
Read-Copy Update (RCU) for C++
ISO/IEC JTC1 SC22 WG21 N4483 - 2015-04-14

Paul E. McKenney, paulmck@linux.vnet.ibm.com
TBD

Introduction

RCU has seen increasingly heavy use within the Linux kernel, as can be seen in
the following graph, where it is most frequently used as a high-performance and
highly scalable replacement for reader-writer locking. It has also seen
significant uptake in some userspace applications via the userspace RCU
library, which is available on many recent Linux distributions, and has also been
tested on a number of versions of FreeBSD as well as on Cygwin. One example
userspace use is the solution to the Issaquah Challenge, see slides 63-66 for
performance and scalability information.

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

1 of 10 05/26/2015 12:48 PM

This document gives a brief introduction to RCU and describes one way that it
might be incorporated into the C and C++ standards.

What Is RCU?1.
Where Is RCU Best Used?2.
RCU API3.
Implementation Alternatives4.
Additional References5.

What Is RCU?

RCU provides guarantees and desiderata. A given implementation must provide
the guarantees to qualify as an RCU implementation, and should also provide
the desiderata if it is to be taken seriously.

RCU Guarantees

RCU provides a grace-period guarantee, a publish-subscribe guarantee, and

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

2 of 10 05/26/2015 12:48 PM

memory-ordering guarantees. The following paragraphs provide a quick
overview of these guarantees, with more detail available in the Additional
References.

The grace-period guarantee allows updaters to wait for pre-existing RCU
readers. The “pre-existing” phrase is important: RCU is not obligated to wait for
readers that start after the beginning of the grace period. Grace periods are
frequently used to privatize data elements that have been removed from a
linked data structure. The key point is that once a given data element has been
removed, only pre-existing readers can have access to it. Therefore, removing
the element and then waiting for a grace period guarantees that no readers can
possibly still have access to that element: Old readers have completed, and new
readers never did have a path to the removed element. Thus, after the grace
period completes, the removed element can safely be freed, even in the
presence of concurrent readers. In this way, grace periods greatly simplify
maintenance of data structures subject to concurrent lookup and deletion.

RCU readers are delimited by rcu_read_lock() and rcu_read_unlock(), which may be
nested. RCU updaters wait for all pre-existing readers by invoking
synchronize_rcu(), which blocks for at least one grace period, that is, until all such
readers have completed. The asynchronous counterpart to synchronize_rcu() is
call_rcu(), which invokes the specified function after a grace period has elapsed.

The publish-subscribe guarantee is used to simplify insertion into a linked data
structure that is subject to concurrent lookup. For this purpose, RCU provides
API members that incorporate any compiler directives and memory-barrier
instructions that might be required to ensure that when a reader encounters a
newly inserted data element, that reader will be guaranteed to see any
initialization that might have been applied to that data element prior to its
insertion. Publication is carried out via rcu_assign_pointer(), which could be
implemented using a memory_order_release store, and subscription is carried out via
rcu_dereference() which could be implemented using a memory_order_consume load, or
could be if a high-quality implementation of memory_order_consume existed.

The memory-ordering guarantee is a direct consequence of the grace-period
guarantee, but is well worth discussing separately. The general principle is
illustrated in the following figure:

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

3 of 10 05/26/2015 12:48 PM

Given this ordering ...

.... RCU guarantees this ordering.

rcu_read_lock()

Memory
Reference X0

CPU 0

CPU 1

Memory
Reference Y0

Memory
Reference Y1

synchronize_rcu()

Memory
Reference X1

rcu_read_unlock()

In you can see from the figure, if any reference in a given RCU read-side critical
section preceds a given grace period, then all references in that RCU read-side
critical section are guaranteed to precede any reference following that grace
period.

The next figure illustrates the same principle, but uses relaxed assignments,
and guarantees r2 != 0 || r1 == 0.

Given r2 == 0 ...

.... RCU guarantees r1 == 0.

CPU 0CPU 0

rcu_read_lock()

r1 = X

r2 = Y

Y = 1

synchronize_rcu()

X = 1

rcu_read_unlock()

CPU 1

These ordering guarantees also operate in reverse, so that if any reference in a
given RCU read-side critical section follows any reference following a given
grace period, then all references in that RCU read-side critical section are
guaranteed to follow any reference preceding that grace period. In particular,

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

4 of 10 05/26/2015 12:48 PM

given the relaxed accesses in the following figure, it is guaranteed that r1 == 1 ||
r2 != 1.

If r2 == 1...

