
Stroustrup, Dos Reis Operator Dot N 4477

WG21-N4477

2015-4-9

Follow-up to WG21-N4173
2014-10-11

Operator Dot (R2)
Bjarne Stroustrup (bs@ms.com)

Gabriel Dos Reis (gdr@microsoft.com)

What’s new?
This is an update on N4173:

• Many examples are cleaned up and several explanations improved.
• The use of access control to prevent “reference leaking” has been removed
• The direct binding of the result of operator.() to a reference variable has been banned to

prevent implicit “reference leaking.

Abstract
This is a proposal to allow user-defined operator dot (operator.()) so that we can provide “smart
references” similar to the way we provide “smart pointers.” The gist of the proposal is that if an
operator.() is defined for a class Ref then by default every operation on a Ref object is forwarded to the
result of operator.(). However, an operation explicitly declared as a member of Ref is applied to the Ref
object without forwarding.

1 Introduction
There has been several suggestions and proposals for allowing programmers to define operator.() so as
to be able to provide “smart references” similar to the way we provide “smart pointers” (e.g.,
[Adcock,1990], [Koenig&Stroustrup,1991], [Stroustrup,1994], and [Powell,2004]). Consider how that
idea might work:

template<class X>
class Ref {
public:
 explicit Ref(int a) :p{new X{a}} {}
 X& operator.() { /* maybe some code here */ return *p; }
 ~Ref() { delete p; }

1

mailto:gdr@microsoft.com

Stroustrup, Dos Reis Operator Dot N 4477

 void rebind(X* pp) { delete p; p=pp; }
 // …
private:
 X* p;
};

Ref<X> x {99};
x.f(); // means (x.operator.()).f() means (*x.p).f()
x = X{9}; // means x.operator.() = X{9} means (*x.p)=X{9}

Now Ref<X> is a proxy for an X object on the free store: The Ref<X> behaves like an X object, yet does
not expose pointer-like behavior to its users.

However, is that assignment right? There is no mention of dot. Is it right to apply operator dot when the
dot is not explicitly mentioned? This has been one sticking point for earlier proposals. On the one hand,
we want to apply operator dot for “all uses” so that we can get operators, such as =, +, and ++ to work
for “smart references” to objects of classes with such operators (like for built-in references). On the
other hand, we also want to be able to operate on the state of the smart reference itself (a smart
reference really is an object). For example:

x.rebind(p); // delete old x.p and make x.p=p – Must not forward

This proposal is to apply operator dot everywhere, except when we “say otherwise.” So how do we
specify an exception to the forwarding to the referred-to object? Many alternatives have been discussed
in the various proposals, including:

1. Separate operators (e.g., :- for assignment to the reference object, like Simula)
2. Explicit use of ->
3. Preference to members of the smart reference over members of the referred-to object
4. Define operator .*
5. Use inheritance
6. Use template metaprogramming
7. Use overload resolution across the reference/referred-to scopes
8. Mark handle member functions as forwarded or not

None of the suggestions are perfect and we will not repeat those discussions. If every operation on a
reference is forwarded to the referred-to object, no trickery within the current language will give us a
perfect solution: For example, we could not implement rebind(). On the other hand, if an operation is
not forwarded, then we can’t invoke that operation on the referred-to object. For example, we could
not define rebind() on the smart reference and also always have it forwarded. Something has to give.

2 Why do we want to “overload dot”?
Part of the problem of designing an operator.() mechanism is that different people have different views
of what problem it is supposed to solve. Another is that since overloading of dot doesn’t exist, people

2

Stroustrup, Dos Reis Operator Dot N 4477

imagine it might be tweaked to solve an amazing variety of problems. Here is a list of some suggested
problems/solutions (not necessarily compatible, orthogonal, general, reasonable, or well-specified):

1. Smart references: This is the most commonly mentioned need. That is, a class that acts like a
reference, but provides some extra service, such as rebinding, loading from persistent storage,
or pre- and post-actions. In particular, = should apply to the referred-to object, not the handle.

2. Smart pointer work-alikes: That is, something that acts like an overloaded ->, but doesn’t have
pointer semantics. So . (dot) should work like -> does for smart pointers. In particular, = should
apply to the handle.

3. Proxies: That is, something that acts just as an object (like a reference), but requires
computation on access. A proxy is not necessarily a handle to some other object.

4. Interface refinement: That is, provide an interface that adds and/or subtracts operations from
the interface provided by a class. Such an interface is not necessarily a handle to some other
object.

5. Pimpl: That is, providing access to an object through an interface that provides a stable ABI. For
example, changing the objects layout doesn’t affect a user.

6. Handles: That is, anything that provides indirect access to something else.

Sometimes, an idea is described in very general terms and sometimes just as a single use case. Some
examples are shown below (e.g., §4.8, §6).

So operator.() refers to a language mechanism supposed to help writing classes. One common theme is
“but what I have (want to have) is not conceptually a pointer so I don’t want to use the -> or * notation
to access values.” What is also common is the idea to have an operation applied to a “handle” actually
be applied to a “value object” without actually listing every possible operation from the value’s type in
the definition of the handle’s type. Not all such handle/value ideas can be supported by a single
operator.() mechanism. From now on, we will use “handle” to refer to a type with operator.() defined
and “value” to the type that operator.() forwards to (and to objects of those types).

