based on known use cases, each of these would modify the interface
to the executor in more executor-specialized ways. A non-comprehensive list of variants which
have been pulled from standard use cases and from the Google internal use cases is illustrative
in that it shows some of the variety in executors which may be implemented.

Prioritized queues (non-fair task selection)

e Prioritized thread pools (threads running at different priorities)

e Dynamically sized thread pools

e GPU thread pools (batch task operations)

e Work stealing thread pools/fork join executors

e Fiber executors (user level thread executors)

e Caching thread-per-task executors (thread-per-task but with thread re-use)

e Rate-limiting executors (prevention of starvation of threads by large numbers of a
particular task type)

e Reference counted tasks (tracking when groups of tasks complete)

e Drainable executors (can accept recursively created work but not entirely new work)

e |Lazy executor (executes only when results are needed - e.g. by a call to future.get())

e Executor visitor (visit upon task start or task complete - allowing behaviors like dynamic

thread counts or resource tracking)
e A number of custom executors which provide application-specific behaviors or contexts
(e.g. a backend API call executor which only handles a specific type of calls)



Notably these fall into 2 classes, functionally different execution behaviors (e.g. priorities, fibers,
GPU, dynamically sized), and behaviors which decorate existing executors (reference counted,
rate limiting, task-start notifications).

IV.2. Mechanisms for extension

There has been a lot of discussion about the Service-style extension model proposed in N4242
as a mechanism for extending the core executor framework. This follows the Extension-Object
design pattern from Erich Gamma (link

http://st.inf.tu-dresden.de/Lehre/WS06-07/dpf/lgamma96.pdf). Conceptually this provides a nice

simple framework for allowing objects to be extended without dirtying the core interface, which
is nice as a general purpose mechanism for adding non-core concepts to executors with a
lifetime scoped to the executor. In fact, the examples provided lie firmly in the networking space
where you have objects which change behavior over time, but in unpredictable ways or in ways
which are not considered core concepts.

This approach has 4 main caveats with it as a general model for extending executors:

You must still explicitly bake core concepts into the APl whenever possible (the EO
paper and other discussions state this as well), so this should not be used as the resting
place for any and all non-core logic, core functionality (e.g. thread prioritization) deserves
to go in the API of the executors directly rather than through a separate service model.
Extensions are functionally still bound to the capabilities provided by the object on which
they are built (they look like a visitor or decorator in this way), as a result you cannot
trivially build entirely new functionality with them (priority thread pools for example need
to be natively supported by the executor because they require control over the thread
objects and internal queues).

The implementation of a service is somewhat complex because it requires registering
objects onto the executor directly and the lifetime of those objects being scoped to the
executor. Functionally the complexity can be contained to a wrapper library which can
attach services to the object without having to mess with the core API at all, which
implies that this can be done as an independent library.

The service concept makes it more challenging for the executor to natively support
extensions because the extensions are decoration on top of the executor (every service
is given a handle to the executor, but the reverse is not guaranteed to be true). As such
an executor which is incompatible with a particular extension can create issues of
mis-use of extensions (for example, a serial_executor is a lightweight concept and
starting a new thread for timed operations on it adds significant overhead).

IV.3. Extending executors in this framework


http://st.inf.tu-dresden.de/Lehre/WS06-07/dpf/gamma96.pdf

The proposed design takes a significantly simpler approach to extension, with the ability to
adapt existing execution contexts to the executor interface (by implementing a copyable
wrapper class implementing the spawn function).

In practice this allows you to take custom extensions to the core interface and wrap it in the
simple spawn interface fairly cheaply. One example of this is a prioritized thread pool supporting
another parameter with a thread priority (e.g. spawn (func, 10)). You can create an
executor wrapper which captures a fixed priority and adapts the prioritized executor to the
standard executor interface. In this way you can trivially extend the executor concept and adapt
existing code to work with it silently.