R
C

U
 g

u
a
ra

n
te

e
s

r1
 =

=
 1

rcu_read_lock()

r1 = X

CPU 0

r2 = Y

X = 1

synchronize_rcu()

Y = 1

rcu_read_unlock()

CPU 1

It is important to note that these ordering guarantees apply to all accesses in
the RCU read-side critical section, regardless of ordering. As expected, the
following litmus test guarantees r1 != 1 || r2 == 1:

CPU 0 CPU 1

rcu_read_lock(); Y = 1;
r1 = X; synchronize_rcu();
r2 = Y; X = 1;
rcu_read_unlock();

However, the following litmus test also provides this exact same guarantee,
despite the loads in the RCU read-side critical section having been
interchanged:

CPU 0 CPU 1

rcu_read_lock(); Y = 1;
r2 = Y; synchronize_rcu();
r1 = X; X = 1;
rcu_read_unlock();

It is important to note that these guarantees are based on an interaction
between the readers' rcu_read_lock() and rcu_read_unlock() on the one hand and the
updater's synchronize_rcu() on the other. In particular, in the absence of
synchronize_rcu(), rcu_read_lock() and rcu_read_unlock() offer no ordering guarantees
whatsoever. For example, consider the following litmus test, again with X and Y
both initially equal to zero:

CPU 0 CPU 1

rcu_read_lock(); rcu_read_lock();

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

5 of 10 05/26/2015 12:48 PM

X = 1; r1 = Y;
rcu_read_unlock(); rcu_read_unlock();
rcu_read_lock(); rcu_read_lock();
Y = 1; r2 = X;
rcu_read_unlock(); rcu_read_unlock();

In this case, because rcu_read_lock() and rcu_read_unlock() offer no ordering
guarantees, all four outcomes are possible for the values of r1 and r2.

Finally, if any part of a given RCU read-side critical section is ordered before a
given grace period, and if any part of some other RCU read-side critical section
is ordered after that same grace period, then the entirety of the first RCU
read-side critical section is ordered before the entirety of the second RCU
read-side critical section, as shown below:

Given r1 == 0 ...

.... RCU guarantees r2 == 0.

CPU 0CPU 0

CPU 1

CPU 2

..
.

a
n

d
 r

3
 =

=
 0

 .
..

rcu_read_lock()

X = 1

r1 = Y

Y = 1

synchronize_rcu()

Z = 1

rcu_read_unlock()

rcu_read_lock()

r2 = X

r3 = Z

rcu_read_unlock()

More details on RCU's memory-ordering guarantees may be found in the an
LWN article entitled “The RCU-barrier menagerie”.

RCU Desiderata

A high-quality RCU implementation will in addition satisfy the following
desiderata:

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

6 of 10 05/26/2015 12:48 PM

RCU's read-side primitives should deterministic and extremely small
overheads. Here, “extremely small” will typically rule out use of locks,
atomic instructions, explicit memory-barrier instructions, and, in many
cases, conditional branches. At a minimum, deterministic overhead should
be provided to the highest-priority thread in a strict-priority environment.
This desideratum helps avoid most deadlocks.

1.

RCU's primitives, both read-side and update-side, should be unconditional.
They should therefore avoid failure returns and retry operations. This
desideratum helps avoid most livelocks and greatly simplifies use of these
primitives.

2.

Although RCU's update-side primitives are not required to have
deterministic overheads, given a fair scheduler, it should not be possible to
starve them, even given a massive influx of RCU read-side critical sections.
Starvation should only occur in the presence of an unfair scheduler (for
example, a fixed-priority scheduler) or in the presence of at least one RCU
read-side critical section containing an infinite loop.

3.

RCU read-side critical sections should be permitted to contain any
operation, with the exception of those operations that wait, either directly
or indirectly, for an RCU grace period to complete.

4.

RCU read-side critical sections should be permitted to modify
RCU-protected data structures, for example, by acquiring the update-side
lock from within an RCU read-side critical section.

5.

RCU's semantics and implementation should not be closely intertwined
with those of the memory allocators.

6.

Concurrent requests for an RCU grace period should be satisfied by a
single RCU grace period. (Within the Linux kernel, it is not difficult to
arrange for more than 1,000 requests to be satisfied by a single grace
period.)

7.

Meeting these desiderata greatly simplifies use of RCU, however, this list is not
necessarily complete.

Where Is RCU Best Used?

When used properly, RCU can be a very powerful tool, however, it gains its
power through specialization. The following figure gives a rough guide to where
RCU may be profitably applied:

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

7 of 10 05/26/2015 12:48 PM

Read-Mostly, Stale &

Inconsistent Data OK

(RCU Works Great!!!)