2.1 Why now? (again)
With that many proposals and suggestions, why raise the issue again? After all, if it was easy to come up
with a widely acceptable design it would have been accepted long ago. When something that is
frequently requested, is frequently commented on as a flaw in the C++ design, and widely considered
fundamentally a good idea fails, we should try to learn from the failures and try again. Furthermore, the
importance of non-indirection (proxies) has increased over the years, as has the importance of limiting
raw pointer use. Operator.() is the last piece of the puzzle of how to control the lifetime and use of
objects without relying on application users being well-behaved. Also, this design includes a couple of
new ideas.

3 An operator.() design
We conjecture that the key to an operator.() design is just four operations:

3

Stroustrup, Dos Reis Operator Dot N 4477

• operator.() – defines the meaning of forwarding. We need to decide whether it applies only to
explicit uses of dot (.) or also to implicit ones. This design forwards in both cases.

• & – does it apply to the handle or the value? Does a programmer have a choice? Can it be used
to gain access to the address of the value object? Some consider that most undesirable. Can it
be used to return a “smart pointer” to the object referenced by a “smart reference?” This design
gives the designer of a handle the choice, the opportunity to prevent pointer leaks, and to
return a smart reference.

• = – does it assign handles or values? Does a programmer have a choice? This design gives the
programmer a choice. By default, = applies to the value, but the assignment can be made to
apply to handles or be deleted.

• rebind() – does a named function apply to the handle or the value? This design makes an
explicitly declared handle member functions apply to the handle and all others apply to the
value.

So, the Ref<T> example works exactly as written.

4 Design points
This section considers the proposed design and a few alternatives.

4.1 Implicit dot
Why do we want forwarding (application of operator.()) to expressions that do not use dot? Consider:

 void f(X& x, X& y)
 {

If (x!=y)
x=++y;

 }

For ordinary references x and y, the comparison, assignment, and increment applies to the referred-to
objects. The claim is that we want the same for

void f(Ref<X> x, Ref<X> y)
 {

If (x!=y)
x=++y;

 }

For every Ref<X> that we can think of where X has !=, =, and ++, etc., we do not want to have to write:

void f(Ref<X> x, Ref<X> y) // explicit forwarding
 {

if (x.operator.()!=y.operator.()) // ugly!
x.operator.()= ++y.operator.();

 }

4

Stroustrup, Dos Reis Operator Dot N 4477

However, we want the original code (above) to mean that.
Why do we ever want to apply operations to the “smart reference” itself? That is, why don’t we just
forward every operation? One reason for wanting smart references is to be able to have them more
flexible than built-in references. The rebind() operation is a common example.

Operator dot is not invoked for explicit uses on the -> operator on a pointer. For example: the compiler
will not rewrite p->x to (*p).x and then to (*p).operator.().x if *p is of a type that has a defined
operator.(). This rule is needed to allow us to define operator.() and operator->() separately and to
allow us to use pointers in the definition of an operator.(). This is the same rule as for other user-
defined operators. For example defining + and = does not implicitly give us +=. It is up to the
programmer to define consistent sets of operators.

4.2 Pass by smart reference
Note the simplest special case:

void g(Ref<X> x)
 {

X xx = x; // X xx = x.operator.();
auto r = x; // auto r = x.operator.(); that is, r is a X

 }

Why isn’t r a Ref<X> in this example? Because x is a (smart) reference and therefore dereferenced (using
its operator.()). This is similar to:

void h(X& x)
 {

X xx = x; // X xx = whatever x refers to
auto r = x; // auto r = whatever x refers to; that is, r is a X

 }

Consider further:

template<typename T>
void fct(T x1, T& x2, Ref<T> x3)

 {
T xx1 = x1; // T xx1 = whatever x is
auto r1 = x1; // auto r1 = whatever x1 refers to; that is, r1 is a T

T xx2 = x2; // T xx2 = whatever x2 refers to
auto r2 = x2; // auto r2 = whatever x2 refers to; that is, r2 is a T

T xx3= x3; // T xx3 = whatever x3 refers to
auto r3 = x3; // auto r3 = whatever x3 refers to; that is, r3 is a T

 }

 X x {9};

5

Stroustrup, Dos Reis Operator Dot N 4477

X& r = x;
Ref<X> rr = x;

fct(x,x,x);
fct(r,r,r); // fct<X>
fct(rr,rr,rr); // fct<X>

In each case, the references are dereferenced and the X arguments are passed by-value, by-reference,
and by-smart-reference. But what does it mean to pass to a smart reference? That depends on what is
the meaning of initializing a Ref<X> with an X. The designer of Ref has a choice to make:

• Assume that Ref<X> doesn’t own the object (like X&), so that Ref<X>’s destructor does not
delete the X.

• Assume that Ref<X> owns its X (and must delete it). That implies that Ref<X> must clone an X
argument, but that is quite different from what an X& does for initialization (including argument
passing). That semantics is usually associated with things called something like Proxy<X>.

