
Document number: N4543
Date: 2015–05–26
To: SC22/WG21 LEWG
Reply to: David Krauss

(david_work at me dot com)
References: N4159

A polymorphic wrapper for all Callable objects

1. Summary
This proposal describes unique_function, a variation of std::function supporting non-
copyable target objects. Its interface removes the copy constructor, and adds in-place
construction of target objects.

2. Motivation
Several factors may prevent copying a function object. It may have a non-copyable member.
Other objects may depend on its mutable state or retain references to it. In the latter cases, the
copy constructor might not actually be deleted. An event dispatching system, for example, might
wish to manage ownership of handler objects via std::function. This would require that the
user provide copyable objects even though each will always remain unique.
Current workarounds include using reference_wrapper as the function target type, trying to
pass a unique std::function object always by reference or reference_wrapper, or
defining an always-throwing copy constructor. These sacrifice overhead or user-friendly
ownership semantics for artificial copyability.
For example, an event-handler map is trivial to implement if the library is willing to demand that
the handlers be copyable. The end result is optimal, but inflexible.
std::map< std::string, std::function< void() > > commands;
 // ^ Want unique_function here.

template< typename ftor >
void install_command(std::string name, ftor && handler) {
 commands.insert({ std::move(name),
 std::forward< ftor >(handler) });
}

Improving the external interface quality by allowing non-copyable types is fairly difficult.
Efficiency is also reduced. In particular, we need two parallel type erasures.
struct owned_function {
 // Order of these members is significant, and this must remain an aggregate.
 std::function< void() > wrapper;
 std::unique_ptr< void *, void (*)(void *) > alloc;
};

���1

std::map< std::string, owned_function > commands;

template< typename ftor, typename ... a >
void install_command(std::string name, a && ... arg) {
 auto ptr = std::make_unique<ftor>(std::forward< a >(arg) ...);
 commands.insert(std::make_pair(
 std::move(name), owned_function {
 std::ref(* ptr.get()),
 { // unique_ptr constructor arguments
 ptr.release(), // Must call get() before release().
 [] (void *p) { delete static_cast< ftor * >(p); }
 },
 }
));
}

template< typename ftor >
void install_command(std::string name, ftor && handler) {

install_command< std::decay_t< ftor >, ftor && >
(std::move(name), std::forward< ftor >(handler));

}

Plenty of other solutions exist, perhaps some simpler than this. Arriving at a simple solution is
hard, though! The above has non-obvious aspects in overload resolution, order of evaluation, and
unique_ptr deleter customization. It works around some unimplemented DRs and exposes
some other bugs. Many solutions are less flexible or incorporate extraneous functionality such as
data structures. None are easy or efficient enough, and certainly none are idiomatic.

3. Proposal
The motivating example painstakingly reimplemented some basic functionality. This
functionality is added to std::function, yielding unique_function.
template< class Target >
class any_piecewise_construct_tag {};

template< class >
class unique_function;

template< class Ret, class ... ArgTypes >
class unique_function< Ret(ArgTypes ...) > {
public:

// 3.1, Parity with std::function:
unique_function() noexcept;
unique_function(unique_function &&);
unique_function(unique_function const &) = delete;
unique_function & operator = (unique_function &&);
unique_function & operator = (unique_function const &) = delete;
// Include operator() and other member function signatures of std::function.

���2

http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#2354
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66284

// 3.2, Target object transfers
unique_function(function< Ret(ArgTypes ...) > &&);
unique_function(function< Ret(ArgTypes ...) > const &);
unique_function & operator =

(function< Ret(ArgTypes ...) > &&);
unique_function & operator =

(function< Ret(ArgTypes ...) > const &);

// 3.3, In-place construction:
template< class F, class ... Args >
unique_function(any_piecewise_construct_tag< F >, Args && ...);
template< class A, class F, class ... Args >
unique_function(allocator_arg_t, A const &,

any_piecewise_construct_tag< F >, Args && ...);

template< class F, class A, class ... Args >
allocate_assign(A const &, Args && ...);
template< class F, class ... Args >
emplace_assign(Args && ...);

};

template< class Sig, class Target, class ... Args >
unique_function< Sig >
make_unique_function(Args && ...);

template< class Sig, class Target, class A, class ... Args >
unique_function< Sig >
allocate_unique_function(A const &, Args && ...);

A new template-name is introduced, as opposed to a specialization of function. There is little
benefit to a user template being generic only across function specializations. Good generic
code is written against an interface (e.g. Callable or availability of target), without naming an
implementation (e.g. function). Existing templates which do hard-code function support
may not be compatible with unique_function anyway.
The name unique_function is chosen because it only permits one instance of the target value.
The address of target remains constant across ownership transfers if it does not implement
move construction. These properties offer parity with unique_ptr.

3.1. Parity with std::function
Aside from the copy constructor and copy assignment operator, deleted for obvious reasons, the
new template adopts the interface of std::function.
Non-movable target objects are supported; these must be managed by the allocator. They cannot
be constructed directly into the wrapper.

���3

3.2. Target object transfers from std::function
Initializing or assigning a unique_function from a function of the same signature
initializes the new target object from that of the source wrapper, and does not result in double
wrapping.
The reverse operations are impossible, since the target may not be copyable and the
unique_function wrapper certainly isn’t. No change to function is needed.
Interoperability may be achieved without allowing unique_function to use a copy constructor
that may be available, or a throwing move constructor. ODR-use of any practically unused
constructor should be forbidden, or at least strongly discouraged to prevent bloat.

3.3. In-place construction
A new tag type any_piecewise_construct_tag signals in-place construction and nominates
the target type. The intent is that the interface can be replicated in other classes such as any and
function. The name is subject to debate.
For the allocate_assign and emplace_assign member functions, the templated tag is
unnecessary because the target type is supplied as an explicit template argument.
The new constructors are very ugly, but they represent the most efficient interface. Factory
functions with terminology borrowed from shared_ptr offer more elegance.

4. Future directions
The in-place construction interface should be applicable to function and any as well as
unique_function.
It may be useful to have a unique_any. Given multi-signature functions (pending proposal),
since any is nearly equivalent to a function with an empty overload set, implementation of
unique_any could be trivial.
Target object transfers from function to any may also be useful, but they would not be the
default behavior. They could be more useful, and the reverse transfer more tractable, if the user
could extend the erasure data accompanying the target.

5. Implementation and acknowledgements
Matt Calabrese and Geoffrey Romer independently invented this feature set, and implemented it
together with further extensions. They worked to combat bloat and developed the principle of
minimizing constructor ODR-use.
I have retrofitted some functionality into the libc++ function implementation. There is no
particular conceptual difficulty, and function became aware of move constructors that it had
ignored. It should be noted, though, that libc++ and libstdc++ both still need architectural
changes to support C++11 type-erased function allocators. Although this proposal could be taken
incrementally, in practice it would likely be implemented within wider-ranging revisions.

���4