(RCU Works Well)

Read-Mostly, Need Consistent Data

Read-Write, Need Consistent Data

Update-Mostly, Need Consistent Data

(RCU Might Be OK...)

(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

(RCU is Very Unlikely to be the Right Tool For The Job, But it Can:

More information on how RCU is used in the Linux kernel may be found here
and here.

RCU API

The minimal RCU API is straightforward:

rcu_read_lock(): Begin an RCU read-side critical section.1.
rcu_read_unlock(): End an RCU read-side critical section. RCU read-side
critical sections may be nested.

2.

atomic_load_explicit(p, memory_order_consume): Fetch a pointer to an
RCU-protected data element. This is rcu_dereference() in the Linux kernel
and in the userspace RCU library.

3.

atomic_store_explicit(p, newp, memory_order_release): Store a pointer to an
RCU-protected data element. This is rcu_assign_pointer() in the Linux kernel
and in the userspace RCU library.

4.

synchronize_rcu(): Wait for an RCU grace period to elapse. In other words, for
every thread within an RCU read-side critical section at the beginning of
synchronize_rcu()'s execution, wait for that thread to exit its RCU read-side
critical section. Note that synchronize_rcu() need not wait for RCU read-side
critical sections that were entered after the beginning of synchronize_rcu()'s
execution. Note also that it is permissible for synchronize_rcu() to wait
somewhat longer than needed.

5.

void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *head)): After a
grace period elapses, invoke func(head). The head structure is normally
embedded within the RCU-protected data element. Both the Linux kernel
and usermode RCU implement struct rcu_head as a pair of pointers, one to

6.

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

8 of 10 05/26/2015 12:48 PM

hold func and the other to link a series of such structures together. The
RCU callback function func is responsible for mapping from the address of
head to the beginning of the enclosing structure. Both the Linux kernel and
the userspace RCU library use an address-arithmetic macro named
container_of() to do this mapping.

For a view of how elaborate an RCU API can become, see the 2014 edition of
the Linux-kernel RCU API or the user-space RCU API. Much of the added
complexity is due to the addition of some RCU-protected data structures.

Implementation Alternatives

There are a surprisingly large number of plausible RCU implementations, and
more are being created all the time. The best guide for userspace RCU
implementations are in the userspace RCU library, and the best tutorial for
these implementations is Appendix D of the supplementary materials to
“User-Level Implementations of Read-Copy Update”. Simpler (but less useful)
implementations may be found in Section 9.3.5 of “Is Parallel Programming
Hard, And, If So, What Can You Do About It?”. However, there are two basic
styles, the global RCU approach described below (and implemented in the
userspace RCU library) and the domain-based sleepable RCU (SRCU), which
includes an srcu_struct structure that defines a given SRCU domain.

The SRCU approach is probably more in keeping with the object-oriented
approach, however, it is worth noting that a high-quality SRCU implementation
requires a separate set of thread-local variables for each and every instance of
the srcu_struct structure—and it is easy to imagine that these structures might
be dynamically allocated. We should start with the global RCU API described
above.

Additional References

There is a large body of background information on RCU, including the
following:

The 2013 CACM paper entitled “Structured deferral: synchronization via
procrastination” provides a good overview of the motivation and use of
RCU. The CACM paper may be found here, and its ACM Queue
predecessor here.

1.

The 2013 IEEE TPDS paper entitled “User-Level Implementations of
Read-Copy Update” provides some conceptual background for RCU,
performance comparisons, and implementations. The main paper is here
(with pre-publication draft here), and the supplementary materials are

2.

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

9 of 10 05/26/2015 12:48 PM

here.
Section 9.3.5 of “ Is Parallel Programming Hard, And, If So, What Can You
Do About It?” provides a list of low-quality but simple RCU
implementations. Section 9.3 covers RCU in general, and Chapters 10 and
13 cover some example uses of RCU.

3.

The userspace RCU library is available here, and also as part of many
Linux distributions.

4.

The full user-space RCU API is here.5.
The full Linux-kernel RCU API is here.6.
Descriptions of how RCU is typically used in the Linux kernel may be found
here and here.

7.

The Issaquah Challenge shows how RCU may be used to help orchestrate
complex updates, and the most recent presentation is here.

8.

RCU's memory-ordering guarantees are described here.9.
The classic introduction to RCU, still used in some university coursework,
is here.

10.

Lots more RCU-related material here.11.

Read-Copy Update (RCU) for C++ file:///tmp/RCU/RCU.html

10 of 10 05/26/2015 12:48 PM