• Assume shared ownership and use a use count
• Don’t support construction of an Ref<X> from an X. That is what Ref<X> as defined above does.

So the initialization of rr would fail to compile.

This design choice is quite similar to what we have to make for smart pointers (no ownership, unique
ownership, or shared ownership). This is to be expected.

4.3 Who is in control?
The control of whether a function f() is applied to the handle or the value can be vested in the handle or
left to the user. This design vests the control in the handle. A handle without an operation could make
sense, but its behavior would be fixed at constructions time. However, like Ref, most examples need
operations on the handle. The question is then how to define and apply them.

This design took what seems the simplest approach: if the user explicitly declares a handle member it is
an operation on the handle. Otherwise (even for implicitly defined operations, except destructors), the
operation is forwarded. This also seems to lead to the simplest and “most natural” code.

Note that every name “reserved” by declaring it in the handle, takes away that name for some value
type. In particular, by declaring rebind() for a handle Ref<T>, we cannot access that function in the
Ref<X> of a Ref<Ref<X>>.

We considered the alternative of always forwarding except when a function was applied through a
pointer. However, unless more rules are invented, & is also forwarded to the value, so how do we get a
pointer to the handle? Also, having x.f() potentially mean something different from (&x)->f() would be
quite confusing to users. We propose to use the access-through-pointer trick in the implementation of
handles, though.

4.4 Why give priority?
Why give priority to members of the handle? We could

1. Give priority to members of the handle

6

Stroustrup, Dos Reis Operator Dot N 4477

2. Give priority to members of the value
3. Give an error if a name is declared in both the handle and the value
4. Apply overload resolution to choose between members of the handle and the value
5. Provide a syntax for access to the handle

We consider option 1 (“handle priority”) the right choice in most cases, and the simplest solution.
Choosing this option implies that nothing can be done to access the handle unless an operation has
been explicitly declared in the handle type (except through a pointer).

Option 2 (“value priority”) simply does not make sense because the purpose of the rule is to allow
handle members to be invoked; value member access is the default.

Option 3 (“either or”) would be brittle and confusing. Also, in general we would not know if a construct
was correct until template instantiation time because the value type will often be a template argument.

Option 4 (“overload resolution”) is technically not too bad: The compiler simply considers the union of
oversold sets from two scopes. However, it can be hard for the programmer to know which overload is
chosen (the details of the value and handle types may not be known to a user and are in separate in the
code), it opens the field for all sorts of cleverness, and suffers from the problem of potentially delaying
answers until template instantiation time.

The choice between (1) and (4) is fundamental from a language-technical perspective, but unlikely to be
important in real code.

Option 5 (“access syntax”) would allow us to define operations on the handle without hiding operations
on the value. But how? Consider what we might do if we did not give priority to members of the handle:

void f(Ref<X> r, X* p)
{
 adderssof(r)->bind(p); // go through pointer (one alternative)

 Ref<X>::r.bind(p); // explicit qualification (another alternative)

 r..bind(p); // .. handle access operator (a third alternative)
 r .= r2 // .= might make bind() redundant
}

We could
1. go through a pointer. Like all operations, & is forwarded to the value through operator.(), so

getting into the handle through a pointer requires std::addressof(), which exists specifically to
defeat smart pointers.

2. use explicit qualification (with ::)to defeat forwarding through operator.(), just as we use it to
defeat virtual calls, but that’s rather verbose and ugly.

3. introduce some new syntax to distinguish operations on the handle from operations on the
value. Here I have used a suffix dot followed by whatever would normally have been written.

The “addressof() trick” will work whatever else we choose to do.

7

Stroustrup, Dos Reis Operator Dot N 4477

Note that the priority is simply “has a member of that name been explicitly declared in the handle?” Like
for access control, we don’t distinguish based on the type of the member (e.g., function vs. data
member) or try to do overload resolution between scopes. Thus an “obviously irrelevant” member of
the handle (e.g., a private member or a type name) can hide a member of the value. This problem would
also affect the overload resolution solution (4). This problem could be solved by a change in the lookup
rules. The same problem surfaces in the context of modules, and will almost certainly have to be
addressed by any module proposal. Our assumption is that the problem is manageable and is likely to be
eliminated in the context of a module proposal. So here, we don’t propose a solution.

4.4 Constructors and destructors
A constructor invocation does not forward (invoke operator.()) because there isn’t an object to forward
from/through until the constructor completes.

A destructor invocation does not forward (invoke operator.()) because a destructor reverses the action
of its matching constructor and the constructor does not forward.