For example, a prioritized thread pool may look like the following:
class prioritized thread pool ({
public:

template <typename Func>

void spawn (Funcé&& func, int priority);

}s

But because the standard spawn() function doesn’t support priority, you can write a wrapper
which handles this in a way that allows tasks to re-use.

template <typename Exec>
class high priority executor ({
public:
high priority executor (Execé& exec, int priority)
exec (exec), priority (priority) {}

template <typename Func>
void spawn (Funcé&é& func) |
exec_ .spawn (forward<Func>(func), priority );

Then you can use high_priority_executor everywhere you would take a normal executor and it
would quietly adapt all calls to use priorities behind the scenes.

IV.4. Future Work

There are a number of possible future proposals which can follow onto this baseline, including
extensions from other executor proposals which have been brought to the committee. In
particular, the following interesting use cases have already been raised as future work or tabled
discussions:



Alternative dispatching - one key difference between the current proposal and N4242
(and related proposals) is in the presence of alternative dispatch approaches (namely
the presence of dispatch () and defer () ). Functionally these serve as different
optimizations for latency or overhead.

o dispatch () in particular has semantics which are very unique (in that it may
inline function calls depending on the circumstances), and are difficult to emulate
without native executor support.

o defer () actually allows tasks to be put on a thread local queue given that they
much only be dispatched once the task which spawned them completes and
returns control to the executor. This has benefits in terms of not having to
lock/notify the executor on each defer call because the tasks don’t need to begin
yet. You can approximate the behavior of waiting for task completion for spawn
using a separate notification mechanism and in fact an executor with thread local
queues (which is a common performance optimization) would do similar things
for all post calls.

Timed/Deferred Execution - the concept of a deferred task has been removed from the
proposal to simplify the design further, but a follow on paper will likely come up to
discuss whether this is a core executor concept or something which can easily be
layered on. A more detailed discussion of the design trade-offs of a deferred interface
needs to be provided (in particular the downsides of not being able to natively support
these in the executor for certain executor types which have native handles, as do many
networking socket handling executors).

Task cancellation - a very common pattern in task parallelism mechanisms is to start
work which may not be needed right away and can be cancelled if needed. An example
of this is work which is redundant, non-critical, or expensive (e.g. a database call with a
timeout to prevent over-taxing the system).

Batch spawn - This comes up in a GPU context, but can also be used to optimize highly
parallel tasks as well (reducing the mutex overhead when adding tasks, which can be
significant). This can also be used to create task groups which can be joined on easily
without requiring the user to create additional tracking mechanisms.

Thread local queues - this is inherent to the Kohlhoff proposal because of the presence
of the defer function, but is left to future work to discuss the right design approach here
and whether it's appropriate to standardize this or if this is behavior which is executor
specific. Many high performance thread pools, for example, already are implemented in
terms of thread local queues.

Task and thread priorities - there are very common use cases for allowing threads to
take on priorities (commonly this is to allow important tasks to get to the front of the
queue or to take precedence in execution).

There is currently a proposal outstanding which formalizes concurrent and blocking
queues which are foundational to executors (http://isocpp.org/files/papers/n3533.html).
In particular the performance of the queue implementation (and reducing costs of queue
operations under high contention) can have a big effect on the performance of the
executor.



http://isocpp.org/files/papers/n3533.html

e There was a comment at a previous WG to leave the return type of spawn() unspecified,
which allows for it to return a handle in the future. This should probably be done when
there is a clear meaning for the return type.

e Executor shutdown semantics - there are a number of use cases where tasks span an
executor and block waiting for tasks to complete as a sort of join mechanism. There are
other cases where you want to force shut down before work completes. Some variation
on the API to allow different shutdown behaviors is likely needed.

e An interface like that suggested around Execution Agents in N4156 (and related papers)
could provide a generic mechanism for checking the traits of an executor (whether it is
concurrent, parallel, or weakly parallel, as well as the behavior of thread local storage).
Discussion of whether that concept should be applied to all executors is left for a
subsequent paper but some form of execution agent traits is reasonable as.