4.4.1 Unsurprising consequences
To explore implications, consider again Ref<X> as defined in §1.

template<class X>
class Ref {
public:
 explicit Ref(int a) :p{new X{a}} {}
 X& operator.() { /* maybe some code here */ return *p; }
 ~Ref() { delete p; }
 void rebind(X* pp) { delete p; p=pp; }
 // …
private:
 X* p;
};

We can try

void f(Ref<X> rr);

X x {1};
Ref<X> r {2};

f(1); // error: the constructor is explicit
f(x); // error: no constructor from X
f(r); // error or warning: no copy constructor for Ref<X>

The rules for suppressing copy and move when there is a destructor force us to make an explicit choice.
First, try a variant that doesn’t require an explicit destructor:

template<class X>

8

Stroustrup, Dos Reis Operator Dot N 4477

class Ref1 { // non-owning smart reference
public:
 explicit Ref1(int a) :p{new X{a}} {}
 X& operator.() { /* maybe some code here */ return x; }
 // …
private:
 X* p;
};

We can try again

void f(Ref1<X> rr);

X x {1};
Ref1<X> r {x};

f(1); // error: the constructor is explicit
f(x); // error: no constructor from X
f(r); // copy r using copy constructor

That gets a Ref1<X> to x into f(). This is most likely what we would want as a default. However, Ref1
leaks. How do we fix that? First we add a destructor:

template<class X>
class Ref2 { // cloning reference
public:
 explicit Ref2(int a) :p{new X{a}} {}
 X& operator.() { /* maybe some code here */ return *p; }
 ~Ref2() { delete p; }
 void rebind(X* pp) { delete p; p=pp; }
 // …
private:
 X* p;
};

This is a variant of the use case that led to the deprecation of copy constructors in classes with
destructors. We have to define a copy constructor to get this right, and we would have to define it with
some reasonable meaning. Cloning is one answer. Further in this direction lies something like
unique_ref (move only to another Ref) and shared_ref (use counted shared object). For example:

template<class X>
class Shared_ref {
public:
 explicit Shared_ref(int a) :p{new X{a}} {}
 X& operator.() { /* maybe some code here */ return *p; }
 // …
private:
 shared_ptr<X> p;

9

Stroustrup, Dos Reis Operator Dot N 4477

};

4.5 Recursive use of operator.()
Is Ref<X>::operator.() applied to uses of a Ref<X> within members of class Ref<X>? Consider

template<class X>
class Ref {
public:
 Ref(int a) :p{new X{a}} {}
 X& operator.() { /* … */ return *p; }
 Ref(const Ref& a); // copy constructor: clone *a.p
 Ref(Ref&& a) // move constructor: replace p with a.p

:p{a.p} { a.p=nullptr; } // error: p= a.operator.().p ? that is, p=a.p.p
 // …
private:
 X* p;
};

This design has no special rules for handle members, so the answer is “yes, operator.() will be called,” so
the definition of the move constructor is an error: a.p is interpreted as a.operator.().p which means
a.p.p which is a compile-time error. The reasons for this design decision are that

• a context-dependent rule could be surprising and difficult to implement
• a context-dependent rule would be as surprising to some as the lack of one would be for others
• it is unlikely that Ref<X> objects will be common in Ref<X> definitions (the copy and move

operations are likely to be the most common cases)
• implementers of “smart reference” classes are likely to be relatively few and relatively expert
• errors from forgetting to use pointers to access the value are most often caught by the compiler
• “no rule” is the simplest rule

This (lack of a rule) implies the need to use pointers in many handle implementations. For example:

template<class X>
class Ref {
public:
 explicit Ref(int a) :p{new X{a}} {}
 X& operator.() { /* … */ return *p; }
 Ref(const Ref& a) { p = (&a)->clone(); } // clone the value: (&(a.operator.()))->clone();
 Ref(Ref&& a) : p{(&a)->p} { (&a)->p=nullptr; }
 // …
private:
 X* p;
};

10

Stroustrup, Dos Reis Operator Dot N 4477

Even if the handle defined operator&(), say to return a “smart pointer” and/or to prevent the pointer to
the value to leak into the surrounding program, we must use std::addressof(). For example:

template<class X>
class Ref {
public:
 explicit Ref(int a) :p{new X{a}} {}
 X& operator.() { /* … */ return *p; }
 Ref(const Ref& a) { p = addressof(a)->clone(); }
 Ref(Ref&& a) : p{addressof(a)->p} { addressof(a)->p=nullptr; }
 // …
private:
 X* p;
};

The standard library addressof() is guaranteed to return a built-in pointer rather than a smart pointer.
Note that the compiler will not implicitly transform p->x into (*p).x and allow a further transformation
to (*p).operator.().x (§4.1). That way, we do not get into a recursive mess. When naming a member
(such as Ref<T>::p) from within the class (as in *p in operator.()) the name is interpreted as prefixed by
this-> (here, *(this->p)). To avoid a recursive mess, we must not reduce that this->p to (*this).p and
further to (*this).operator.().p.

If we need a pointer repeatedly, we need to use addressof only once:

 X* q = addressof(a)->p;

4.5.1 Move and Copy
The default copy and move operations are most unlikely to do what a programmer wants. That is
unlikely to become a serious problem because their default generation will be suppressed by the
presence of a declared destructor or a copy-or-move operation. However, we propose to suppress
default generation of operations when an operator.() is declared. This would handle the unlikely case
where

• a handle has no declared destructor, and
• a handle has no declared copy-or-move operation, and
• a generated default copy-or-move operation is used, and
• that operation does not result in an error

In other words, if you define operator.(), you have to define or =delete all the special operations.