VI. Proposed Wording

VI.1. Executor Concept

The executor concept represents a single spawn function which takes a function pointer or
function object and executes it according to the executor’s execution policy at some point in the
future.

Ownership of the passed function is taken by the executor, so a copyable type is copied and a
moveable type is moved to be owned by the executor. The owned function will be deleted upon
completion of execution or upon destruction of the executor.

Generally executor objects are not copyable due to internal state which is generally not
copyable. Individual implementations may chose to implement a copy/move interface, but these
are not guaranteed on all executors.

executor {
public:
template<class Func> void spawn (Funcé&& func);

}s

executor: :~executor()
Effects: Destroys the executor.

Synchronization: All closure initiations happen before the completion of the executor
destructor. [Note: This means that closure initiations don’t leak past the executor lifetime,
and programmers can protect against data races with the destruction of the environment.
There is no guarantee that all closures that have been added to the executor will
execute, only that if a closure executes it will be initiated before the destructor executes.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4156.pdf

In some concrete subclasses the destructor may wait for task completion and in others
the destructor may discard uninitiated tasks.]

Remark: If an executor is destroyed inside a closure running on that executor object, the
behavior is undefined. [Note: one possible behavior is deadlock.]

template <class Func> void executor::spawn(Func&& func);

Effects: The specified function object shall be scheduled for execution by the executor at
some point in the future. May throw exceptions if spawn cannot complete (due to
shutdown or other conditions).

Synchronization: completion of func on a particular thread happens before destruction
of that thread’s thread-duration variables. [Note: The consequence is that closures may
use thread-duration variables, but in general such use is risky. In general executors don’t
make guarantees about which thread an individual closure executes in.]

Error conditions: The invoked func shall not throw an exception.

Vl.1.a. thread per_task executor

Class thread per task executor is a simple executor that executes each task (closure)
on its own std::thread instance. Tracks spawned threads

The singleton get_executor() function makes a default executor out of the
thread_per_task executor (which is already implied in std::async).

class thread per task executor ({

public:

}s

static thread per task executor& get executor();

thread per task executor();
thread per task executor(const thread per task executor&) = delete;
thread per task executor (thread per task executoré&&) = delete;

~thread per task executor();
template<class Func> void spawn (Funcé&& func);

thread_per_task_executor::get_executor()

Effects: Gets a singleton thread_per_task_executor for use across code with the lifetime
of the application.



thread_per_task_executor: :thread_per_task_executor()
Effects: Creates an executor that runs each closure on a separate thread.

thread_per_task_executor: :~thread_per_task_executor()
Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.

VI.1.b. thread pool executor

Class thread pool is a simple thread pool class that creates a fixed number of threads in its
constructor and that multiplexes closures onto them through some queueing mechanism.

class thread pool executor {

public:
// thread pools are not copyable/default constructible
thread pool executor () = delete;
thread pool executor (const thread pool executoré&) = delete;

// Construct a fixed pool of N threads and start them waiting for
// work.
explicit thread pool executor(size t N);

// Drain the thread pool and wait for all unfinished tasks to
// complete.
virtual ~thread pool executor();

// optional - Force the pool to shut down without draining

// remaining queued tasks. Waits for currently running tasks to
// complete.

virtual void shutdown hard();

// Executor interface
template<class Func> void spawn (Funcé&& func)

}s

thread_pool: :thread_pool(int num_threads)
Effects: Creates an executor that runs closures on num_threads threads.
Throws: system_ error if the threads can't be created and started.

thread_pool: :~thread_pool()
Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.



thread_pool: :shutdown_hard()
Effects: Waits only for actively running closures to complete, then joins and destroys the
threads. Non-started functions will be destroyed.

VI.1.c. system executor

The system executor is a system provided default for the common case scenario where a
programmer just wants a reasonable place to run tasks asynchronously. Thus it provides the
singleton get_executor() method to retrieve the system_executor.