4.7 Return type of operator.()
The return type of operator->() is required to be something to which -> can be applied. This restriction is
not fundamental. We propose not to impose the equivalent rule for operator.() (and propose also to
relax it for operator->()): Allow operator.() to return a value of a type for which dot is not defined, such
as an int. Consider:

struct S {
 int& operator.() { return a; }
 int a;
};

11

Stroustrup, Dos Reis Operator Dot N 4477

S s {7};
int x = s.operator.(); // x = s.a
s.operator.() = 9; // s.a = 9

By itself this is useless. However, consider the proposals to allow x.f() to invoke f(x) (Glassborow,2007],
[Sutter,2014], [Stroustrup,2014], [Stroustrup&Sutter,2015]), generalizing what we already do for
operators, such as ==, and for begin() in a range-for. If x.operator.().f() does not correctly resolve to a
member function X::f(), we try to resolve it to f(x.operator.()). For example:

struct S {
 int& operator.() { return a; }
 int a;
};

S s {7};
int x = s.sqrt(); // s.operator.().sqrt() resolves to sqrt(s.operator.()) that is sqrt(s.a)

Since int has no member functions, s.operator.().sqrt() makes no sense, so we try sqrt(s.operator.())
and succeed.

Operators work the same way:

 ++s; // ++s.operator.() that is ++s.a

The rules for handling the return type of operator.() are easily specified and implemented and the x.f()
to f(x) transformation has precedence, but why bother? What new and useful does it provide?

Without the x.f() to f(x) transformation rule, the programmer could at most specify the transformation
to use a non-member function for specifically hand-coded named functions, defeating the purpose of
operator.(). With the transformation, static, free-standing, C-style functions can be called. In other
words, relaxing the rule for what operator.() can return allows forwarding to a C-style interface. For
example,

class File_handle {
 FILE* fp = nullptr;
public:
 FILE* operator.() { return fp?fp:throw X{}; }
 File_handle(const string s);
 // …
};

File_handle fh {"myfile"};
fh.fprintf("Hello"); // fprintf(fh.operator.(),”Hello”);
fprintf(fh, "World"); // calls operator.() for fh?

That last call is accepted if the f(x,y) to x.f(y) transformation is accepted as a general rule
([Stroustrup&Sutter,2015]).

12

Stroustrup, Dos Reis Operator Dot N 4477

As for operator->(), I propose to diagnose errors relating to the return type only if the operator.() is
actually used.

4.8 The definition of operator.()
There are no specific restrictions on to definition of operator.(). For example, we might implement a
version of the “wrap-around” pattern [Stroustrup,2000]:

template <class X>
class Ref {
public:

struct Wrap {
Wrap(X* pp) : p {pp} { before(); }
~Wrap() { after(); }
X& operator.() { access(p); return *p; }
X* p;

};
 Ref(X* pp) :p{pp} {}
 Wrap operator.() { return Wrap(p); }
 // …
private:

X* p;
};

void foo(Ref<X>& x)
{

x.foo(); // x.operator.().foo()
 // Wrap(x.p).foo()

// before(); acess(x.p); (x.p)->foo(); after()
auto v = x.bar(); // auto v = x.operator.().bar();

// auto v = Wrap(x.p).bar();
// roughly: before(); access(x.p); auto v = (x.p)->bar(); after()

}

The usual scope rules ensure that the two operator.()s won’t get confused (by the compiler).

4.9 Overloading operator.()
Since operator.() doesn’t take an argument, overloading seems implausible. However, to cope with
const, we must at least be able to overload on this. For example:

struct SS {
 T& operator.() { return *p; }
 const T& operator.() const { return *static_cast<const T*>(p); }
 // …
private:
 T* p;
};

13

Stroustrup, Dos Reis Operator Dot N 4477

void (SS& a, const SS& ca)
{
 a.f(); // calls non-const member T::f()
 ca.f(); // calls const member T::f()
}

This is simply the usual rules applied, as for operator->().

Beyond that, we can allow selection based on how a set of operator.() were used. Consider:

 struct T1 {
 void f1()
 void f(int);
 void g();
 int m1;
 int m;
 };

struct T2 {
 void f2()
 void f(const string&);
 void g();
 int m2;
 int m;
 };

struct S3 {
 T1& operator.() { return p; } // use if the name after . is a member of T1
 T2& operator.() { return q; } // use if the name after . is a member of T2
 // …
private:
 T1& p;
 T2& q;
};

void (S3& a)
{
 a.g(); // error: ambiguous
 a.f1(); // calls a.p.f1()
 a.f2(); // call a.q.f2()
 a.f(0); // calls a.p.f(0)
 a.f(“asdf”); // call a.q.f string(“asdf”)

 auto x0 = a.m; // error: ambiguous
 auto x1 = a.m1; // a.p.m1
 auto x2 = a.m2; // a.q.m2
}

14

Stroustrup, Dos Reis Operator Dot N 4477

Here, the compiler looks into T1 and T2 (the return types of the two operator.()s, select the most
appropriate member from either (if any) and then use the appropriate operator.() for that member’s
class. Member selection is done by ordinary overload resolution in the union of the scopes of T1 and T2
extended to apply to data members. This (among other things) allows us to have a simple proxy to an
“object” composed of several separately allocated parts.