This executor provides the minimal executor interface and is commonly implemented as a
growable thread pool with some sort of forward progress guarantees.

class system executor ({

public:
system executor (system executor&& other) = delete;
system executor (const system executoré& other) = delete;

static system executor& get executor();
virtual ~system executor();

public:
template<class Func> void spawn (Funcé&& func);

private:
system executor();

static system_executor& system_executor::get_executor()
Effects: Gets a singleton system_executor for use across code with the lifetime of the
application.

system_executor: :~system_executor()

Effects: Waits for all added closures (if any) to complete, then joins and destroys the
threads.

VI.1.d. loop executor

Class loop_executor is a single-threaded executor that executes closures by taking control of a
host thread. Closures are executed via one of three closure-executing methods: 1oop (),



run queued closures(),and try run one closure (). Closures are executed in FIFO
order. Closure-executing methods may not be called concurrently with each other, but may be
called concurrently with other member functions.

class loop executor {

public:
loop executor();
loop executor (const loop executor& other) = delete;
loop executor (loop executor&& other) = delete;

virtual ~loop executor();

void loop ()

void run queued closures();
void make loop exit();

bool try run one closure();

// Executor interface
template<class Func> void spawn (Funcé&& func);

}s

loop_executor: :1loop_executor()
Effects: Creates a loop_executor object. Does not spawn any threads.

loop_executor: :~loop_executor()
Effects: Destroys the 1oop executor object. Any closures that haven’t been executed
by a closure-executing method when the destructor runs will never be executed.
Synchronization: Must not be called concurrently with any of the closure-executing
methods.

void loop_executor::loop()
Effects: Runs closures on the current thread until make loop exit () is called.
Requires: No closure-executing method is currently running.

void loop_executor::run_queued_closures()
Effects: Runs closures that were already queued for execution when this function was
called, returning either when all of them have been executed or when
make loop exit () is called. Does not execute any additional closures that have
been added after this function is called. Invoking make loop exit () from within a
closure run by run_queued_closures() does not affect the behavior of subsequent
closure-executing methods. [Note: this requirement disallows an implementation like
void run queued closures() { add([] (){make loop exit();});
loop () ; } because that would cause early exit from a subsequent invocation of



loop().]
Requires: No closure-executing method is currently running.
Remarks: This function is primarily intended for testing.

bool loop_executor::try_run_one_closure()
Effects: If at least one closure is queued, this method executes the next closure and
returns.
Returns: true if a closure was run, otherwise false.
Requires: No closure-executing method is currently running.
Remarks: This function is primarily intended for testing.

void loop_executor::make_loop_exit()
Effects: Causes loop () or run queued closures () to finish executing closures and
return as soon as the current closure has finished. There is no effect if 1oop () or
run_queued closures () isn't currently executing. [Note: make loop exit () is
typically called from a closure. After a closure-executing method has returned, it is legal
to call another closure-executing function.]

VI.1.e. serial executor

Class serial executor is an adaptor that runs its closures by scheduling them on another
(not necessarily single-threaded) executor. It runs added closures inside a series of closures
added to an underlying executor in such a way so that the closures execute serially. For any two
closures c1 and c2 added to a serial executor e, either the completion of c1 happens
before the execution of c2 begins, or vice versa. If e.spawn (c1) happens before

e.spawn (c2), then c1 is executed before c2.

The number of spawn () calls on the underlying executor is unspecified, and if the underlying
executor guarantees an ordering on its closures, that ordering won't necessarily extend to
closures added through a serial executor.

template <typename Exec>

class serial executor ({

public:
explicit serial executor(const Execé& underlying executor);
serial executor (const serial executor& other) = delete;
serial executor (serial executor&& other) = delete;

virtual ~serial executor();
Exec& underlying executor();

// Executor interface



template<class Func> void spawn (Funcé&& func)