4.10 Member Types
In addition to data and function members, a class can have type members. Can these be accessed
through operator.()? No. This proposal only applies to names that could be accessed using dot (.).
Consider:

 struct S {
 using T = int;
 // …
 };

 S s;
 s.T x; // error: we can’t access a member type using dot

Adding an operator.() to S would make no different to that example.

As usual, we can use types in combination with :: for disambiguation. For example:

struct B1 { int a, b1; };

struct B2 { int a, b2; };

struct S : B1, B2 { };

void ff(S& s) // traditional use
{
 s.b1 = 7;
 s.b2 = 8;
 s.a = 9; // error: ambiguous
 s.B1::a = 10;
 s.B2::a = 11;
}

The rules for using S through a “smart reference” are unchanged from those for using it through a built-
in reference:

void ff(Ref<S> s) // use through “smart reference”
{
 s.b1 = 7;
 s.b2 = 8;
 s.a = 9; // error: ambiguous
 s.B1::a = 10; // s.operator.().B1::a = 10

15

Stroustrup, Dos Reis Operator Dot N 4477

 s.B2::a = 11; // s.operator.().B2::a = 11
}

This technique achieves for composition using static calls what multiple inheritance archives (with much
more complexity and run-time overhead) with virtual calls.

5 Avoiding “reference leaking”
Can a Ref<X> be implicitly converted to an X or an X&? For example:

void foo(X& x);

void bar(Ref<X> x) // assume that Ref’s copy ctor copies the handle
{

foo(x); // f(x.operator()) ???
}

This would be most unfortunate because it implies a loss of the control of access that the definition of
operator.() was to give. In particular, the X& thus obtained could outlive the Ref<X> and lead to subtle
errors. We must even consider

 X& r = x; // r binds to x.operator.() ???

This may be acceptable. After all, “C++ protects against Murphy, not Machiavelli” (which may be rather
unfair to Machiavelli, the distinguished historian of the Roman republic), but this “reference leaking” is
worrying: How can a reference be “smart” if we can implicitly (and accidentally) obtain a reference to
the controlled object?

We could (easily) ban these two examples, but before trying to solve the problem let us see how else a
reference can leak.

An operator.() can be used to gain a “naked pointer” to the object referred to. For example:

 Ref<T> p {new T};

T* q = &p.operator.(); // pointer to “contained object”

This is exactly equivalent to what can be done with a smart pointer’s operator->():

 shared_ptr<int> p(new int(7));
 int* q = p.operator->();

There is no need to call get()! In fact, there is no way to avoid users getting hold of a pointer to the
object owned by a shared_ptr. And the world has not come to an end because of that.

16

Stroustrup, Dos Reis Operator Dot N 4477

What if we would like to protect an object from raw pointer access? What if we want to ensure that the
object “owned” by a smart reference (or smart pointer) is accessed only through that smart reference
(or smart pointer)?

The bothersome example is an operation on the value that is implemented as a free-standing function.
For example:

 struct S { /* … */ };
 void incr(S& s) { /* increment s */}

 Ref<S> r (new S{7});
 incr(x); // we want this to work
 S& rs = r; // we want this to be an error

In other words, we want the *r.p to bind to the S& in incr() but not to the S& rs.

What’s so bad about that incr()? Nothing, the reference does not in fact “escape into the wild”, and it is
logically equivalent to many a ++ and == operation. In fact, it is a necessary use case. However, consider
an example that’s equivalent from the point of view of the compiler:

 S* leak(S& s) { return &s; }
 S* p = leak(x); // steal x! leak(x.operator.())

That leak is rather like shared_ptr’s operator->(), except that I can write it myself – or, if I could not, I
wouldn’t be able to write (invoke through a “smart reference”) the conventional free-standing ++ and ==
operations either. We would like to forward the reference to the value only to “reasonable” functions.
“Reasonable” is not a language-technical term suitable for standardization.

Note that this problem only occurs if we have uniform call syntax (or equivalent). If not, only members
can be called. However, something like uniform call syntax is necessary for general use of “smart
references.”

This proposal does not address this problem. It postpones it. It is easy to prevent direct binding to a
reference: just support something like operator T&() = delete;. It is easy enough to prevent explicit use
of operator.() (and operator->()): the previous version of this proposal suggested that making
operator.() (and operator->()) private should have that effect.

So, the rules are written to prohibit the completely implicit “reference leaking”:

 X& r = x; // error: tries to r bind to x.operator.()

The proposal does not touch the explicit use of operator.():

 X& r = x.operator.(); // OK: r binds to x.operator.()

But leaves the option to ban it open.

Finally, we leave this open:

17

Stroustrup, Dos Reis Operator Dot N 4477

S* leak(S& s) { return &s; }

 void incr(S& s) { /* increment s */}

incr(x); // OK: use x.operator() – this must work

 S* p = leak(x); // steal x.operator.() – we’d like to prevent this

We are looking for a way to ban leak() while accepting incr().

That is, the proposal bans implicit direct binding of the X in a Ref<X> to a X& but leaves to possibility of
a user writing a function to achieve that open.

6 Examples
Here are a few examples of possible uses of operator.().

6.1 Pimpl
This pattern separates a stable interface from a potentially changing implementation in a way that does
not require recompilation when the implementation changes. There are many variants of Pimpl. For
example:

Here is the supposedly stable part:

class X {
public:
 int foo(); // noninline => rather stable
private:
 int data; // not used through operator.()
};

Only the public interface (here int foo();) is used through the handle:

template<class T>
class Handle {
public:
 Handle(T* pp) :p{ pp } {} // access the T exclusively through p
 T& operator.() { return *p; } // don’t leak p
private:
 T* p;
};

Here is the potentially less stable implementation:

class X {
public:
 int foo(); // noninline => rather stable
private:
 int data; // not used through operator.()

18

Stroustrup, Dos Reis Operator Dot N 4477

};

int X::foo() { return data; } // uses representation: not very stable

A use where all access to an X goes through Handle<X>’s pointer:

void f(Handle<X> h)
{
 int d = h.foo();
}

int main()
{
 Handle<X> hx{ new X{ 7 } };
 f(hx);
 sizeof(hx); // size of X (not size of Handle<X>
}

The members of X need not be virtual, but could be. Virtual functions, or other trickery, could be used to
eliminate implementation details from the header seen by operator.().

6.2 Adding operations in a proxy
Consider how we might provide a standard interface for a class. We can provide a set of functions as an
interface, adding it to whatever else a class might offer:

template<typename T> // T must have a <
 struct totally_ordered {
 totally_ordered(const T& t) : val{t} { }
 bool operator<=(const totally_ordered& y) const { return not(y.val < val); }
 bool operator>(const totally_ordered& y) const { return y.val < val; }
 bool operator>=(const totally_ordered& y) const { return not (val < y.val); }

T& operator.() { return val; } // don’t leak a pointer to val
 private:
 T val; // here is the value (totally_ordered is not a reference type)
 };

 struct basic_ordinal {
 BasicOrdinal(std::size_t i) : val{i} { }
 bool operator<(basoc_ordinal y) const { return val < y.val; }
 private:
 std::size_t val;
 };

 using Ordinal = totally_ordered<basic_ordinal>;

19

Stroustrup, Dos Reis Operator Dot N 4477

It is a good guess that a simple inline operator.() , like the one above, will be inlined. Thus, the use of
totally_ordered incurs no overhead compared to handcrafted code.

Naturally, this could be done better with concepts, and be expressed far simpler with the proposed
terse syntax for comparisons [Stroustrup,2014a]. However, this is an example of a general technique,
rather than a recommendation of how to do operator functions.

6.3 A remote object proxy
Here is a simple remote object proxy that reads a copy of a symbolically-named remote object into main
memory upon construction and back again upon destruction:

template<class T>
class Cached {
public:
 Cached(const string& n); // read n into memory and bind to obj
 ~Cached(); // write obj back into s (transaction safe)

 void flush(); // write obj back into s (transaction safe)
 void read(); // read name into obj
 // …

 T& operator.() { if (!available) read(); return obj; }
private:
 T& obj;
 bool available; // a local copy is available through obj
 string name;
};

6.4 Optional
Here is a simplified Optional implementation (we capitalize to emphasize that we are not aiming for
compatibility with experimental::optional):

template<typename T>
class Optional {
public:
 T& operator.() { if (opt_empty()) throw Empty_optional{}; return obj; }

 Optional() : dummy{true}, b{false} {}
 Optional(T&& xx) :obj{xx}, b{true} { }

// …
Optional& operator=(const T& x)

 { if (opt_empty()) new(&obj) T{x}; else obj=x; b=true; return *this; }
 // …

 bool opt_empty() { return !b; }
 T operator T() { if (opt_empty()) throw Empty_optional{}; return obj; }
 T value_or(T&& v) { return (opt_empty()) ? v : obj; }
 template<typename Fct>

20

Stroustrup, Dos Reis Operator Dot N 4477

T value_else(Fct err) { return (opt_empty()) ? err() : obj; }
private:
 union {

T obj; // only valid/initialized if b==true
bool dummy; // used only to suppress initialization of obj

 };
 bool b;
};

Obviously, a lot of details are missing, but what we are interested in here is the use and interaction
between the handle and the value.

 Optional<complex<double>> oz0 {};
 Optional<complex<double>> oz {{1,2}};
 Complex<double>>& r0 = oz0; // error: the result of oz0.operator.() must be used.
 auto z0 = oz0; // throws
 auto x1 = oz2; // x1 is complex<double>; x1 == {1,2}

 if (!oz0.opt_empty()) {

// use oz0
 }

 auto x2 = oz2.value_or({0,0});
 oz0 = {3,4};

auto x3 = oz0*oz1+{5,6}; // x3 is complex<double>
auto x4 = oz1.value_else([] { cerr << “Hell is loose!”; return complex<double>{0,0}; })

Using Optional<X> exactly as an X is possible, but would probably lead to too many obj_empty() tests,
thesefore obj_empty() is a public function. This is an example of where the “handle priority” policy
matters. We chose the slightly awkward name obj_empty, rather than a popular name, like valid, to
make name clashes between the handle and the value type less likely.