}s

serial_executor::serial_executor(const Exec& underlying executor)
Effects: Creates a serial executor that executes closures, in an order that respects
the happens-before ordering of the serial executor::spawn () calls, by passing
the closures to underlying executor. Will make a copy of the passed executor
object. [Note: several serial executor objects may share a single underlying
executor.]

serial executor::serial executor (const serial_ executoré& other)
Effects: Creates a copy of the serial_executor object by owning a handle to the internal
shared state and takes shared ownership of any underlying state.

serial executor::serial executor(serial_executoré&& other)
Effects: moves the shared state of the serial executor and the underlying executor to
this. Executor other will be left in an undefined state.

serial_executor::~serial_executor()
Effects: Finishes running any currently executing closure, then destroys all remaining

closures and returns.

Exec& serial_executor::underlying_executor()
Returns: The underlying executor that was passed to the constructor.

VI.2 Executor Wrapper

Class executor a type erasing executor object which complies to the basic executor
specification with a reference to an concrete executor object. The spawn function behaves like
the templatized executor but takes in a concrete moveable function wrapper which can erase
arbitrary callable objects (including move-only objects, unlike std::function).

class executor {
public:
virtual void spawn (executors::worké&& fn) = 0;

b

template <typename Exec>
class executor wrapper : public executor ({
public:

executor impl (Exec& exec);

executor impl (executor impl<Exec>&& other);



virtual void spawn (executors::worké&& fn) {
exec.spawn (std: :forward<executors::work>(fn));
}
}i

executor_wrapper: :executor_wrapper(Exec& exec)
Requires: The lifetime of the underlying executor shall exceed that of the underlying
executor.
Effects: Construct an executor wrapper object from a pointer to an existing executor.
Maintains the pointer to the executor for the lifetime of the object.

void executor_wrapper::spawn(work&& fn)

Effects: calls spawn on the underlying executor with the passed function object.

namespace executors {
class work {

public:
work () = delete;
work (const worké&) = delete;

work (work&& other);

~work () ;

template <typename T> work (T&& t);
void operator () ();

}s

class executors: :work
Optional move-only function wrapper interface which extends the std: : function
concept to allow moveable objects to be be stored in the type erasing container (and is
thus not a copyable object itself). This also can be used by executor implementations to
store tasks.

work: :work(executor: :work&& other)
Effects: move-constructor to create a wrapper from an existing wrapper object.

work: :~work(executor: :work&& other)
Effects: destroys the callable object state contained in the work object.

template <typename T>work: :work(T&& t)
Requires: the target callable takes no parameters.



Effects: creates a new work object from an existing function or function object t.

void work: :operator()()
Effects: invokes the target with no parameters.

V1.3 Free Functions & Helper Objects

template <typename Func>
auto make package (Funcé&& f) -> packaged task<decltype (f()) ()>;

std: :make_package(Func&& f)
Effects: optional helper function which returns a packaged task from the passed callable.

template <typename Exec, typename Func>
void spawn (Exec& exec, Funcé&& func);

void std::spawn(Exec& exec, Func&& func)
Effects: direct analogue to the spawn function on the executor but in free function form.

template <typename Exec, typename T>
future<std::decay<T>> spawn (Exec& exec, packaged task<T()>&& func);

future<std: :decay<T>> std::spawn(Exec& exec, packaged_task<T()>&& func)
Effects: helper version of spawn which spawns with a packaged task object and returns
the associated future. Catches any exceptions thrown by the contained function and sets
the exceptions on the returned future.

template <typename Exec, typename Func, typename Continuation>
void spawn (Exec& exec, Funcé&& func, Continuation&& continuation)

void std::spawn(Exec& exec, Func&& func, Continuation&& continuation)
Requires: neither func nor continuation will throw an exception
Effects: helper which spawns a callable which combines the calls of func an
continuation serially such that continuation will only execute upon successful
completion of func. This could basically be modeled as a lambda which runs the pair of
functions [ func=move (func), continuation=move (continuation) ]
{ func(); continuation() }. Though this provides a convenient extension to
the standard interface with less boilerplate code.