Note that when using auto, we extract a reference to the contained object (the value). This can be
important for avoiding repeated tests. The choice between having = return a handle or a value is an
important design point.

It would have been nice if we could have overloaded operator.() on lvalue vs. rvalue. Then, we could
have eliminated the operator=. Note that we are relying on operator.() being used on all accessed not
mashed by the handle, even the simple read of an Optional<X>.

6.5 More examples
More reasonably terse and reasonably real-world examples are welcome.

7 Working paper text (drafty)
Add a paragraph to 13.5.6 (the current first and only paragraph is repeated here to provide context):

21

Stroustrup, Dos Reis Operator Dot N 4477

13.5.6 Class member access [over.ref]
operator-> shall be a non-static member function taking no parameters. It implements the class member
access syntax that uses ->.

postfix-expression -> templateopt id-expression
postfix-expression -> pseudo-destructor-name

An expression x->m is interpreted as (x.operator->())->m for a class object x of type T if T::operator->()
exists and if the operator is selected as the best match function by the overload resolution mechanism
(13.3).

operator. shall be a non-static member function taking no parameters. It implements the class member
access that is not through a pointer, whether the syntax that uses . or not.

postfix-expression . templateopt id-expression
postfix-expression . pseudo-destructor-name

Unless m is explicitly declared to be a public member of x’s class or the destructor, the expression x.m is
interpreted as (x.operator.()).m for a class object x of type T if T::operator.() exists and if the operator is
selected as the best match function by the overload resolution mechanism (13.3). Unary and binary
operators are interpreted as calls of their appropriate operator functions (???) so that the previous rule
apply. [[for example, x=y is interpreted as x.operator=(y) which is interpreted as
x.operator.().operator=(y).]] Implicit or explicit destructor invocations do not invoke operator.().

The result of operator.() may not be bound to a reference, except as a reference argument.

TBD: Wording for “a operator.() declaration suppresses the generation of destructor, copy operations,
and move operations.”

TBD: Do we need text in the expressions section? In particular, do we need to say something to stop the
compiler from rewriting p->m to (*p).m and then apply operator.()?

8 Acknowledgements
Thanks to Herb Sutter for discussions of operator.() ideas. Thanks to Holger Grund and Jeff Zhuang for
constructive comments on a draft of this paper.

9 References
[Adcock,1990] James Adcock: Request for Consideration - Overloadable Unary operator.().

http://www.openstd.org/jtc1/sc22/wg21/docs/papers/1990/WG21%201990/X3
J16_90%20WG21%20Request%20for%20Consideration%20-
%20Overloadable%20Unary%20operator.pdf

[K&S,1991] A. Koenig and B. Stroustrup: Analysis of Overloaded operator.().
http://www.open-
std.org/jtc1/sc22/wg21/docs/papers/1991/WG21%201991/X3J16_91-
0121%20WG21_N0054.pdf

[Powell,2004] G. Powell, D.Gregor, and J. Jarvi: Overloading Operator.() & Operator.*().
 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1671.pdf

[Stroustrup,1994] B. Stroustrup: The Design and Evolution of C++. Addison-Wesley.

22

Stroustrup, Dos Reis Operator Dot N 4477

[Stroustrup,2000] B. Stroustrup: Wrapping C++ Member Function Calls.
The C++ Report. June 2000, Vol 12/No 6.

[Stroustrup,2014] B. Stroustrup: Call syntax: x.f(y) vs. f(x,y). N4174.

[Stroustrup,2014a] B. Stroustrup: Default Comparisons. N4175.

[Stroustrup&Sutter, 2015]: B. Stroustrup and H. Sutter: Unified Call Syntax: x.f(y) and f(x,y). N4474.

23

	Operator Dot (R2)
	Bjarne Stroustrup (bs@ms.com)
	Gabriel Dos Reis (gdr@microsoft.com)

	What’s new?
	Abstract
	1 Introduction
	2 Why do we want to “overload dot”?
	2.1 Why now? (again)

	3 An operator.() design
	4 Design points
	4.1 Implicit dot
	4.2 Pass by smart reference
	4.3 Who is in control?
	4.4 Why give priority?
	4.4 Constructors and destructors
	4.4.1 Unsurprising consequences

	4.5 Recursive use of operator.()
	4.5.1 Move and Copy

	4.7 Return type of operator.()
	4.8 The definition of operator.()
	4.9 Overloading operator.()
	4.10 Member Types

	5 Avoiding “reference leaking”
	6 Examples
	6.1 Pimpl
	6.2 Adding operations in a proxy
	6.3 A remote object proxy
	6.4 Optional
	6.5 More examples

	7 Working paper text (drafty)
	8 Acknowledgements
	9 References

